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responding transport coefficients by computing directly the response functions, eliminating

the arbitrary source from the start. Moreover, it provides a neat criterion for the infrared

regularity of the fluctuations. In particular, it is shown that the infrared regularity con-

ditions for scalar and tensor fluctuations coincide, and hence they are either both regular

or both singular. We demonstrate our numerical recipe based on the Riccati equations by

computing the holographic 2-point functions for the stress tensor and a scalar operator in

a number of asymptotically anti de Sitter backgrounds of bottom up scalar-gravity models.

Analytical results are obtained for the 2-point function of the transverse traceless part of
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1 Introduction

The AdS/CFT correspondence [1] has found fruitful ground in building holographic models

following top down/bottom up approaches. Such models have applications in cosmology,

QCD and condensed matter physics and often the computation of the 2-point functions [2,

3] and the transport coefficients in the dual QFT is required.

The holographic computation of 2-point functions involves solving second order linear

differential equations in an asymptotically locally anti de Sitter background. The general

solution of such equations contains two arbitrary functions of the boundary coordinates or

momenta, one of which is generically identified with the source of the dual gauge invariant

operator while the other is identified with its 1-point function. Requiring that the solution

of the linear equations be regular in the interior of the bulk imposes a relation between the

two arbitrary functions that parameterize the solution, thus leaving one arbitrary function.

The fact that the desired solution of the second order linear equations contains an arbitrary

function renders the numerical computation of the holographic 2-point functions tedious

and inefficient. However, homogeneous second order linear differential equations can always
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be transformed to a first order non-linear Riccati equation. Namely, starting from the

second order linear equation

α(x)y′′ + β(x)y′ + γ(x)y = 0, (1.1)

and defining

w = − y′

αy
, (1.2)

one obtains the Riccati equation

w′ = α(x)w2 +
α′(x)− β(x)

α(x)
w +

γ(x)

α2(x)
. (1.3)

The general solution of the Riccati equation contains only one arbitrary constant, which

can be eliminated by imposing regularity of the linearized fluctuations in the bulk. The

resulting solution contains no arbitrary functions and is therefore much better suited for

numerical analysis. In effect the Riccati equation computes directly the kernel of the second

order linear differential equation.

In order to demonstrate the holographic computation via the Riccati equation we

consider linear fluctuations around asymptotically AdS Poincaré domain walls in a simple

model of a neutral scalar coupled to Einstein-Hilbert gravity. Such domain walls correspond

to renormalization group flows of the dual CFT, triggered by a single trace deformation or

by a VEV of the relevant gauge-invariant operator dual to the bulk scalar. Our approach

is completely bottom up, and so we will make no attempt to embed the scalar potential in

some gauged supergravity here. Of course, our techniques and analysis apply equally well

to embeddable models.

Moreover, we will allow the domain wall backgrounds to contain mild singularities.

In particular we will allow for “good singularities” according to [4], since these can be in

principle resolved by stringy effects and/or by a horizon. In fact, such singular backgrounds

have been extensively used as toy holographic models for confinement (see e.g. [5] and

references therein.)

The paper is organized as follows. In section 2 we present the model we are going to

use as well as the Poincaré domain wall backgrounds in a form that will be most suitable

for our subsequent analysis. In section 3 we derive the linearized fluctuation equations

in both second order and first order Riccati forms, closely following the analysis of [6].

Section 4 deals with the ultraviolet divergences of the 2-point functions, again using the

techniques of [6], while in section 5 we classify confining infrared geometries that allow for

non-singular 2-point functions. In particular, we provide a general criterion for the infrared

regularity of scalar and tensor fluctuations and in lemma 5.1 we show that the assumptions

of the holographic c-theorem ensure that such fluctuations are either both regular or both

singular at the infrared. In section 6 we describe our numerical strategy while in section 7

we provide indicative exact and numerical results for three different backgrounds, namely

exact AdS and two asymptotically AdS geometries that are confining in the infrared. We

end with some discussion and a summary of our results in section 8. Some technical results

are presented in the appendices.
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2 RG flows and models of confinement in AdS/CFT

In order to demonstrate the use of the Riccati equation for the computation of holographic

2-point functions we consider a bottom up gravity-scalar action

S =
1

2κ2

ˆ

dd+1x
√−g

(
R− 1

2
(∂φ)2 − V (φ)

)
, (2.1)

where κ2 = 8πGd+1 is the gravitational constant in d + 1 dimensions and the potential

is left unspecified at this point, except for the requirement that the equations of motion

admit AdSd+1 as a solution. The equations of motion take the form

Rµν −
1

2
Rgµν =

1

2

(
∂µφ∂νφ− 1

2
gµν(∂φ)

2

)
− 1

2
gµνV (φ) ≡ Tµν ,

�gφ− Vφ(φ) = 0, (2.2)

where the subscript φ denotes derivative with respect to φ.

We will compute the holographic 2-point functions in backgrounds that preserve

Poincaré invariance in d dimensions, namely

ds2B = dr2 + e2A(r)ηijdx
idxj , φ = φB(r), (2.3)

where1 η = diag (−,+ . . .+) is the Minkowski metric in d dimensions. Such backgrounds

describe renormalization group flows of the dual CFT. They have also been considered

as toy models for the holographic study of QCD [5, 7–10], of heavy ion collisions [11–15]

and thermalization [16–19] in the AdS/CFT context. Although the radial coordinate r is

most suitable for setting up the holographic dictionary, it is often useful to use instead a

‘conformal’ radial coordinate z such that

ds2B = e2A(z)
(
dz2 − dt2 + d~x2

)
. (2.4)

One can easily switch between the two radial coordinates using

eA(z)dz = −dr, ∂r = −e−A(z)∂z, (2.5)

and we will freely do so in the following. In particular, from now on dots denote derivatives

with respect to r, while primes indicate derivatives with respect to z.

Inserting the ansatz (2.3) in the equations of motion leads to the set of

coupled equations

Ȧ2 − 1

2d(d− 1)

(
φ̇2B − 2V (φB)

)
= 0,

Ä+ dȦ2 +
1

d− 1
V (φB) = 0,

φ̈B + dȦφ̇B − Vφ(φB) = 0. (2.6)

1Occasionally we will consider Euclidean signature instead below.

– 3 –



J
H
E
P
0
4
(
2
0
1
4
)
1
9
4

It is well known that these equations are automatically solved provided a function W (φ)

can be found such that

Ȧ = − 1

2(d− 1)
W (φB),

φ̇B = Wφ(φB), (2.7)

and W (φ) is related to the scalar potential as

V (φB) =
1

2

(
W 2

φ − d

2(d− 1)
W 2

)
. (2.8)

These relations follow most naturally from a Hamilton-Jacobi analysis of the domain wall

backgrounds (2.3) [6, 20–22].

The domain wall solutions we are interested in here are asymptotically AdS, which

means that as r → ∞, A(r) ∼ r/L, where L is the AdS radius. Moreover, the weaker

energy condition requires that Ä ≤ 0 and so Ȧ is monotonically increasing along the RG

flow, starting with its minimum value, 1/L, at the far UV. This leads to the holographic

c-theorem [23]. As we approach the IR there are three mutually exclusive possibilities [5].

Namely, either another AdS of a different radius is reached or a curvature singularity is

found at a finite value ro of the radial coordinate or at r → −∞. The curvature singularity

can be good or bad according to the criteria of [4]. Moreover, some singularities give rise

to confinement according to the Wilson loop test [5, 24–26]. Two of the examples we will

consider below belong to this class.

The requirement that the equations of motion admit AdS of radius L as a solution

implies that the scalar potential takes the form2

V (φ) = −d(d− 1)

L2
+

1

2
m2φ2 + · · · , (2.9)

as φ→ 0, wherem is the mass of the scalar field and the dots stand for higher powers of the

scalar field. Stability with respect to scalar perturbations requires that the mass satisfies

the Breitenlohner-Freedman bound m2L2 ≥ −(d/2)2 [27]. We will assume additionally

that m2 < 0 so that φ→ 0 in the UV and the scalar field is dual to a relevant operator.

Since the scalar potential is a priori arbitrary in our bottom up model except for

the asymptotic behavior (2.9), we can parameterize the backgrounds (2.3) in terms of the

‘superpotential’ W (φB). The warp factor A(r), the scalar φB(r) and the potential V (φ)

can then be obtained via (2.7) and (2.8). The asymptotic form (2.9) of the scalar potential

implies that W (φB) asymptotically takes the form

W (φB) =





−2(d− 1)

L
− 1

2L
(d−∆)φ2B + · · · ,

−2(d− 1)

L
− 1

2L
∆φ2B + · · · ,

(2.10)

2One can always redefine the scalar such that AdS of radius L corresponds to φ = 0.
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where the scaling dimension ∆ of the dual scalar operator is related to the scalar mass

as m2L2 = ∆(d − ∆). Assuming ∆ > d/2, if the superpotential behaves asymptotically

as in the first line of (2.10) then the background describes an RG flow due to a single-

trace deformation of the dual CFT by a relevant operator of dimension ∆, while if W (φB)

asymptotes to the second line of (2.10) then the background describes an RG flow due

to a vacuum expectation value of such an operator [6]. For ∆ = d/2 the corresponding

asymptotic forms of the superpotential are [28]

W (φB) =





−2(d− 1)

L
− d

4L
φ2B

(
1 +

1

log φB

)
+ · · · ,

−2(d− 1)

L
− d

4L
φ2B + · · · .

(2.11)

The backgrounds (2.3) with generic scalar potential can alternatively be parameterized

by specifying the wrap factor A. This parameterization is particularly useful for studying

the infrared behavior of the background and of linear perturbations around it, as well as

for numerical calculations. All other quantities can be easily obtained from the warp factor

through the following relations in conformal coordinates:

φ′B = ±
√
−2(d− 1) (A′′ −A′2),

W (φB) = 2(d− 1)e−AA′,

V (φB) = −(d− 1)e−2A
(
A′′ + (d− 1)A′2) . (2.12)

3 Linearized fluctuation equations in Riccati form

The 2-point functions of the stress tensor and of the scalar operator dual to φ can be com-

puted by solving the linearized fluctuation equations around the backgrounds considered

in section 2. In this section we provide a general derivation of these fluctuation equations

in the Riccati form closely following the analysis of [6].3

Without loss of generality we will consider linearized metric fluctuations that preserve

the partial gauge-fixing of the metric

ds2 = dr2 + γij(r, x)dx
idxj , (3.1)

where γij is the induced metric on the constant r hypersurfaces. In this gauge the radial

canonical momenta πij and πφ are given by

πij =
1

2κ2
√−γ

(
Kγij −Kij

)
=

δS
δγij

,

πφ = − 1

2κ2
√−γφ̇ =

δS
δφ
, (3.2)

where Kij =
1
2 γ̇ij is the extrinsic curvature of γij and S[γ, φ] is the on-shell action as a func-

tion of the induced fields γij and φ. The AdS/CFT dictionary relates the on-shell action

3To our knowledge, the idea of using first order Riccati equations for holographic 2-point functions was

introduced in [6]. It has subsequently been used in a number of papers, including [29], in appendix B of [30],

and in [31].
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to the generating function of connected correlation functions and the radial canonical mo-

menta to the corresponding 1-point functions. For our present analysis the relations (3.2)

suffice, but for a general radial Hamiltonian analysis in the context of holographic renor-

malization we refer the reader to [6, 22] and [21, 31–36] for related work.

The most general linear fluctuations around the backgrounds described in section 2

that preserve the partially gauge-fixed metric (3.1) are of the form

γij = γBij (r) + hij(r, x) = e2A(r)ηij + hij(r, x), φ = φB(r) + ϕ(r, x). (3.3)

The extrinsic curvature can be expressed to linear order in the fluctuations as

Ki
j =

1

2
γikγ̇kj = Ȧδij +

1

2
Ṡi
j , (3.4)

where Si
j ≡ γikB hkj can be decomposed into irreducible components as

Si
j = eij + ∂iǫj + ∂jǫ

i +
d

d− 1

(
1

d
δij −

∂i∂j
�B

)
f +

∂i∂j
�B

S, (3.5)

with ∂ie
i
j = eii = ∂iǫ

i = 0 and indices are raised with the inverse background metric e−2Aηij .

Conversely, all irreducible components can be expressed in terms of Si
j as

eij = Πi
k
l
jS

k
l , ǫi = P l

i

∂k
�B

Sk
l , f = P l

kS
k
l , S = δlkS

k
l , (3.6)

via the projection operators

Πi
k
l
j =

1

2

(
P i
kP l

j + P ilPkj −
2

d− 1
P i
jP l

k

)
, (3.7)

and

P i
j = δij −

∂i∂j
�B

. (3.8)

However, diffeomorphism invariance in the transverse directions can be used to set ǫi ≡ 0.

Inserting these expressions for the extrinsic curvature and for the fluctuations in the

equations of motion for the gauge-fixed metric (3.1) (Gauss-Codazzi equations) leads to a

set of linear equations for the fluctuations [6]
(
∂2r + dȦ∂r + e−2A

�

)
eij = 0,

(
∂2r + [dȦ+ 2W∂2φ logW ]∂r + e−2A

�

)
ξ = 0,

ḟ = −Wφϕ,

Ṡ = − 2

W

[
−e−2A

�f + (Wφϕ̇− Vφϕ)
]
, (3.9)

where �B = e−2A
� = e−2Aηij∂i∂j and4

ξ ≡ W

Wφ
ϕ+ f. (3.10)

4Note that ξ is not well defined when φB ≡ 0, i.e. when the background is exactly AdS. However, we

will consider this case separately in one of our examples below.
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The modes eij and ξ satisfy decoupled second order linear equations. The solution of

these second order equations captures all the non-trivial physics contained in the 2-point

functions of the stress tensor and of the scalar operator O(x) dual to φ. However, these

linear second order equations can be transformed into first order non-linear equations of

Riccati type, which are much more amenable to numerical analysis.

To derive the Riccati form of these equations we note that to linear order in the

fluctuations we can write

ėij = E(A, φB)e
i
j , ξ̇ = Ω(A, φB)ξ, (3.11)

where E(A, φB) and Ω(A, φB) are the response functions and depend only on the back-

ground. Inserting these expressions in the second order fluctuation equations for eij and ξ

leads to first order Riccati equations for the response functions E(A, φB) and Ω(A, φB),

which in momentum space (p2 = −ω2 + ~k2) are [6]

Ė + E2 + dȦE − e−2Ap2 = 0,

Ω̇ + Ω2 +
(
dȦ+ 2W∂2φ logW

)
Ω− e−2Ap2 = 0.

(3.12)

Contrary to the second order equations for the modes eij and w, these first order equations

only require one boundary condition each. As we will discuss in section 5, this boundary

condition is provided by imposing regularity of the fluctuations eij and w in the infrared.

The fact that the Riccati equations (3.12) directly compute the response functions bypass-

ing the arbitrary sources provides a much more efficient strategy for computing the 2-point

functions numerically. Moreover, as we now show, these 2-point functions can be directly

expressed in terms of the response functions E(A, φB) and Ω(A, φB) so that the 2-point

functions can be simply red off from the solutions of (3.12).

The connection between the response functions E(A, φB) and Ω(A, φB) and the 2-point

functions can be easily shown by using the canonical momenta (3.2). Namely, given the

response functions the radial velocities can be written as

ėij = Eeij ,

ḟ = −Wφϕ,

Ṡ = −2

[(
Wφ

W

)2

Ω− e−2A

W
�

]
f − 2

Wφ

W

(
Ω+

d

2(d− 1)
W

)
ϕ,

ϕ̇ = (Wφφ +Ω)ϕ+
Wφ

W
Ωf. (3.13)

Moreover, expanding the canonical momenta (3.2) to linear order in the fluctuations we get

πij =
1

2κ2
√−γB

(
(d− 1)ȦγijB − (d− 1)Ȧ

(
Sij − 1

2
γijBS

)
− 1

2

(
γ
(ik
B Ṡkj) − γijB Ṡ

))
,

πφ = − 1

2κ2
√−γB

(
φ̇B + ϕ̇+

1

2
φ̇BS

)
. (3.14)
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Inserting the radial velocities in these expansions of the momenta and isolating the terms

linear in the fluctuations gives

π(2)ij =
1

4κ2
√−γB

{
(W − E)eij −W

(
P ij − 1

2
γijB

)
S

+W

(
d

d− 1
P ij − γijB

)
f − 2P ij

[(
Wφ

W

)2

Ω− e−2A

W
�

]
f

−Wφ

(
2Ω

W
P ij + γijB

)
ϕ

}
, (3.15)

and

π
(2)
φ = − 1

2κ2
√−γB

(
(Wφφ +Ω)ϕ+

Wφ

W
Ωf +

1

2
WφS

)
. (3.16)

According to (3.2) these canonical momenta can be expressed as gradients of the quadratic

in fluctuations part of the on-shell action, which we will denote by S(2). Indeed, these

expressions for the momenta can be integrated straightforwardly to obtain the generating

functional for all 2-point functions, namely

S(2) = − 1

8κ2

ˆ

ddx
√−γB

{
(E −W )eije

j
i + 2WfS +

1

2
WS2 + 2Wφ

(
2Ω

W
f + S

)
ϕ

+2f

(
− dW

2(d− 1)
+

(
Wφ

W

)2

Ω− e−2A

W
�

)
f + 2ϕ(Wφφ +Ω)ϕ

}
.

(3.17)

This expression encodes all 2-point functions between the stress tensor and the opera-

tor O(x), but it suffers from ultraviolet divergences which must be consistently removed.

Moreover, many terms in (3.17) are trivial contact terms that can be removed by finite

local counterterms. We address both these issues in the subsequent section.

4 Renormalized 2-point functions

In order to obtain the renormalized 2-point functions from the generating functional (3.17)

we need to add local covariant boundary terms to remove the ultraviolet divergences. More-

over, we are free to add any finite local counterterms we find convenient, which reflects

the usual renormalization scheme choice. This freedom can be utilized to greatly sim-

plify (3.17). Namely, we observe that all terms that don’t contain E and Ω in (3.17) are

local covariant terms that can be simply removed by local counterterms.5 The generating

functional (3.17) can therefore be simplified to

S(2) = − 1

8κ2

ˆ

ddx
√−γB

{
ejiEe

i
j + 2

(
ϕ+

Wφ

W
f

)
Ω

(
ϕ+

Wφ

W
f

)}
. (4.1)

5More correctly, here we are ignoring for simplicity all analytic terms in the 2-point functions. In the

case of backgrounds describing RG flows due to a vacuum expectation value there are generically contact

terms that are proportional to the VEVs and these should not be removed by local counterterms as they

are physical. But such terms can be recovered easily by a careful analysis of the counterterms. We refer

the reader to [6] for a more complete analysis of this issue.
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Note that now only the decoupled dynamical modes eij and ξ survive after the contact

terms are removed.

However, this simplified generating function still suffers from ultraviolet divergences.

The local covariant counterterms that are required to remove these divergences depend on

the particular theory, i.e. the scalar potential V (φ), and can be systematically obtained

directly at the linearized level by the algorithm described in [6]. Namely, the response

functions E and Ω can be expanded in eigenfunctions of the dilatation operator

δD = ∂A + (∆− d)φB∂φB
, (4.2)

as

E = E(1) + · · ·+ Ẽ(d) log(e
−2r/L) + E(d) + · · · ,

Ω =





Ω(1) + · · ·+ Ω̃(2∆−d) log(e
−2r/L) + Ω(2∆−d) + · · · , ∆ > d/2,

L

r
Ω̃(0) +

L2

r2
Ω(0) + · · · , ∆ = d/2,

(4.3)

where the subscript indicates the eigenvalue under the dilation operator, e.g. δDE(k) =

−kE(k). The terms up to Ẽ(d) and Ω̃(2∆−d) are local, contribute to the ultraviolet diver-

gences, and can be determined by inserting these expansions in the equations (3.12) for

the response functions and using the fact that

∂r = Ȧ∂A + φ̇B∂φB
= − 1

2(d− 1)
W (φB)∂A +Wφ(φB)∂φB

∼ δD + · · · . (4.4)

These terms must be removed from the generating functional by adding the correspond-

ing local counterterms. The terms E(d) := e−dr/LÊ(d) and Ω(2∆−d) := e−(2∆−d)r/LΩ̂(2∆−d)

however are in general non-local and they are left undetermined by this asymptotic analysis

of (3.12). Ê(d) and Ω̂(2∆−d) are defined so that they are independent of the radial coordi-

nate and correspond to the renormalized response functions that contain all the physical

information of the renormalized 2-point functions. Terms of higher order than E(d) and

Ω(2∆−d) drop out when the UV cutoff is removed and so we need not consider them. We

will see explicit examples of these expansions in section 7.

The final outcome of this analysis is that the renormalized generating functional for

the 2-point functions can be written in the form

S(2)
ren = − 1

8κ2
lim
r→∞

ˆ

ddx
√−γB

{
ejiE(d)e

i
j + 2

(
ϕ+

Wφ

W
f

)
Ω(2∆−d)

(
ϕ+

Wφ

W
f

)}
. (4.5)

All renormalized 2-point functions can be simply red off this expression. Namely,

〈Tij(p)Tkl(−p)〉TT = − 1

κ2
ΠijklÊ(d)(p),

〈O(p)O(−p)〉 = − 1

2κ2
Ω̂(2∆−d)(p),

〈P ijTij(p)O(−p)〉 = 1

2κ2
(d−∆)

(d− 1)
φ̂BΩ̂(2∆−d)(p),

〈P ijTij(p)PklTkl(−p)〉 = − 1

2κ2
(d−∆)2

(d− 1)2
φ̂2BΩ̂(2∆−d)(p),

(4.6)
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where φ̂B is the scalar source of the background defined through the asymptotic relation

φB ∼ zd−∆φ̂B. Note that if the background domain wall describes an RG flow due to a

VEV of the operator O, then the source φ̂B vanishes and so there is no mixing between

the stress tensor and the scalar operator.

These expressions for the renormalized 2-point functions reduce the problem to the

evaluation of the renormalized response functions Ê(d)(p) and Ω̂(2∆−d)(p). To compute

these one simply needs to solve the Riccati equations (3.12) exactly, analytically or nu-

merically, and to identify the renormalized response functions by subtracting the terms in

the asymptotic expansions (4.3). A number of examples will be worked out explicitly in

section 7.

5 Infrared regularity conditions

In this section we classify various IR behaviors of the warp factor A(z) and we determine

the corresponding IR behavior of the response functions E and Ω following from (3.12).

The definitions (3.11) of the response functions imply that the linear fluctuations eij and ξ

are regular in the IR provided

ˆ r

dr′E(r′, p) = −
ˆ z

dz′eA(z′)E(z′, p) <∞,

ˆ r

dr′Ω(r′, p) = −
ˆ z

dz′eA(z′)Ω(z′, p) <∞.

(5.1)

We will now determine the appropriate IR asymptotic solutions of E and Ω for various

choices of warp factors such that these conditions are satisfied. Noting that the quantity

W∂2φ logW can be expressed in terms of the warp factor as

W∂2φ logW = −1

2
e−A∂z log

(
1− A′′

A′2

)
, (5.2)

the equations (3.12) in Poincaré coordinates take the form6

E′ − eAE2 + dA′E + p2e−A = 0,

Ω′ − eAΩ2 +

(
dA′ + ∂z log

(
1− A′′

A′2

))
Ω+ e−Ap2 = 0,

(5.3)

where the primes denote differentiation w.r.t. z. This form of the equations for the response

functions allows us to prove the following

Lemma 5.1 For any asymptotically AdS Poincaré domain wall that fulfills the conditions

of the holographic c-theorem [23], the asymptotic behaviors of the response functions E and

Ω in the IR are identical provided the IR geometry is not another AdS, in which case the

answer depends on how fast AdS is approached.

6The transformation Ω = Ω̃
(
1− A′′

A′2

) 1

d−1

renders the second equation in (5.3) in the same form as the

first one, but with A(z) replaced by the quantity A+ 1
d−1

log
(
1− A′′

A′2

)
.
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The coefficient of Ω in (5.3) can be written as

∂z log

[(
1− A′′

A′2

)
edA
]
. (5.4)

Hence, given that A → −∞ in the IR, and excluding the case that the IR geometry is

another AdS, i.e. A(z) ∼ − log z as z → ∞, it suffices to show that A′′/A′2 does not

approach −∞ in the IR. The holographic c-theorem requires that Ä ≤ 0, or A′′ ≤ A′2.

Hence, Ȧ is monotonically decreasing towards the UV. Since at the far UV Ȧ→ 1/L > 0,

it follows that Ȧ > 0 along the entire flow, or equivalently A′ ≤ 0. Since −1/A′ ≥ 0 is

bounded from below, ∂z(−1/A′) can only possibly tend to −∞ at a finite value z0 of z and

not asymptotically as z → ∞. In that case −1/A′ has a branch cut at z = z0 such that

− 1

A′ ∼ a+ b(z0 − z)α, a ≥ 0, b > 0, 0 < α < 1, (5.5)

as z → z−0 . Hence,

A(z) ∼





1

a
(z0 − z) + const. a > 0,

1

(1− α)b
(z0 − z)1−α + const. a = 0,

(5.6)

which contradicts the hypothesis that A(z) → −∞ at the IR. If A(z) ∼ − log z as z → ∞,

then 1−A′′/A′2 → 0 and so we need subleading terms to determine which of the two terms

multiplying Ω in (5.3) falls off faster. ✷

This lemma implies that it suffices to examine the IR behavior of E only, since that of

Ω is identical. Moreover, we will work in Euclidean signature in this section so that p2 ≥ 0.

1. A(z) ∼ −c log z, c > 0, as z → zIR = +∞: the equation for E in (3.12) in the

IR becomes

E′ − z−cE2 − dcz−1E + p2zc ≈ 0. (5.7)

Trying a solution E ∼ Eoz
ǫ we get

ǫEoz
ǫ−1 − E2

oz
2ǫ−c − dcEoz

ǫ−1 + p2zc ≈ 0. (5.8)

The only solutions are

ǫ = c, Eo = ±
√
p2. (5.9)

The positive solution for Eo satisfies the regularity condition (5.1) for the fluctuations

and so there exists a regular mode.

2. A(z) ∼ −czα, c, α > 0, as z → zIR = +∞: taking E ∼ Eoe
czα we have

− (d− 1)cαzα−1Eo + (p2 − E2
o ) ∼ 0. (5.10)

Moreover, the regularity condition requires only that Eo > 0. We have three cases

to distinguish.
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(a) For α < 1 we have Eo =
√
p2, which as in the previous example leads to a

regular solution at least in Euclidean space. In Lorentzian space, according

to [5], such a geometry is not confining independently of the coefficient c.

(b) For α = 1 the two solutions for Eo are

Eo = −(d− 1)c

2
±
√(

(d− 1)c

2

)2

+ p2. (5.11)

According to [5], the corresponding geometry yields a mixed quantized and

continuum spectrum. In the Euclidean case, only the coefficient with the positive

sign leads to a regular solution.

(c) Finally, for α > 1 there is no regular solution with the above ansatz for E but

there is one for the slightly more general ansatz E ∼ Eoz
aecz

α
. Namely, the

choice a = 1− α and

Eo =
p2

(d− 1)cα
, (5.12)

leads to regular fluctuations according to (5.1). This background is confining

according to the Wilson loop test [5].

In all, for every α > 0 there exists a regular solution.

3. A(z) ∼ c log(z0−z), c > 0, as z → zIR = z0: using the ansatz E ∼ Eo(z0−z)ae−A(z)

we have

− (a+ (d− 1)c)Eo(z0 − z)a−1 − E2
0(z0 − z)2a + p2 ≈ 0. (5.13)

The choice a = 1 and Eo =
p2

(d−1)c+a leads to regular fluctuations according to (5.1).

4. A(z) ∼ −c(z0 − z)−a, c > 0, a > 0 as z → zIR = z0: taking the ansatz E ∼
Eo(z0 − z)ke−A(z) we have

− (d− 1)acEo(z0 − z)k−1−a − kEo(z0 − z)k−1 − E2
o(z0 − z)2k + p2 ≈ 0. (5.14)

This admits a solution k = 1 + a and

Eo =
p2

ac(d− 1)
, (5.15)

which leads to regular fluctuations according to (5.1).

6 Numerical recipe

In this section we outline a recipe for the numerical evaluation of the renormalized response

functions Ê(d) and Ω̂(2∆−d) that are required to obtain all the 2-point functions of the

stress tensor and the scalar operator O. The formulation of the 2-point functions in terms

of the Riccati equations (3.12) for the response functions allows us to develop a much

more efficient algorithm than the usual one based on the second order equations obeyed

by the fluctuations.

The recipe involves the following steps.
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1. Background: specification of the background by providing the warp factor A(z) in

conformal coordinates. All other quantities of the background can be deduced from

the warp factor via (2.12).

2. Dimensionless parameters: the response functions E and Ω are determined by the

first order equations (5.3). Since E and Ω have dimensions of mass, it is convenient

to introduce the dimensionless quantities E := LE and Ω := LΩ. Moreover, for any

background other than exact AdS there is a dynamical mass scale, Λ, that governs

the IR behavior of the background. This allows us to introduce the dimensionless

variable w := Λz. The warp factor can then be written as a function A(w;LΛ) of

the dimensionless variable w and the dimensionless parameter LΛ. Generically the

equations (5.3), when expressed in terms of dimensionless variables, will depend on

the dimensionless parameters p/Λ and LΛ and so E(w;LΛ, p/Λ) and Ω(w;LΛ, p/Λ)

will be functions of these parameters too. In this most general case the renormal-

ized response functions must be determined as functions of the two dimensionless

parameters p/Λ and LΛ. In the examples we will consider in section 7, however, the

equations (5.3), when expressed in terms of dimensionless variables, only depend on

the dimensionless parameter p/Λ and not LΛ. As a result E(w; p/Λ) and Ω(w; p/Λ)

are only functions of the dimensionless parameter p/Λ. In order to determine the

renormalized response functions in this case we need to solve (5.3) numerically for

various values of the dimensionless parameter p/Λ, and then extract the appropriate

coefficient as a function of p/Λ. Since there is only one dimensionless parameter in

the examples of section 7 we can simplify things further by setting Λ = 1.

3. IR solution: in order to solve (5.3) for the response functions we must fix the single

integration constant for each equation by imposing regularity of the corresponding

fluctuations in the IR, i.e. imposing the conditions (5.1). This is done by constructing

the asymptotic solutions of (5.3) and identifying the ones that satisfy the regularity

conditions (5.1).

4. IR shooting: the regular IR asymptotic solutions of the previous step are now used as

IR boundary conditions in order to solve (5.3) numerically via a shooting procedure.

In particular, one chooses a starting point win very close to the IR where the numerical

solution is matched with the asymptotic IR solution. The resulting numerical solution

matches the desired IR expansion very accurately in the far IR, while the two solutions

start to deviate away from the IR region (e.g. left panel in figures 1 and 2 and figure 3).

5. Extracting UV data: in the last step the renormalized response functions Ê(d) and

Ω̂(2∆−d) are extracted from the numerical solution obtained in the previous step. This

is achieved by comparing the numerical solution with the general UV asymptotic

solutions of (5.3), parameterized in terms of Ê(d) and Ω̂(2∆−d). Repeating this step

for various values of the dimensionless parameter p/Λ allows us to reconstruct the

renormalized response functions as functions of the momentum, and hence compute

the corresponding 2-point functions.
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7 Examples

In this section we consider three particular backgrounds, exact AdS and two confining

geometries, in order to demonstrate the use of the Riccati equations for the computation

of the 2-point functions.

7.1 Unbroken conformal symmetry

Our first example is exact AdS space, i.e.

A(z) = log

(
L

z

)
, (7.1)

where L is the AdS radius and the boundary is at z = 0. This implies that φB = 0

and hence

W (φB) = −2(d− 1)

L
, V (φB) = −d(d− 1)

L2
. (7.2)

The fluctuation equation for E (3.12) takes the form

zE′ −E2 − dE+ p2z2 = 0, (7.3)

where E := EL. However, the mode ξ is not well defined in this case since Wφ(φB) = 0

and so the equation for the scalar fluctuations need to be revisited. This can be easily done

by rewriting the second order equation for ξ in (3.9) as an equation for ξ̃ := (Wφ/W )ξ and

then setting Wφ = 0. This leads to a second order linear equation ξ̃ = ϕ, namely

ϕ̈+
d

L
ϕ̇−m2ϕ+ e−2r/L

�ϕ = 0, (7.4)

where m2 is the scalar mass defined in (2.9). Writing again

ϕ̇ = Fϕ, (7.5)

and changing to the z coordinate leads to the Riccati equation

zF′ − F2 − dF+ p2z2 +m2 = 0, (7.6)

where F := FL. Note that (7.3) is a special case of (7.6) corresponding to m2 = 0.

Introducing the variable u = p2z2 (7.6) becomes identical to equation (3.1.24) in [37]. The

general solution takes the form

F± = −d
2
± pz (K ′

k (pz) + cI ′k (pz))

Kk (pz) + cIk (pz)
, (7.7)

where k = ∆ − d/2 > 0, c(p) is an integration constant, and the primes here denote

differentiation with respect to the argument of the Bessel functions and not z. Moreover

we have defined p :=
√
p2, working for simplicity in Euclidean signature so that p2 ≥ 0. It

follows that

ϕ = zd/2 (Kk (pz) + cIk (pz))
∓1 ϕ(0)(p), (7.8)
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and hence only F− leads to a solution of the second order equation for ϕ. Requiring that

ϕ remains finite in the IR forces us to set c = 0 so that the desired solution for F is

F = −d
2
− pzK ′

k (pz)

Kk (pz)
. (7.9)

In this case the expansion of F asymptotically in eigenfunctions of the dilatation oper-

ator can be simply obtained by expanding the Bessel functions for small z. Taking for

concreteness d to be even this leads to the renormalized response functions [37]

LF (2∆−d) =
(−1)k

22k−1Γ(k)2
z2∆−d

(
p2
)k

log

(
p2

µ2

)
,

LE(d) =
(−1)d/2

2d−1Γ(d/2)2
zd
(
p2
)d/2

log

(
p2

µ2

)
, (7.10)

where µ is an arbitrary energy scale.

7.2 A toy model for confinement

Next we consider a warp factor of the form

A(z) =
2

d− 1
log
(
1− Λdzd

)
+ log

(
L

z

)
, (7.11)

where Λ is a positive constant with the dimension of mass. This geometry is confining ac-

cording to the Wilson loop test, with confinement scale set by Λ. Using the relations (2.12)

we determine7

φ′2B =
4d(d+ 1)zd−2Λd

(
d− 1 + Λdzd

)

(d− 1) (1− Λdzd)
2 , (7.12)

as well as

W (z) = − 2

L

(
1− Λdzd

)− d+1
d−1
(
d− 1 + (d+ 1)Λdzd

)
, (7.13)

and

V (z) = − d

L2

(
1− Λdzd

)−2( d+1
d−1)

(
d− 1 + (d+ 1)Λ2dz2d

)
. (7.14)

Moreover, the UV asymptotic expansion of the background scalar is

φB(z) = ±4

√
d+ 1

d

(
(Λz)d/2 +

2d− 1

3d(d− 1)
(Λz)3d/2 +O(z5d/2)

)
, (7.15)

which determines the asymptotic form of the superpotential and the scalar potential to be

W (φB) = −2(d− 1)

L
− 1

2L

(
d

2

)
φ2B +O(φ4B), (7.16)

and

V (φB) = −d(d− 1)

L2
− 1

2L2

(
d

2

)2

φ2B +O(φ4B). (7.17)

Comparing these with (2.10) and (2.9) we conclude that ∆ = d/2 and so the mass saturates

the BF bound. Moreover this background describes a VEV and not a deformation. This is

therefore exactly analogous to the Coulomb branch flow of N = 4 super Yang-Mills [38, 39],

which was analyzed using the Riccati form of the fluctuation equations in [6].

7A closed form expression for φB(z) can be obtained in terms of Appel functions.
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Riccati equations. The Riccati equations (3.12) for the response functions take

the form8

w∂wE−
(
1− wd

) 2
d−1

E2 − d

(
1 +

2dwd

(d− 1)(1− wd)

)
E+

(
1− wd

)− 2
d−1 p2

Λ2
w2 = 0,

w∂wΩ−
(
1− wd

) 2
d−1

Ω2 +
(
1− wd

)− 2
d−1 p2

Λ2
w2 (7.18)

+ d

(
d+ 1

d− 1
− 2d

(d− 1)(1− wd)
− d− 1

d− 1 + wd
+

2(d− 1)

d− 1 + (d+ 1)wd

)
Ω = 0,

where we have introduced w := Λz, and E := EL and Ω := ΩL as before.

IR asymptotic solutions. The IR is located at w = 1. The IR behavior of the response

functions E and Ω can therefore be obtained from the form of (7.18) in the vicinity of

w = 1, namely

w∂wE−
(
1− wd

) 2
d−1

E2 − 2d2

(d− 1)(1− wd)
E+

(
1− wd

)− 2
d−1 p2

Λ2
≈ 0. (7.19)

Ω satisfies an identical equation in the IR, as ensured by lemma 5.1. The IR solutions that

satisfy the regularity conditions (5.1) are

E ∼ Ω ∼ p2

3dΛ2

(
1− wd

) d−3
d−1

. (7.20)

UV asymptotic solutions. To determine the UV behavior of the response functions we

can, without loss of generality, drop all terms containing wd in (7.18), which gives

w∂wE−E2 − dE+
p2

Λ2
w2 ≈ 0,

w∂wΩ−Ω2 +
p2

Λ2
w2 ≈ 0. (7.21)

The first equation is identical to (7.3) above and so the covariant asymptotic expansion for

E, taking for concreteness d even, is given by [6, 37]

E =
p2z2

d− 2
− (p2)2z4

(d− 2)(d− 4)
+ · · ·+ (−1)d/2

2d−1Γ(d/2)2
zd
(
p2
)d/2

log
(
z2µ2

)
+ · · · , (7.22)

=
p2L2

d− 2
e−2A − (p2L2)2

(d− 2)(d− 4)
e−4A + · · ·

+
(−1)d/2

2d−1Γ(d/2)2
e−dA

(
L2p2

)d/2
log
(
z2µ2

)
+ e−dAÊ(d)(p) + · · · ,

where µ is an arbitrary dimensionful constant. Moreover, the asymptotic form of Ω is

Ω = − 1

log z
+

1

log2 z
Ω̂(0)(p) + · · · . (7.23)

For d = 4 these asymptotic expansions are in agreement with those for the Coulomb branch

flow given in [6].

8We should point out that the limit Λ → 0 in the equation for E gives the correct result, but it does not

in the equation for Ω. The correct equations for Λ = 0 are those corresponding to the first example above.
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Exact solution for E. The equation for E in (7.18) can be solved analytically. The

general solution is

E = −(1− wd)−
2

d−1ws′c(w)

sc(w)
, (7.24)

where

sc(w) :=
wd/2

1− wd

(
Kd/2 (pw/Λ) + cId/2 (pw/Λ)

)
, (7.25)

and c(p) is an integration constant. As in the first example above, the criterion (5.1) for the

IR regularity of the fluctuations requires that we set c = 0. Expanding the solution with

c = 0 in the UV and subtracting the asymptotic form (7.22) we obtain the renormalized

response function

LE(d) =
(−1)d/2

2d−1Γ(d/2)2
zd
(
p2
)d/2

log

(
p2

µ2

)
, (7.26)

where µ is a dimensionful constant. It follows that the non analytic part of the 2-point

function of the transverse traceless part of the stress tensor in the background (7.11) is

identical to that of empty AdS.

Numerical solution for Ω in d=3 and d=4. In this subsection we follow step 4 in

section 6, in order to compute Ω(w; p/Λ) and from there, through (7.23), we show how

to extract the renormalized response function Ω̂(0)(p). We choose units such that Λ = 1

and we numerically solve equation (7.18) for Ω as a function of w as p varies. We do

that for the cases d = 3 and d = 4. The numerical analysis for these two examples is

not performed in complete detail as the purpose here is to outline the method through a

simple but non-trivial example. A complete analysis9 is carried out in the next and more

interesting example, in section 7.3, which concerns a geometry that belongs to the class

of IHQCD.

The numerical results for Ω̂(0)(p) are summarized in figures 1 and 2 where we show

the IR and the UV behavior of Ω and extract the coefficient Ω̂(0)(p) for a few values of the

momentum p. In particular, for large values of p such that p≫ Λ, we find

Ω̂(0)(p) ≈ log(0.707p), p≫ Λ, d = 3, 4. (7.27)

which agrees with the empty AdS result (7.10) with k = ∆ − d/2 = 0, since ∆ = d/2

for this example. Therefore, the numerical results reproduce the conformal limit at large

momenta as expected.

7.3 Toy holographic QCD

Our last example is a background with warp factor

A(z) = −1

2
Λ2z2 + log

(
L

z

)
, (7.28)

9Complete in the sense of many more data points considered. In the examples of this section, only the

large momentum p behavior of Ω̂(0)(p) in equation (7.23) is studied numerically. On the other hand, in the

IHQCD example that follows, the behavior of Ω̂(0)(p) for the whole range of p is fully examined.
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Figure 1. The numerical result (red dashed line) for Ω of equation (7.18) as a function of w for

d = 4 and p

Λ = p0

Λ = 10 and Λ = 1. The geometry belongs to the class of confining geometries

with a finite radial range (w ∈ [0, 1]). Left panel : the numerical solution is plotted for the whole

range of w and is superimposed in the IR (i.e. w → 1) with the asymptotic solution (7.20) (blue

curve), which provides the IR boundary condition for the numerical shooting. Right panel : the

same numerical solution is plotted in the far UV region (i.e. w ≪ 1), and is compared with the UV

asymptotic solution (7.23) (blue curve) with Ω̂(0)(p0) = log(0.707p0) ≈ 1.96. In fact, it has been

checked that for large momenta p≫ Λ, the UV fitting is always achieved by Ω̂(0)(p) = log(0.707p)

(see (7.27) and right panel in figure 2). Thus, as expected at large momenta, the numerical result

reduces to the conformal limit (see (7.10) for k = ∆− d/2 = 0).
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Figure 2. Left panel : the numerical solution (red dashed line) for Ω of equation (7.18) for d = 3 and
p

Λ = 100 is compared with the IR asymptotic solution (blue curve), which provides the IR boundary

condition for the numerical shooting. The geometry belongs to the class of confining geometries

with a finite radial range (w ∈ [0, 1]). The d = 3 case is special as, according to (7.20), in the IR it

tends to the constant p2

9Λ in contrast to the d = 4 case where it tends to zero (see figure 1). Right

panel : the renormalized response function Ω̂(0)(p) extracted from the numerical solution is plotted

for large momenta p ≫ Λ. The red dots refer to p

Λ = 100, 200, . . . , 1000 and they are determined

numerically by an appropriate UV fitting analogous to the right panel of figure 1. The blue dashed

curve is given by equation Ω̂(0)(p) = log(0.707p) (see (7.27)) and it evidently fits the numerically

obtained Ω̂(0)(p) very accurately. Thus, as expected at large momenta, the numerical result reduces

to the conformal limit (see (7.10) for k = ∆− d/2 = 0).

where again Λ is a constant and we consider only d = 4 in this example. As the previous

example, this background is confining according to the Wilson loop test, with confinement

scale Λ [5]. From the relations (2.12) we determine

φ′B = ±Λ
√
6(3 + Λ2z2), (7.29)
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together with

W (z) = − 6

L
e

1
2
Λ2z2

(
1 + Λ2z2

)
, (7.30)

and

V (z) = −3eΛ
2z2

L2

(
4 + 5Λ2z2 + 3Λ4z4

)
. (7.31)

Moreover, the asymptotic form of the background scalar field takes the form

φB(z) = 3
√
2

(
Λz +

1

18
z3Λ3 +O(z5)

)
. (7.32)

This expansion can be used to determine the asymptotic form of the superpotential

W (φB) = − 6

L
− 1

2L
φ2B +O(φ4B), (7.33)

and of the scalar potential

V (φB) = − 12

L2
− 3

2L2
φ2B +O(φ4B). (7.34)

Comparing these with (2.10) and (2.9) respectively we conclude that this background de-

scribes a deformation of the dual CFT by a dimension 3 scalar operator and with deforma-

tion parameter proportional to Λ. This is therefore exactly analogous to the GPPZ flow of

N = 4 super Yang-Mills [40], which was analyzed using the Riccati form of the fluctuation

equations in [6].

Riccati equations. The Riccati equations (3.12) for this background are

w∂wE−E2 −
(
4 + 3w2

)
E+

p2

Λ2
w2 = 0,

w∂wΩ−Ω2 −
(
4 + 3w2 − 4

1 + w2
+

6

3 + w2

)
Ω+

p2

Λ2
w2 = 0, (7.35)

where we have introduced again w := Λz, and here E := ELe−Λ2z2/2 and Ω := ΩLe−Λ2z2/2.

IR asymptotic solutions. In the IR the Riccati equation (7.35) for E becomes

w∂wE−E2 − 3w2E+
p2

Λ2
w2 ≈ 0, (7.36)

and again Ω satisfies an identical equation. The regular IR asymptotic solution is given by

E ∼ Ω ∼ p2

3Λ2
. (7.37)
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UV asymptotic solutions. The asymptotic UV solutions of (7.35) are easily found to

be of the form

E =
1

2
p2z2 +

1

4
p2
(
1

2
p2 + 3Λ2

)
z4 log(z2µ2) +O(z4),

Ω = −p
2L2

2
e−2A log(z2µ2) +O(z2), (7.38)

or equivalently

EL =
p2L2

2
e−2A +

p2L2

4

(
p2L2

2
e−2A +

1

6
φ2B

)
log(z2µ2) + e−4ALÊ(4)(p) + · · · ,

ΩL = −p
2L2

2
e−2A log(z2µ2) + e−2ALΩ̂(2)(p) + · · · . (7.39)

These expansions for E and Ω are identical to those for GPPZ flow derived in [6] (See eqs.

3.57-3.58).

Exact solution for E. The equation for E in (7.35) can again be solved exactly. The

general solution can be written in the form

E = −wj
′
c(w)

jc(w)
, (7.40)

where10

jc(w) := cG2,0
1,2

(
−3w2

2

1− p2

6Λ2

0, 2

)
+ w4

1F1

(
p2

6Λ2
+ 2; 3;

3w2

2

)
, (7.41)

and G2,0
1,2 is the Meijer function and 1F1 is Kummer’s confluent hypergeometric function of

the first kind. The integration constant c is determined by the regularity condition (5.1)

to be

c =
8

9Γ
(
2 + p2

6Λ2

)e−
iπp2

6Λ2 . (7.42)

This exact result, together with the expansion for E in (7.39) leads to the renormalized

response function

LE(4) =
1

8
p2(p2 + 6Λ2)

[
ψ

(
−1− p2

6Λ2

)
− π cot

(
πp2

6Λ2

)]
z4, (7.43)

where ψ is the digamma function. In appendix A we derive the analogous result for

arbitrary even dimension d. As a crosscheck, we note that this expression should approach

the empty AdS result given in equation (7.10) for d = 4 as Λ → 0. The asymptotic

expansion of the digamma function

ψ(−z) = π cot(πz) + log(z) +O(1/z), z → ∞, (7.44)

implies that the right limit

LE(4) ∼
1

8
z4p4 log(p2), p≫ Λ, (7.45)

is indeed recovered.
10A nicer representation of this solution can be found in appendix A.
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The physical content of (7.43) can be extracted by using the identity

ψ(1− y)− ψ(y) = π cot(πy), (7.46)

and the expansion

ψ(2 + y) = −γ +
∞∑

n=0

1

n+ 1
−

∞∑

n=0

1

n+ 2 + y
. (7.47)

Namely, we can rewrite (7.43) as

LÊ(4)(p) = −1

8

∞∑

n=0

p2(p2 + 6Λ2)

n+ 2 + p2

6Λ2

, (7.48)

where we have dropped the contact terms. This means that the Lorentzian correlator,

where p2 < 0 for timelike momenta, has poles at

p2 = −6Λ2m, m = 2, 3, . . . . (7.49)

Such a linear spin-2 spectrum is in agreement with what was found in e.g. [5] (see formulas

(6.12) and (6.17) for a = 2) and [41] (see formulas (6.22) and (6.23)).

Numerical solution for Ω. In this subsection we follow step 4 in section 6, in order

to extract Ω(w; p/Λ). We choose units such that Λ = 1 and we introduce a convenient

dimensionless function g by rescaling Ω as

Ω =
p2

3Λ2
g(p, w). (7.50)

From (7.35) we see that g(w) satisfies the equation

w∂wg −
p2

3Λ2
g2 −

(
4 + 3w2 − 4

1 + w2
+

6

3 + w2

)
g + 3w2 = 0, (7.51)

and it is subject to the IR boundary condition (7.37) which in the g variable implies

g → 1 as w → ∞. (7.52)

The utility of g is that it has the same IR boundary condition for any momentum p and

hence checking its asymptotics becomes easier.

In order to extract the QFT information, we need to determine numerically the coef-

ficient Ω̂(2) appearing in (7.39). In terms of the g variable, the UV asymptotics are

gUV ∼ 3Λ2

p2

(
Ω̂(2) (p)− p2 log(z)

)
z2, (7.53)

where Ω̂(2) (p) is the renormalized response function to be determined. The procedure is

now straightforward. Shooting from the IR using the regularity condition (7.52) for several

p’s, we fit the solution at small w using (7.53) and extract Ω̂(2). The numerical results

for g(w; p) are summarized in figures 3 and 4 where we show the IR and UV behaviors of

g(w; p) and we extract the coefficient Ω̂(2) for various values of the momentum p.
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w

0.992

0.994

0.996

0.998

1.000
gHw;pL

Figure 3. Plot of the numerical solution for g(w; p) as a function of w = zΛ with Λ = 1 in the IR

region for several fixed momenta p. The IR shooting point win is win = 2000. As p increases the

curves move upwards and they all eventually tend to unity deep in the IR. Here we used the values

p = 0.1 (red curve), 1, 5, 10 and 20.

Given the numerical solution for g(w; p), the renormalized response function Ω̂(2)(p)

can be extracted by comparison with the asymptotic UV solution (7.39). The result is

depicted in the two plots of figure 5. The plots zoom in the small and large momentum

regions, relative to the confinement scale Λ. In the p ≫ Λ limit, the theory is expected

to be in the de-confined phase and hence the result should match the empty AdS result.

Indeed, according to the second panel of the figure, the following equation

Ω̂(2)(p) ≈ −1.05p2 log(0.707p), p≫ Λ = 1, (7.54)

fits the data very accurately as predicted by the empty AdS behavior given by the left

equation in (7.10) with ∆ = 3 (for IHQCD), i.e. with k = ∆ − d/2 = 1. Away from this

limit, a deviation from the conformal behavior of AdS is expected. In particular, according

to the upper panel of figure 5, in the opposite limit p≪ Λ the following fitting is achieved

Ω̂(2)(p) ≈ −0.85p2, p≪ Λ = 1. (7.55)

The combination of the two panels of figure 5 is the main result of this section. It explicitly

demonstrates the numerical procedure outlined in section 6 for the computation of the

renormalized 2-point functions by using first order Riccati equations.

8 Conclusions & summary of results

In this paper we have demonstrated the utility of the Riccati form of the fluctuation

equations that determine the holographic 2-point functions in the context of bottom up

scalar-gravity models.
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Figure 4. The same numerical solution for g(w; p) as in figure 3 is plotted in the UV region for

several fixed momenta p. The red dashed curves are the numerical solutions and the green curves

are the UV asymptotic solutions in (7.53). In particular, for p = 0.1 (upper left panel), p = 1

(upper right), p = 10 (lower left panel), and p = 20 (lower right) the corresponding values of

Ω̂(2)(p) coefficient are Ω̂(2)(p) = −0.008, −0.8, −220 and −1150. Evidently, as p increases Ω̂(2)(p)

increases. The precise dependence of Ω̂(2)(p) on p is examined in figure 5.

• Using the Riccati form of the fluctuation equations we were able to provide a gen-

eral criterion, 5.1, for the infrared regularity of the scalar and tensor fluctuations

around asymptotically AdS Poincaré domain wall backgrounds, and to prove in gen-

eral (lemma 5.1) that provided the conditions of the holographic c-theorem hold,

scalar and tensor fluctuations are either both singular or both regular in the infrared.

These results together greatly simplify the classification of backgrounds according to

their IR singularities. Four classes of IR geometries were studied in detail is section 5.

• We provided a simplified recipe for the numerical computation of the renormalized

2-point functions. The fact that the Riccati equations are equations directly for the

kernel or response functions allows us to bypass the arbitrary sources, which is a

major advantage relative to the traditional method based on the second order linear

fluctuation equations, especially when the 2-point functions can only be computed

numerically. The recipe includes five steps which are outlined in section 6.

• In section 7 we applied this recipe to three different backgrounds, namely exact AdS

and two confining geometries. One of the two confining backgrounds corresponds to

a VEV of the dual scalar operator of dimension ∆ = d/2 and it is analogous to the

Coulomb branch flow of N = 4 super Yang-Mills. The second confining background
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Figure 5. The numerical result (blue dots) for the renormalized response function Ω̂(2) as a function

of the momentum p. p is measured in units of the confinement scale Λ. The background geometry

belongs to the class of IHQCD. The upper panel refers to small momenta ( p

Λ ∈ [0, 1]). The red dashed

curve is the fitting of Ω̂(2) for small momenta. It is achieved via the function Ω̂(2)(p) = −0.85 p2 in

units of Λ = 1. The lower panel refers to large momenta ( p

Λ ∈ [1, 100]). The red dashed curve is

the fitting of Ω̂(2) for large momenta. It is achieved via the function Ω̂(2)(p) = −1.05 p2 log(0.707p)

in units of Λ = 1. This fitting matches the empty AdS behavior given by the left equation (7.10)

for ∆ = 3 for IHQCD and hence for k = ∆− d/2 = 1. The numerical result for small, intermediate

and large momenta and the extrapolation via the fitting function (at even larger p) cover the whole

range for all values of momenta. This fully specifies Ω̂(2)(p).

corresponds to a deformation by a dimension 3 operator, analogous to the GPPZ

flow of N = 4 super Yang-Mills, and is also in the class of IHQCD backgrounds. The

response function Ω̂(2∆−d)(p) for the scalar fluctuations is obtained numerically as a

function of the momentum following the recipe outlined in section 6. It is found that

at large momenta, the response functions Ω̂(2∆−d)(p) behaves as in the empty AdS

case with the right conformal weight ∆ for each case. In the two confining cases,

Ω̂(2∆−d)(p) is found to deviate from the AdS result at small momenta (see figure 5),

as it should be expected. The numerically computed response function Ω̂(2∆−d)(p)
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determines all renormalized 2-point functions, except from the transverse traceless

2-point function of the stress tensor, through (4.5). The 2-point function of the

transverse traceless part of the stress tensor is determined by the response function

Ê(d)(p), which we were able to compute analytically in all three examples. In the

first confining background which corresponds to a VEV by a dimension d/2 operator

we find that the non-analytic part of Ê(d)(p) is identical to the AdS result, which

implies that the transverse traceless 2-point function of the stress tensor only differs

from the AdS result by contact terms proportional to the scalar VEV. In the IHQCD

background, however, the non-analytic part of the response function Ê(d)(p) differs

from the AdS result. From the response function we extract the spin-2 spectrum,

which turns out to be linear (see (7.49)). Moreover, in appendix B we evaluate the

large distance behavior of the response function in position space, and it is found that

as expected it falls exponentially at a rate proportional to the confinement scale.

In a follow up work we plan to apply our method to a wider class of models and

backgrounds, to include gauge fields, an axion, and finite temperature. We believe our

algorithm greatly simplifies the calculation of holographic 2-point functions in general, but

especially when the latter can only be obtained numerically. We hope that this program

will be useful for applications of AdS/CFT to QCD, condensed matter and other areas

of physics.
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A Exact transverse traceless 2-point function of the stress tensor for

even d

The generalization of (7.35) for arbitrary d reads

w∂wE−E2 −
(
d+ (d− 1)w2

)
E+

p2

Λ2
w2 = 0, (A.1)
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whose general solution can be written again in the form (7.40) with

jc(w) := U

(
p2

2(d− 1)Λ2
, 1− d

2
,
d− 1

2
w2

)
+ cd · 1F1

(
p2

2(d− 1)Λ2
, 1− d

2
,
d− 1

2
w2

)
,

(A.2)

where 1F1 and U are Kummer’s confluent hypergeometric functions of the first and second

kind respectively, and cd is an arbitrary integration constant. Since 1F1 grows exponentially

for large argument while U goes to zero, the regularity condition (5.1) requires that cd = 0.

We therefore obtain

E = −
w∂wU

(
p2

2(d−1)Λ2 , 1− d
2 ,

d−1
2 w2

)

U
(

p2

2(d−1)Λ2 , 1− d
2 ,

d−1
2 w2

) . (A.3)

This solution is completely general and valid for both even and odd d. However, the

asymptotic expansion of this expression for even and odd d are different, and hence so is

the corresponding renormalized response function Ê(d). For even d we can use the expansion

U

(
p2

2(d− 1)Λ2
, 1− d

2
,
d− 1

2
w2

)

=
Γ
(
d
2

)

Γ
(
d
2 + p2

2(d−1)Λ2

)
(
1− p2

2(d− 2)Λ2
w2 + · · ·

)
(A.4)

+
(−1)1+

d
2

(
d−1
2

) d
2 wd

Γ
(
1 + d

2

)
Γ
(

p2

2(d−1)Λ2

)
(
logw2 + ψ

(
d

2
+

p2

2(d− 1)Λ2

)
− ψ

(
1 +

d

2

)
− ψ(1) + · · ·

)
,

from which we deduce that the non-analytic part of the response function E is

LÊ(d) =
2(−1)

d
2

(
d−1
2

) d
2 Γ
(
d
2 + p2

2(d−1)Λ2

)

Γ
(
d
2

)2
Γ
(

p2

2(d−1)Λ2

) ψ

(
d

2
+

p2

2(d− 1)Λ2

)
. (A.5)

For d = 4 this agrees with (7.43). By expanding the digamma function as in the d = 4 case

we see the spin-2 spectrum remains linear for any even d.

B Long distance behavior of the stress tensor 2-point function for

IHQCD

In this section we extract the long distance behavior of the stress tensor 2-point function

in the example of section 7.3. Starting with (7.48) and Fourier transforming to position

space we have

ˆ

d4peip·xLÊ(4)(p) = −1

8

∞∑

n=0

ˆ

d4peip·x
p2(p2 + 6Λ2)

n+ 2 + p2

6Λ2

, (B.1)

Performing the angular integrations using
ˆ

eip·xdΩ3 = 4π

ˆ π

0
dθeipx cos θ sin2 θ = 4π2

J1(px)

px
, (B.2)
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we obtain

ˆ

d4peip·xLÊ(4)(p) = −π
2

2
�

2(6Λ2 −�)
1

x

∞∑

n=0

ˆ ∞

0

dpJ1(px)

n+ 2 + p2

6Λ2

(B.3)

= −π
2

2
6Λ2

�
2(6Λ2 −�)

∞∑

n=0


 1

6(2 + n)Λ2x2
−
K1

(√
6(2 + n)Λx

)

√
6(2 + n)Λx


 .

Dropping the first term in the parentheses since it only gives a contact term and noting that

�



K1

(√
6(2 + n)Λx

)

√
6(2 + n)Λx


 = 6(2 + n)Λ2



K1

(√
6(2 + n)Λx

)

√
6(2 + n)Λx


 , (B.4)

where

� = ∂2x +
3

x
∂x, (B.5)

is the radial part of the Laplacian in d = 4, we arrive at the following expression for the

position space 2-point function

ˆ

d4peip·xLÊ(4)(p) = −π
2

2
(6Λ2)4

∞∑

n=0

(n+ 1)(n+ 2)2
K1

(√
6(2 + n)Λx

)

√
6(2 + n)Λx

. (B.6)

Formula (B.6) expresses the response function in position space as an infinite sum of Bessel

functions. In particular, in the large separation limit this sum is dominated by the n = 0

term, and hence for Λx≫ 1

ˆ

d4peip·xLÊ(4)(p) ∼ −2π2(6Λ2)4
√
π

2

e−2
√
3Λx

(2
√
3Λx)3/2

. (B.7)

As expected, the 2-point function decays exponentially at large distances with rate pro-

portional to the confinement scale Λ. This result can be easily generalized to arbitrary

dimension using the response function computed in appendix A.

Open Access. This article is distributed under the terms of the Creative Commons
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