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S U M M A R Y
Numerical techniques, as such as finite element method, allow for the inclusion of features,
such as topography and/or mechanical heterogeneities, for the interpretation of volcanic de-
formation. However, models based on these numerical techniques usually are not suitable to
be included in non-linear estimations of source parameters based on explorative optimization
schemes because they require a calculation of the numerical approach for every evaluation of
the misfit function. We present a procedure for finite element (FE) models that can be combined
with explorative inversion schemes. The methodology is based on including a body force term
representing an infinitesimal source in the model formulation that is responsible for pressure
(volume) changes in the medium. This provides significant savings in both the time required
for mesh generation and actual computational time of the numerical approach. Furthermore,
we develop an inversion algorithm to estimate those parameters that characterize the changes
in location and pressure (volume) of deformation sources. Both provide FE inversions in a
single step, avoiding remeshing and assembly of the linear system of algebraic equations that
define the numerical approach and/or the automatic mesh generation. After providing the the-
oretical basis for the model, the numerical approach and the algorithm for the inversions, we
test the methodology using a synthetic example in a stratovolcano. Our results suggest that the
FE inversion methodology can be considered suitable for efficiently save time in quantitative
interpretations of volcano deformation.
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1 I N T RO D U C T I O N

Volcano geodetic monitoring involves the interpretation of observed
deformation. Models provide data interpretation and, therefore, the
link between the observed deformation and the inaccessible sources
of these effects. One of the simplest available models that is widely
used for the interpretation of volcano deformation is the Mogi model
(Mogi 1958). Retaining most of the computational simplicity of
elastic half-space models as Mogi one, other analytical models can
include topographic effects that could be significant in volcanic ar-
eas (e.g. Williams & Wadge 2000). However, it is well known that
the internal structure of a volcano and source geometry control the
details of the deformation field. In the case of fully 3-D rheologies
as well as complicated geometrical structures, a numerical method,
such as finite element method (FEM), is needed to simulate vol-
cano deformation. The widespread availability of geodetic data, the
constant improvement of numerical methods and the evolution of
even more powerful computers keep pushing the range of appli-
cations of numerical modelling required for volcanic monitoring
development.

Within the elastic frame, a variety of numerical models have been
proposed to account for volcano deformation. Dieterich & Decker
(1975) investigate 2-D surface deformation caused by magma reser-
voirs that have different geometries by using FEM. More recently,
FEM-based models take into account heterogeneous configurations
(Trasatti et al. 2003; Manconi et al. (2007, 2010); Masterlark 2007;
Magni et al. 2008a,b). Furthermore, some works deal with the in-
tention of combining inversion methods with numerical models.
Fukushima et al. (2005) develop a technique to retrieve complex
dyke geometries from geodetic data. This approach is based on
a combination of a boundary element method with realistic topo-
graphic relief and a neighbourhood algorithm (Sambridge 1999a,b).
Trasatti et al. (2008, 2009) provide a technique to perform inver-
sions of geodetic data using FEM models. In this case, the forward
model is a library of numerical displacement solutions, where each
entry of the library is the surface displacement due to a single stress
component applied to an element of the mesh. The pre-computed
forward models are implemented again in the global search algo-
rithm proposed by Sambridge (1999a,b). Manconi et al. (2009) and
Pepe et al. (2010) combine COMSOL (www.comsol.com) models
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with Monte Carlo optimization procedures (simulated annealing
and/or genetic algorithm) in order to analyse and interpret ground
deformation measured at active volcanic areas. More recently, Mas-
terlark et al. (2012) automate the estimation of deformation source
parameters using a 3-D FEM scheme to simulate volcano deforma-
tion. Their simulations are mesh dependent because the source is
included as a boundary in the domain. To solve this problem, they
apply the pinned mesh perturbation method (Huebner et al. 2001),
which imposes geometric perturbations and remeshing to define
any changes in the position of the deformation source in explorative
optimization schemes.

In this work, we develop a numerical inversion algorithm to esti-
mate the optimal parameters for the location and pressurization of
a spherical magma chamber. The key to the methodology lies in the
technique used to incorporate the source in order to efficiently use
finite element (FE) models in inversion algorithms. Deformation
sources are included independently of the simulation mesh by con-
sidering that three orthogonal dipoles of suitable amplitude yield
the same displacement field outside the source as that of including
a purely deviatoric stress field around a mesh cavity where pressure
acts when source radius is small enough. This methodology holds
one inherent advantage for inverse estimations of the parameters
describing the deformation source: it minimizes the computational
time in fully automated schemes by preventing remeshing and the
assembly of the linear system of algebraic equations that defines the
numerical approximation.

The layout of the paper is as follows. The description of the prob-
lem, including equations and formulation, is presented in Section 2.
Section 3 introduces the numerical procedure for volcano deforma-
tion simulation. It is verified against a known analytical solution.
Section 4 describes the implementation of an optimization method
for solving the inverse problem and finally, in Section 5, we present
an application of the methodology to a stratovolcano.

2 P RO B L E M S TAT E M E N T : V O L C A N O
D E F O R M AT I O N

Model assumptions are the core of any quantitative interpretation
of deformation data through the inversion of a given population of
data. Our intention here is to study the response of an elastic media
to an internal load that can reflect any tectonic, magmatic and/or
hydrothermal processes at depth that results in strain. This classical
problem of solid earth geophysics can be formulated mathematically
as a boundary value problem. In this section, we briefly cover the
formulation of this problem and refer to extensive literature for
more details (e.g. Malvern 1969). Attention is focused on how to
introduce the internal load into the problem. This provides some
clues for solving inverse problems using 3-D FEM models.

2.1 Boundary value problem for elastic deformation

Consider a solid � ⊂ R
3 with a Lipschitz boundary �, the conser-

vation of linear momentum states that:

D

Dt

∫
�

ρv =
∫

�

T +
∫

�

ρf, (1)

where T is the traction acting on the boundary �, that is related to
stress, σ , via T = σ .n (n being the unit outward normal vector),
ρf are body forces per unit mass (ρ being the density), v is the
instantaneous particle velocity and D

Dt denotes the material time
derivative operator. For an arbitrary domain �, we limit our study
to slow static changes that occur over long time periods and to

permanent offsets associated with volcanic events. Furthermore,
we take into account the momentum balance and the Reynolds
transport theorem. Therefore, the inertia term can be neglected and
the mechanical behaviour of earth materials is described by means
of:

∇ � σ + ρf = 0. (2)

The mathematical models we discuss represent the Earth as an
ideal elastic body that is mechanically isotropic. The constitutive
relation for an isotropic, linearly elastic solid has the form (Hooke’s
law):

σi j = λ

3∑
k=1

εkkδi j + 2μεi j , (3)

where ε is the strain, that is related with the displacement field
by ε = 1

2 (∇u + ∇T u); δij is the Kronecker delta; μ represents the
shear modulus, also called the rigidity modulus or the second Lamé
coefficient, that relates shear stress to strain providing a material
rigidity or stiffness under shear and λ is the first Lamé coefficient.

Although for many purposes it is useful to consider a purely elas-
tic and homogeneous medium, volcano structures involve sequences
of deposition and emplacement of various materials which have very
different mechanical properties, magma intrusion, crystallization
and alteration, fracture and shallow hydrothermal systems. Relax-
ing the homogeneity assumption, the rheological behaviour of rocks
can be described by λ = λ(x), μ = μ(x), ρ = ρ(x), where lateral
and depth variations of elastic parameters are considered. Thus,
the substitution of the constitutive relation (3) in the equilibrium
equation (2) yields the equation of motion in terms of displacement
field for an elastic domain with variable (heterogeneous) material
properties:

∂

∂xi
(λ∇ � u) +

3∑
j=1

∂

∂x j

[
μ

(
∂ui

∂x j
+ ∂u j

∂xi

)]
+ ρ fi = 0, (4)

with i = 1, 2, 3.
Finally, the complete problem statement requires appropriate

boundary conditions for the system of eqs (4). The boundary of
the domain � is divided into parts �1 and �2 (Fig. 1). The eq. (4)
is then followed by the boundary conditions:

σ � n = 0 on �1

u = 0 on �2

}
, (5)

where �1 ∪ �2 = �, �1 ∩ �2 = ∅ and are non-empty. The first
condition in (5) describes a surface free of loads (free surface), the
second corresponds to the fact that, for sufficiently large computa-
tional domain, the displacement field is very small on the subter-
ranean boundaries of �. These assumptions lead to a well-posed
problem.

2.2 Pressurization of the magma chamber: body force term

Generally, the displacement field due to the inflation/deflation of
magma reservoirs is considered to be primarily composed of: (i)
the effects of an incremental pressure, 
P; and (ii) the effects pro-
duced by the loading of an additional mass. However, Charco et al.
(2006) showed that the mass contribution is negligible compared
to the pressurization contribution in the displacement calculations
for spherical sources in elastic-gravitational models that generalize
elastic model (4)–(5). Therefore, we assume that surface deforma-
tion at active volcanoes is due to pressure changes at depth and we
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Figure 1. 2-D section of the domain �. The pressurization of a magma chamber can be modelled by a spherical cavity inside the medium that expands with
uniform pressure 
P.

focus on spherical reservoirs. In doing so, the inflation/deflation of
magma reservoirs is usually modelled by considering a cavity with
radius a inside the medium (Fig. 1) where boundary conditions con-
sist of stress boundary conditions appropriate to a uniform change
in pressure acting normal to the walls of the cavity. Then, the fol-
lowing boundary condition should be added on the cavity walls, �3,
to (5):

σ � n = −
P on �3. (6)

When interpreting ground deformation at earth surface, these
a priori constraints specify, in a unique way, the stress–strain dis-
tribution at depth. Nevertheless, the problem domain depends on
the cavity location. Thus, solving this problem via FEM implies
mesh generation when the source location or geometrical features
of the source changes. To gain insight for solving the inverse prob-
lem, we consider that the solution for the spherical cavity also can
be obtained by assuming three orthogonal force dipoles or cen-
tre of dilatation, that is, an isotropically expanding point source
(e.g. Mindlin 1936), or three orthogonal tensile dislocations (e.g.
Steketee 1958). These conceptually different source models yield
the same displacement outside the source, provided an appropriate
source strength is designated.

In this work, we consider the body force which would have to be
applied in the absence of cavity to produce the same displacement
field. Body force representations were used in previous works (e.g.
Bonafede & Ferrari 2009; Barbot & Fialko 2010a,b). Here, we as-
sume the source is ‘vanishingly small’, that is, it is much smaller
than its depth. McTigue (1987) showed that the point source ap-
proximation holds if the source depth is, at least, three times its
radius. In this case, the displacement field due to stress changes
in a small spherical cavity are equivalent to the field obtained by
the superposition of three mutually orthogonal dipoles of identical
strength f0, that is,

ρf = f0∇δx=x′ , (7)

where δx=x′ is the Dirac delta distribution that represents a point
force (impulse) at x′ (source centre) and the derivatives are equal
to a pair of impulses of opposite sign (e.g. Burridge & Knopoff
1964; Aki & Richards 2002). The strength of each dipole is given
by Bonafede & Ferrari (2009):

f0 = a3
P
λ (x′) + 2μ (x′)

μ (x′)
π, (8)

where the spatial distribution of body forces depends only on the
source and the elastic properties of the medium in the immediate
vicinity of the source. Because this is an elastic system, the displace-
ment field throughout the domain is a linear function of the source

strength, a3
P. Here, we do not consider the effect of structural
discontinuities in f0 because we are focused on point source solu-
tions and we are not intended to understanding the displacement
field near the source. Furthermore, other works devoted to study
deformation field by using FEM (e.g. Manconi et al. 2007, 2010;
Masterlark 2007; Trasatti et al. 2008, 2009; Masterlark et al. 2012)
consider a constant displacement or constant normal stress across
cavity walls, neither of which is the most realistic description of
medium dilatation.

Since the Dirac delta is the limit of a sequence of Gaussian
functions when their variance tends to zero, we define the body
force to be applied as:

ρf = f0
1

αx1αx2αx3π
3/2

∇

⎛
⎜⎝e

−
⎛
⎝ (x1−x ′

1)
2

α2
x1

+ (x2−x ′
2)

2

α2
x2

+ (x3−x ′
3)

2

α2
x3

⎞
⎠
⎞
⎟⎠ , (9)

where α2
xi

is the variance of the Gaussian function in xi direction.
The size of αxi is selected a priori, depending on the size of the ele-

ment of the FE discretization. The product αx1αx2αx3π
3
2 is a factor

to normalize the Gaussian function per unit volume. As we show in
Section 3, this choice ensures that the body force function is suffi-
ciently smooth and suitable to guarantee the solution uniqueness of
(4)–(5).

The Gaussian function can be used to model sources of different
shapes. When αxi = a for all i = 1, 2, 3, (9) represents a spherical
source. However, for αx1 = a, αx2 = b, αx3 = c with a 	= b 	= c and

f0 = abc
P λ(x′)+2μ(x′)
μ(x′) π , (9) can be used to describe an ellipsoidal

source with semi-axis a, b and c. Other source geometries can
be expressed as weighted combinations of the derivatives of the
Gaussian function, taking into account the superposition principle
in the elastic case:

ρ fi =
3∑

j=1

Mi j
∂

∂x j

⎛
⎜⎝e

−
⎛
⎝ (x1−x ′

1)
2

α2
x1

+ (x2−x ′
2)

2

α2
x2

+ (x3−x ′
3)

2

α2
x3

⎞
⎠
⎞
⎟⎠ , (10)

where Mij is the moment tensor representing a scaling factor used
to model the source as a linear combination of dipoles or double-
couples (Eshelby 1957; Aki & Richards 2002).

3 N U M E R I C A L A P P ROX I M AT I O N F O R
D E F O R M AT I O N S I M U L AT I O N

This section describes the numerical methodology used to solve the
problem. Note that a thorough mathematical treatment of the FE

 at C
SIC

 on M
ay 8, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1444 M. Charco and P. Galán del Sastre

formulation of the equations is beyond the scope of this study and
we refer to the extensive literature for more details (e.g. Brenner &
Scott 1994; Ciarlet 2002).

3.1 Weak formulation of the problem

In this work, the authors propose FEM to solve eq. (4) with bound-
ary conditions (5) and a prescribed body force term given by (9).
As such, the weak formulation of the problem is required. Let
v ∈ C∞(�)3 and suppose that v|�2 = 0, then, from (4), it is straight-
forward to prove that

∫
�

⎛
⎝λ (∇ · u) · (∇ · v) + 2μ

3∑
i, j=1

εi j (u) εi j (v)

⎞
⎠ =

∫
�

ρf · v, (11)

where integration by parts and boundary conditions (5) were ap-
plied.

In the following, we use the notation L2(�) = L2(�)3 and
H1(�) = H 1(�)3. We define the subspace

V = {
v ∈ H1 (�) : v|�2 = 0

}
.

From (11), we also define the bilinear form a : V × V → R and
the linear function L : V → R:

a (u, v) =
∫

�

⎛
⎝λ (∇ · u) · (∇ · v) + 2μ

3∑
i, j=1

εi j (u) εi j (v)

⎞
⎠ ,

L (v) =
∫

�

ρf · v,

so that, the boundary value problem (4)–(5) can be written as fol-
lows: find u ∈ V such that

a (u, v) = L (v) ∀v ∈ V. (12)

It is straightforward to prove that problem (4)–(5) is equivalent
to problem (12). Moreover, the following result of existence and
uniqueness holds.

Theorem. Assume that f ∈ L2(�) and ρ, λ, μ ∈ L∞(�) and sup-
pose that there exists a constant γ > 0 such that ρ − γ, λ − γ and
μ − γ are positive real-valued functions. Then, the variational
problem (12) has a unique solution.

Proof. The proof is straightforward using the Lax–Milgram the-
orem and Korn inequality (Brenner & Scott 1994).

3.2 FEM formulation

Suppose that � ⊂ R
3 is an open bounded subset with Lipschitz

boundary and Dh is a partition of �̄ such that Dh = {R j }Ne
j=1 ⊂ �̄,

where Rj denotes a hexahedron and Ne is the number of FEs in the
partition. For any j, we define hj = diamRj and β j = sup{diamS :
S a ball contained in R j }. As usual, we assume that �̄ = ⋃Ne

j=1 R j

and the elements Rj satisfy the following regularity conditions: (i)
any face of Rj is either a subset of ∂� or any other face of any Ri,
with i 	= j; (ii) there exists a constant α > 0 (that does not depend
on the partition Dh) such that hj/β j < α for all 1 ≤ j ≤ Ne.

Let R̂ = [−1, 1]3 ⊂ R
3 be the reference element, then we de-

fine the set of polynomials in R̂ of degree≤m, with m an in-
teger, Pm(R̂) = Pm([−1, 1]) ⊗ Pm([−1, 1]) ⊗ Pm([−1, 1]). Thus,
Pm(R j ) = { p̂ ◦ T −1

j ∈ C(R j ) : p̂ ∈ Pm(R̂)} where Tj : R̂ → R j is
a continuous bijective transformation.

Then, the FE subspaces Vh and Vh0 associated to the partition Dh

are defined as

Vh = {
vh ∈ C

(
�̄

)
: vh|R j ∈ Pm

(
R j

)
for all 1 ≤ j ≤ Ne

}
,

Vh0 = {
vh ∈ Vh : vh|�2 = 0

}
,

so that Vh = Vh × Vh × Vh and Vh0 = Vh0 × Vh0 × Vh0.
Thus, the FE solution of (4) with boundary conditions (5) is

computed by solving the variational formulation: find uh ∈ Vh0

such that

a (uh, vh) = L (vh) ∀vh ∈ Vh0, (13)

that can be seen as a discretization of problem (12).
Since Vh0 is a finite-dimensional space, we can find a basis that

generates this space. In this work, we shall consider the FE space
generated with polynomials of degree one, m = 1. We can compute
a basis for Vh0 in the following way. Let l0, l1 ∈ P1([−1, 1]) such
that l0(−1) = 1 = l1(1) and l0(1) = 0 = l1(−1). Let φ̂rst (x, y, z) =
lr (x)ls(y)lt (z), with r, s, t ∈ {0, 1}, then {φ̂rst }0≤r,s,t≤1 ⊂ P1(R̂) is a
basis of P1(R̂) and {φ j

k }1≤k≤8 ⊂ P1(R j ) is a basis of P1(Rj), with
φ

j
k = φ̂rst ◦ T −1

j and k = 1 + r + 2s + 4t. Let N = dim Vh0 and

{ϕi }N
i=1 ⊂ Vh0 such that for any i and j, ϕi |R j = 0 or ϕi |R j = φ

j
k for

any 1 ≤ k ≤ 8. Moreover, we assume that ϕi(xk) = δik with {xk}k

the set of vertices associated to the Dh and δik the Kronecker delta.
It is straightforward to prove that {ϕi }N

i=1 is a basis of Vh0. Thus, we
shall denote

ψ i =

⎧⎪⎪⎨
⎪⎪⎩

(ϕi , 0, 0) , if 1 ≤ i ≤ N

(0, ϕi−N , 0) , if N < i ≤ 2N

(0, 0, ϕi−2N ) , if 2N < i ≤ 3N

so that {ψ i}3N
i=1 is a basis of Vh0.

Then, problem (13) can be formulated equivalently in the follow-
ing way: find uh ∈ Vh0 such that

a (uh, ψk) = L (ψk) , ∀k = 1, 2, . . . 3N . (14)

We define the stiffness matrix K ∈ M3N×3N (R) and the real
vector b ∈ R

3N such that ki j = a(ψ i, ψ j) and bi = L(ψ i). Since

uh = ∑3N
i=1 uiψ i, problem (14) becomes: find u = (ui )3N

i=1 ∈ R
3N

such that Ku = b. Note that the stiffness matrix K is symmetric
and positive definite since the bilinear form a is symmetric and
coercive (Brenner & Scott 1994); thus, the conjugate gradient algo-
rithm can be used to compute the numerical solution.

3.3 Validation

Validation is performed on a problem with a known analytical so-
lution, the problem of a small pressurized spherical cavity (point-
source approximation) embedded in an elastic half-space known as
the Mogi model after Mogi (1958).

Displacements calculated via analytical formula, as given by
Yamakawa (1955), are compared to numerical results found
using FEM. Note that the FEM solution is computed in a
200 × 200 × 50 km3 domain that approximates the conditions that
the displacement field satisfies on the boundary of the Mogi model,
where the displacement field vanish as |x| → ∞. The displace-
ments are caused by a spherical source of 50 MPa km3 strength
located at 4 km depth in a homogeneous medium with a Young
modulus 50 GPa and a Poisson ratio of 0.21. These correspond to
average values for basalts given by Goodman (1989). The variance
of the Gaussian function (9) that represents the centre of dilatation
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Figure 2. Model comparison of (a) surface horizontal displacements, u1(x1, 0, 0), (b) surface vertical displacements, u3(x1, 0, 0) and (c) vertical displacements,
u3(0, 0, x3) between Mogi’s analytical solution (circles) and FEM solution (solid line). The displacements are caused by a centre of dilatation of 50 MPa km3

strength located at 4 km depth in a homogeneous medium.

for FEM solution is chosen according to the mesh element size. In
this case, σxi = 50 m for i = 1, 2, 3.

Fig. 2 demonstrates that the homogeneous FEM solution agrees
with the displacement predicted by Mogi’s analytical solution, con-
firming the reliability of the chosen mesh and boundary conditions.
Since the domain for obtaining the solution of the Mogi model is
different, we cannot compare both solutions at the exact source lo-
cation (0, 0, 4) km. In fact, since the source is assumed to be small
(point-like in the ideal situation), the deformation of the interior
is typically ignored for the Mogi model. Nevertheless, even in the
proximity of the source location, there is a good agreement between
both solutions (Fig. 2c).

4 I N V E R S I O N M E T H O D O L O G Y:
Q UA N T I TAT I V E C H A R A C T E R I Z AT I O N
O F V O L C A N O D E F O R M AT I O N
S O U RC E S

Once a deformation model is defined, there are many different tech-
niques to solve the inverse problem. Usually, non-linear formula-
tions require iterative or exploratory processes to reach optimal
values that satisfy an objective function, as defined by the model
structure, the adopted constraints and the statistical pattern of the
parameters (e.g. Aster et al. 2005; Tarantola 2005). Hence, the op-
timization techniques used for volcano deformation interpretation
require a balance between robustness and efficiency. In this work,
we develop a methodology similar to that proposed by Camacho
et al. (2007) and Masterlark et al. (2012) for estimation of the opti-
mal parameters for the horizontal position, depth and pressurization
of a spherical magma chamber based on geodetic data. To efficiently
handle non-linear inversions where some of the model parameters
are linearly related to the observations, this method combines both
a gradient-based technique as least-squares optimization and a sam-
pling strategy.

4.1 Model description: non-linear equations

We estimate the volcanic source parameters performing the in-
version of ground deformation measured by a geodetic network
that is composed of several stations. The geodetic stations, for ex-
ample, GPS stations, register changes in the position, that is, the
displacement field, caused by subterranean changes in pressure.
In the following, we constrain the inversion technique application
to spherical sources, given its simplicity, in order to gain important

insight into the role of rhelogical properties and topography of the
medium. However, the methodology can be extended to different
source geometries considering in (4) different source terms of the
form (10). We look for the location of the source, X′ = (x ′

1, x ′
2, x ′

3),
and the source strength (source volume), a3
P, that involves the
pressure change, 
P. These physical variables are specially im-
portant for volcano monitoring and, therefore, for volcanic hazard
assessment.

Let x j = (x1 j , x2 j , x3 j ) be the location of the jth station of the
network, with j = 1, 2, . . . , N, N being the number of network
stations, and let uij the ith component of the observed displacement
field at x j . To have as much information as possible in order to
constrain the source parameters, it would be convenient to measure
the three components of the displacement field in all the network
stations. Nevertheless, in some cases, horizontal components and
the vertical one could have been measured nearly at the same time
(i.e. they are related to the same depth processes) but not necessarily
at the same stations. Thus, it is possible that at some station, j,
the horizontal displacement, u1j or u2j, is observed whereas the
vertical component, u3j, is not or vice versa. To properly develop
the mathematical framework of the methodology, we define Ji ⊂ N,
i = 1, 2, 3, such that j ∈ Ji if there exist the ith component of the
displacement in station j, and Ni = card(Ji ), thus if j ∈ J1 ∩ J2 ∩ J3,
then the full displacement field at station j, u j = (u1 j , u2 j , u3 j ), has
been measured.

For a given source location X′ = (x ′
1, x ′

2, x ′
3), let d =

(ui j ) j∈Ji ,i=1,2,3 be the N1 + N2 + N3 vector of observed geodetic
data u j , then the observed displacements are related to the modelled
ones by observation equations of the form:

d = dm + v, (15)

where v = (vi j ) j∈Ji ,i=1,2,3, that is, vij is the residual of the ith com-
ponent of the displacement at the jth station. This vector contains
the residual values coming from observation errors and/or model
discrepancies. dm = (um

i j )i=1,2,3, j∈Ji is the N1 + N2 + N3 vector dis-
placements generated by an incremental pressure, 
P, at a magma
chamber of radius a. In the elastic case, the modelled displace-
ment is proportional to the factor f0 and, therefore, to the source
strength, a3
P. Thus, we can assume that the modelled displace-
ments are a linear combination of contributions from a pressurized
magma chamber of strength, a3
P, and some constant terms, u0

i ,
that represent, for instance, an unknown position change of the
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reference point:

um
1 j = g1 j
Pa3 + u0

1,

um
2 j = g2 j
Pa3 + u0

2,

um
3 j = g3 j
Pa3 + u0

3,

(16)

where gij is the ith component of the displacement field caused by
a source of 1 MPa km3 strength at the station x j . In doing so, gij

can be understood as a Green’s function for the displacement field
caused by a pressurized spherical source. Here, the Green’s func-
tions are calculated by FEM. Note that the modelled displacement
field for the inverse problem computations, um

j , is the displacement
field (Green’s functions) simulated by FEM plus the constant terms
described in (16).

4.2 Misfit conditions

In order to find the model parameters, (x ′
1, x ′

2, x ′
3, 
Pa3, u0

1, u0
2, u0

3),
that explain N1 + N2 + N3 observed data, the model system given by
(15) and (16) must be fulfilled under some constraints that provide a
measure of the discrepancies between observed and modelled data,
that is, a measure of v. The misfit or objective function quantifies
such differences.

We consider an inverse problem that involves uncorrelated data
with Gaussian error distributions and observation equations of the
form (15) and (16). An optimal solution can be obtained by mini-
mizing an objective function of the form:

�
(
x ′

1, x ′
2, x ′

3, a3
P, u0
1, u0

2, u0
3

) =
3∑

i=1

∑
j∈Ji

v2
i j

θ 2
i j

, (17)

where θ2
i j are the variances for displacement data values at station

j on the xi direction, as estimated in, for instance, a GPS data ad-
justment to estimate random observation errors. We are using the
l2-norm to quantify the length of the vector of residuals between
observed and modelled position changes. Assuming uncorrelated
data, this norm is modified by relative weights that represents a
measure of the residuals as function of the data accuracy (observed
data variances). The use of the l2-norm is justified by the appli-
cation of probability theory: the probability that the observed data
are in fact observed is maximum when the quantity given by (17)
is minimum, since we are assuming that the data follow a Gaus-
sian distribution and (17) represents − 1

2 times the argument of the
exponential function.

4.3 Numerical implementation

The inversion algorithm minimizes the misfit (17) within predefined
model parameters bounds. We observe through system (15)–(16)
that our formulation of the inverse problem depends linearly on four
parameters, a3
P, u0

1, u0
2 and u0

3, whereas the Green’s functions for
the displacement field, gij, depend on source location, X′, in a non-
linear way, although this dependency cannot be formally established
in the numerical framework. Therefore, the inverse problem for
quantitative interpretation of geodetic data constitutes a non-linear
optimization problem.

Camacho et al. (2007) and Masterlark et al. (2012) propose
a strategy for solving this kind of problems based on an explo-
rative method by randomly sampling the 3-D parameter space
for the source location. After this, they estimate linear parame-
ters in each source location by using least-squares optimization.
Therefore, their method requires looking for the displacement field

(Green’s function) that caused a source located at every possi-
ble randomly selected point of the sample space. Here, instead
of a random search of source location, we perform a systematic
search to show the computational efficiency of the methodology
proposed for solving the direct problem (Green’s functions compu-
tation) using FEM in terms of CPU performance. Random search-
ing of source location involves the repetition of the optimization
with different initial random values of X′ in order to ensure a
starting point close to the global solution. The systematic search
we have implemented ensures such a fact. Furthermore, as it is
shown in Fig. 3, the misfit function (17) is, qualitatively, a con-
vex function in our case of study. The systematic search is con-
ducted by uniformly gridding the subsurface volume space inside
the source location bounds x ′

1 ∈ (x ′
1min, x ′

1max), x ′
2 ∈ (x ′

2min, x ′
2max)

and x ′
3 ∈ (x ′

3min, x ′
3max), where the bounds form a cuboid and are

generally given by geological and/or geophysical constraints. The
cuboid volume (x ′

1min, x ′
1max) × (x ′

2min, x ′
2max) × (x ′

3min, x ′
3max) is then

discretized in subcuboids where every subcuboid centre is the po-
tential location of a source centre. Once a source centre has been
selected, gij is computed through FEM and the resulting linear sys-
tem (15)–(16) must be fulfilled for 
Pa3, u0

1, u0
2 and u0

3 under the
minimization of the objective function (17). This problem consti-
tutes an elementary calculus problem yielding the classical formula
for the least-squares optimization. The process is repeated to the
whole bunch of subcuboid centres. The objective of this stage is to
find an optimal solution that corresponds to the minimum value of
the objective function. In doing so, the pressure strength, obtained
from least-squares optimization, is substituted in (15) and (16) to
determine the value of the objective function (17) corresponding
to a particular source realization. Finally, the optimal parameters
correspond to the minimum value of the objective function (17).

Next, new explorations are conducted in the neighbourhood of
the previous optimal solution to look for a more precise definition of
the source location by adaptively decreasing the parameter bounds
of X′. In this way, new source location bounds are chosen guided
by fitting properties of all previous source realizations. The bounds
for the new volume cuboid to be discretized are chosen from the
centres of the old subcuboids. We choose this new boundary so that
the value of the misfit function is about the same order on it. This
self-guided approach concentrates the search around the regions
where the subcuboid centres best fit the data and avoids unnecessary
areas where the fit is not optimal. Therefore, we incorporate some
properties of the misfit function to single out the undetermined
source location. The explorative process finishes when either a pre-
set tolerance level is achieved (as a function of the length of the
source location bounds) or a default number of direct realizations
is reached. The final solution that minimizes the objective function,
m̂ = (x̂ ′

1, x̂ ′
2, x̂ ′

3,
ˆ
Pa3, û0

1, û0
2, û0

3), determines the model that best
fits the observed data.

Fast and reliable evaluation of deformation sources is very im-
portant in early warning and semi-real-time hazard assessment of
crustal deformation activities. Nowadays, many computational geo-
physical problems heavily rely on parallel algorithms to speed up
calculations. Such a tendency is continuously growing over time as
the available parallel resources increase, in particular with the de-
velopment of multicore architectures and graphical processing unit
computations. The algorithm described above is easy to parallelize
since once a source centre is chosen, the direct problem to compute
gij and the resulting least-squares optimization is independent from
the rest. Once the least-squares fit and the evaluation of the objective
function are performed for every source location, the comparison
for finding the minima of (17) is done again in sequential.
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Figure 3. Objective function (17) values. (a) �(x1, x2, −1282); (b) �(x1, 0, x3); (c) �(0, x1, x3); (d) �(x1, 0,−1282); (e) �(0, x2,−1282); �(0, 0, x3).

5 A P P L I C AT I O N : VA L I DAT I O N A N D
I L LU S T R AT I O N O F T H E I N V E R S I O N
A L G O R I T H M

The reliability of the model parameters obtained by solving the in-
verse problem depends, apart from the robustness and efficiency of
the inversion technique, on how well model assumptions can ap-
proximate the mechanical and rheological properties of the Earth’s
crust.

Volcanoes, such as Teide volcano (Canary Islands, Spain), are
mainly classified as stratovolcanoes based on their internal structure,
style and frequency of eruptions. Stratovolcanoes include some of
the tallest and best known volcanoes of the world as Fuji in Japan,
Vesuvius in Italy, Mayon in Philippines and Teide in Spain. They
have steep slopes, particularly in their uppermost parts where slopes
may reach 35◦–42◦ (Kilburn & McGuire 2001). The half-space
assumption of the Mogi model implies the land surface is flat. On the
other hand, a stratovolcano is composed of different types of strata
involving the deposition of various materials, lava flows, pyroclastic
and sedimentary units and intrusions. Therefore, models of volcano
structure should take into account the medium heterogeneities. The
deviation from homogeneity is usually simulated by a system of
crustal-scale horizontal layers with different elastic properties, that
is, by the variation of the elastic properties with depth (e.g. Rundle
1980). We address the implications for misleading assumptions
for homogeneity and topography inherent in models, such as the
Mogi model, for a stratovolcano as Teide (Tenerife, Canary Islands,
Spain). The strategy is to perform and compare some quantitative
interpretations, considering different structural models as the core
of the inversion scheme. For such a task, first, we calculate the
synthetic deformation field caused by an intrusion beneath Teide
stratovolcano (Tenerife, Canary Islands, Spain).

5.1 Teide forward model

The eruptive system of Tenerife island is dominated by Teide–
Pico Viejo complex which remains active nowadays (e.g. Martı́ &
Geyer 2009). Teide and Pico Viejo are two large stratovolcanoes
that overlap to form an elongated double edifice. They are located
in the northern part of Las Cañadas Caldera and gave origin to

explosive eruptions in the last several thousand years (e.g. Martı́
et al. 2008; Andújar et al. 2010). The highest altitude corresponds
to the youngest summit of Teide (3718 m).

Fernández et al. (2009) and Tizzani et al. (2010) provided a
summary of previous geodetic studies performed in Tenerife island.
GPS and Small Baseline Subset DInSAR analyses show areas of
higher subsidence located outside Las Cañadas caldera, as well as a
large-scale deformation pattern following the outline of the island
that extends beyond caldera rim. While localized areas of subsidence
are related to water table variations, the authors proposed that the
large-scale deformation pattern is directly related to gravitational
sinking of the dense core of the island into a weak lithosphere.
In this last case, Tizzani et al. (2010) present a 2-D axisymmetric
FEM fluid dynamic model to analyse such a process through the
evaluation of the viscosity distribution in the medium. Since the
geodetic monitoring of the island has not detected any clear anomaly
that may be related to volcanic reactivation in Teide–Pico Viejo
volcanic system, our model assume that there is a pressure increment
of 38 MPa km3 in a spherical magma reservoir located beneath Teide
volcano summit. This allows us to evaluate deformation within
and constrained to the caldera rim. Such a pressure increment can
represent the injection of magma in a reservoir, volatile saturation of
magma or an increase in gas content. Petrological and geochemical
studies constrain the magma storage depth at about 5 ± 1 km beneath
Teide volcano (Andújar et al. 2010), thus we assume the source
is located at 5 km depth beneath volcano summit. The evolution
state of Teide–Pico Viejo stratovolcanoes has not yet permitted the
development of large volumes of magma at such levels (see, e.g.
Martı́ et al. 2008), therefore, the point source approximation could
be enough to describe the related deformation.

In this application, the complexities taken into account are the
topography and mechanical heterogeneities of the island. A system
of Cartesian coordinates with the origin located at sea level, just
below the Teide summit, is assumed. x1 and x2 axes are orientated
along the WE and SN directions, respectively, and the x3 axis points
upwards. The 3-D computational domain includes the entire island
and its important morphologic features. It is a volume extending
200 × 200 km2 in the x1 and x2 directions and from 50 km below
sea level to the island surface in the x3 direction. The boundary at the
ground surface is taken from a digital elevation model provided by
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Figure 4. (a) Detailed of the mesh of the computational domain with a spatial resolution of 250 m in the summit area and around the source location and
coarse at greater distance; (b) vertical profile at x2 = 0 of the 3-D elastic parameter configuration for Tenerife island.

Instituto Geográfico Nacional (IGN), and a bathymetry model from
the 1-min global elevation database (Smith & Sandwell 1997). The
computational domain is meshed into 105 094 hexahedron elements
and 108 990 nodes (see Fig. 4a). This mesh is locally refined in the
vicinity of the chamber and near the Earth’s surface. Specifically,
the resolution of the mesh is about 250 m in the area where the
source is estimated to be located (approximately 10 × 10 × 5 km3)
and a coarse resolution of about 10 km in the rest of the domain. One
important aspect concerns the crustal properties. Fig. 4(b) shows a
vertical WE profile from the 3-D model of the elastic parameters
considered in this study. The elastic parameters were estimated from
previous gravimetric and seismic studies carried out in the island
(Boshard & MacFarlane 1970; Watts et al. 1997; Camacho et al.
2011).

Fig. 5 shows the displacement field. Most of the deformation
is restricted to the vicinity of Teide volcano and lies inside the
Las Cañadas Caldera walls. At distances greater than 5–7 km from
the volcano summit, the deformation would be indistinguishable
from background noise. The uplift is the largest component of the
displacement field, with a maximum value of 10.47 cm at the vol-
cano summit area. The topographic relief of the island and the
medium heterogeneities surrounding Teide volcano clearly influ-
ence the displacement field. Typical homogeneous half-space so-
lutions for spherical sources create axisymmetrical radial patterns,
where the global maximum of vertical displacement resides on the
projection of the source on the free surface. In our study case, it
coincides with the location of the summit of Teide volcano. We can

observe in Fig. 5 that the global maximum of the vertical compo-
nent deviates from the one that would be obtained using analytical
models that assume homogeneous half-space media (e.g. Battaglia
& Hill 2009).

To capture the 3-D deformation field caused by the pressure in-
crement, we now consider the geodetic network covering the entire
island (Fig. 6). The network is formed by 17 GPS permanent sta-
tions. The GPS stations located near Teide volcano are also shown in
Fig. 5. All locations approximate, in a reliable way, the real location
of the GPS stations installed by the IGN (www.ign.es), Instituto
Tecnológico y de Energı́as Renovables (ITER; www.iter.es) and
Cartográfica de Canarias (GRAFCAN; www.grafcan.es). Given the
accuracy attainable nowadays by GPS permanent networks, 0.2–
0.6 cm and 0.5–1 cm for horizontal and vertical coordinates (Bartel
et al. 2003), the permanent GPS stations located near Teide volcano
could easily measure the displacement field. For example, the ver-
tical displacement in the station located near the volcano summit
would reach a value of 10 cm. Since the displacement field depends
on pressure change in a linear way, the stations at Teide neighbour-
ing could be able to register a pressure change of around 25 MPa at
5 km depth beneath the volcano summit.

5.2 Inversion results, discussion and concluding remarks

We perform two inversions to estimate the best-fitting sources for the
synthetic data that could be observed at the 17 GPS network stations

Figure 5. Surface displacement field (cm) caused by a source of 38 MPa km3 strength located at 5 km depth beneath Teide volcano summit considering both
topographic relief of the island and medium heterogeneities: (a) ux1 , (b) ux2 and (c) ux3 . The marks indicate the position of the GPS stations located near Teide
volcano.
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Figure 6. Topography of Tenerife (Canary Islands). The marks indicate the
position of the permanent GPS stations located throughout the entire island.

monitoring the island. The synthetic data are provided by the model
described above. Since the displacement field vanishes to zero at
distances greater than 7 km away from the volcano summit, only
stations shown in Fig. 5 provide valuable information for solving
the inverse problem.

One inversion is performed considering the Tenerife structural
model described in previous subsection, that is, we consider a
heterogeneous domain with the actual topography of the island
(model TenHeT). This inversion provides reliable information to
test the accuracy and robustness of the inversion technique de-
scribed in Section 4. Therefore, can be used to validate it. The
other is performed considering a flat free surface homogeneous do-
main with the same elastic parameters of the source neighbour-
hood area in the heterogeneous domain and a reference eleva-
tion located at 3000 m above sea level (model TenHoF). Model
TenHoF is representative of the analytical models, such as the Mogi
model, that are commonly used to investigate quantitative charac-
teristics of magma intrusions in terms of volume (pressure) change
and source location. The source centre is restricted to be within a
volume of 10 × 10 × 3 km3 with bounds x ′

1 ∈ (−5000, 5000) m,
x ′

2 ∈ (−5000, 5000) m and x ′
3 ∈ (−3282, −282) m. The tolerance

level in both inversions is achieved when the length of the source
location bounds is less than 50 cm.

Table 1 summarizes the parameters of the best-fitting models.
A comparison of their performance is performed through the value

Table 1. Results of the inversion of the Tenerife synthetic data at the GPS
network stations for models TenHeT (heterogeneous medium with topogra-
phy) and TenHoF (homogeneous medium with flat free surface).

Parameter True model TenHeT TenHoF
parameters

S1 (m) 0 0.0 249.438
S2 (m) 0 −0.02304 40.1976
S3 (m) −1282 −1281.986 −1200.3

d(S, Ŝ) (m) 0.027 265.53
a3
P (km3 MPa) 38 37.9998 51.017

u0
1 0 −1.743035 × 10−8 −0.0024

u0
2 0 −8.307691 × 10−8 3.064 × 10−4

u0
3 0 1.773909 × 10−8 0.0037

Misfit value 1.5017220 × 10−12 0.00132

of the objective function (17). Thus, we can check that TenHeT per-
forms much better than TenHoF. This synthetic case demonstrates
that the model parameters are close to their true values and they
are recovered in a very acceptable way (model TenHeT). Then, the
inversion technique can be validated.

Fig. 7 shows the source centres location obtained by the opti-
mization process together with the stratification of elastic param-
eters. This figure and the parameters summarized in Table 1 show
that the source position is retrieved by TenHeT with uncertainties
as small as the subcuboids size (±50 cm), which proves that the re-
finement used to solve the inverse problem in the neighbourhood of
the source location is acceptable for lateral and depth variations of
the elastic parameters. The source strength (Table 1) is determined
with an error less than 0.1 per cent when considering the TenHeT
model, whereas the error is around 34 per cent when a homogeneous
domain with flat free surface (model TenHoF) is considered to per-
form the inversion. Source strength, a3
P, depends on both pressure
change and source radius and their individual contributions to the
magnitude of the displacement field could not be separated. We can
use this parameter to estimate an equivalent change in volume of
the magma reservoir. The change in volume is directly proportional
to source strength (McTigue 1987). Therefore, neglecting topog-
raphy and medium heterogeneities may lead to overestimating the
source volume variation by as much as 30 per cent. The intrusion
of fresh magma into a reservoir is thought to be a key compo-
nent for volcanic eruption triggering. The volume change together
with geophysical data, such as spatiotemporal changes in gravity
that provide a measure of the density change, is commonly used
to estimate mass changes inside the medium (e.g. Rymer 1994).
Thus, a bias in this estimation could lead to erroneous interpre-
tations of volcanic unrest that are essential to related monitoring
efforts.

Synthetic differences between the observed GPS data and pre-
dictions from a model, are usually presented to justify and asses the
suitability of a particular deformation model. Accordingly, Fig. 8
shows the differences between the synthetic displacement field and
the displacement field retrieved by TenHeT after the inversion, con-
sidering the parameters in Table 1. The marks again indicate the
stations of the GPS network located in the vicinity of Teide vol-
cano. The differences are on the order of 10−4 cm. Considering the
GPS precision attainable nowadays, we can conclude that the devel-
oped inversion methodology of geodetic deformation data observed
at the GPS network of the Tenerife island is very accurate.

Comparison between predictions from TenHeT and TenHoF
models reveals sensitivities to TenHoF assumptions. The synthetic
displacement field calculated through TenHeT is affected by the
elastic properties of the domain area between the source location and
the surface. In this application, the upper part of the domain is softer
than the lower part, where the source is located in TenHeT model.
Topography also affects the synthetic displacement field since the
topographic relief increases the distance between source location
and the free surface of the domain. In this case, where we show
the cumulative effect of the combination of both effects, the source
inferred with TenHeT is deeper and smaller (strength/volume) than
the one obtained through TenHoF inversion (Table 1). Predicted
deformation from TenHeT practically recovers the synthetic defor-
mation field (Figs 8c and f). On the other hand, the quality of the
inversion results is unreliable for the TenHoF model since the in-
fluence of the medium assumptions produces residuals that are out
the range of the observation precision (Fig. 9), approximately 3 cm
in both the vertical and horizontal components. The magnitude and
pattern of these systematic prediction differences suggest that the
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Figure 7. Best-fitting source locations for the inversion of Tenerife synthetic data by using TenHeT and TenHoF. The views are from top, N–S and E–W
profiles. The lateral and depth variation of the elastic parameters also is shown in the N–S and E–W profiles.

Figure 8. Synthetic components of the displacement field computed by TenHeT (a) u1 and (d) u3; (b) uTenHeT
1 and (e) uTenHeT

3 considering the parameters in
Table 1 and resulting from the inversion through TenHeT; forward model residuals: (c) u1 − uTenHeT

1 and (f) u3 − uTenHeT
3 .

forward model assumptions should be carefully considered when
designing a conceptual model of volcano deformation.

In real applications, observations are tainted by different ran-
dom and systematic errors. We repeat the inversion process,
adding a Gaussian noise to the simulated data obtained at the

GPS stations. We have included a Gaussian noise with a stan-
dard deviation of 1 cm in the three components of the dis-
placement field. It corresponds to about 11 per cent of the non-
perturbed vertical signal and 21–49 per cent of the horizontal
signal.
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Figure 9. Sensitivities to TenHoF assumptions. Synthetic components of the displacement field computed by TenHeT (a) u1 and (d) u3; (b) uTenHoF
1 and (e)

uTenHoF
3 considering the parameters in Table 1 and resulting from the inversion through TenHoF; forward model residuals: (c) u1 − uTenHoF

1 and (f) u3 − uTenHoF
3 .

Table 2. Results of the inversion of the Tenerife synthetic data at the GPS
network stations for models TenHeT (heterogeneous medium with topogra-
phy) and TenHoF (homogeneous medium with flat free surface). We assume
the synthetic data has a Gaussian error of 1 cm.

Parameter True model TenHeT TenHoF
parameters (1 cm error) (1 cm error)

S1 (m) 0 0.0 −364.5
S2 (m) 0 −0.032 −364.5
S3 (m) −1282 −1282.042 −797.85

d(S, Ŝ) (m) 0.053 707.22
a3
P (km3 MPa) 38 38.0035 46.7

u0
1 0 −4.0087 × 10−8 −0.0022

u0
2 0 −2.3838 × 10−8 −5.1383 × 10−4

u0
3 0 −5.2702 × 10−8 −0.0017

Misfit value 3.10345 × 10−7 90.078

Table 2 summarizes the parameters of the best-fitting models.
As before, it is not difficult to discriminate which model pre-
dictions, TenHeT or TenHoF, fit the synthetic values significantly
better. Again, Fig. 7 shows the source centres location obtained by
the optimization process. The error of the quantitative interpretation
provided by TenHoF is aggravated in this case.

Figs 10 and 11 show the differences between the synthetic dis-
placement field and the displacement field calculated by TenHeT
and TenHoF with Gaussian error added to the synthetic data. Con-
sidering the two examples here, we can conclude that the source
parameters are affected by the precision of the observations which
is important in assessing the quality of the inversion results when
TenHoF is employed in data interpretation. Furthermore, the resid-
uals (Fig. 10) show that the spatial distribution and the number
of the stations, in particular, the stations located near Teide vol-
cano, may not be ideal for understanding the deformation field

caused by a magma intrusion beneath its summit when a typical
model, such as TenHoF, is used for the inversion of geodetic data.
Combining GPS with other techniques, such as InSAR, which pro-
vides deformation field maps with high spatial resolution, could im-
prove the quality of quantitative geodetic data inversions by typical
models.

A fast and reliable evaluation of deformation sources is very im-
portant in early warning and near-real-time hazard assessment of
crustal deformation activities. As the quality and temporal and spa-
tial resolution of geodetic techniques increase, the implications of a
particular conceptual deformation model at the core of an inversion
process must be taken into account, as we show above. Masterlark
et al. (2012) have also proposed a methodology for the estima-
tion of the linear and non-linear parameters of deformation sources
in volcanic areas, taking into account structural medium hetero-
geneities. They focus on the automation of the mesh generation
process in response to perturbation of the position of a simulated
magma chamber (spherical cavity) within a FEM domain. As it
is pointed out in Section 4, the inversion algorithm we propose is
easy to parallelize because each separate realization is independent
from the rest. To overcome the limitation of remeshing, which in-
volves changing the source location for each realization required
by explorative inversion schemes, a body force term described by
expression (9) is included in model formulation. This procedure
also avoids the assembly of the linear system of equations repre-
senting the FEM approach for each iteration, since changes in the
matrix depends solely on changes in the domain that remain fixed
in the explorative process associated with source location. We take
advantage of these properties and the total analysis time for 9000
realizations of the forward model to reach a tolerance of 50 cm
(TenHeT model) is about 17 hr. Masterlark et al. (2012) employ
approximately 7 d on a similar machine (3 GHz quad core CPU)
over 12 000 realizations and with an error of over 100 m for source

 at C
SIC

 on M
ay 8, 2014

http://gji.oxfordjournals.org/
D

ow
nloaded from

 

http://gji.oxfordjournals.org/


1452 M. Charco and P. Galán del Sastre

Figure 10. Synthetic components of the displacement field computed by TenHeT (a) u1 and (d) u3; (b) uTenHeT
1 and (e) uTenHeT

3 considering the parameters in
Table 2 and Gaussian noise with a standard deviation of 1 cm and resulting from the inversion through TenHeT; forward model residuals: (c) u1 − uTenHeT

1 and
(f) u3 − uTenHeT

3 .

Figure 11. Synthetic components of the displacement field computed by TenHeT (a) u1 and (d) u3; (b) uTenHoF
1 and (e) uTenHoF

3 considering the parameters in
Table 2 and Gaussian noise with a standard deviation of 1 cm and resulting from the inversion through TenHoF; forward model residuals: (c) u1 − uTenHoF

1 and
(f) u3 − uTenHoF

3 .

location. Moreover, it is worth mentioning that their mesh con-
tains 13 870 nodes versus the 108 990 nodes that integrates Tenerife
mesh. Therefore, the inversion method with heterogeneous models
can efficiently be considered in quantitative interpretation of defor-

mation data with significant time savings. Although we describe a
suitable and efficient algorithm for FEM inversion, the numerical
procedure can be used in other explorative inversion schemes, such
as genetic algorithms.
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The a priori assumption of the source shape could be seen as a
limitation of our methodology. However, the procedure for includ-
ing the source can be extended easily to consider more complex
geometries, as briefly described in Section 2. Moreover, although
it will be studied in future works, the structural heterogeneities of
the medium could be as important as the complex geometry of the
source when interpreting displacement field. Further analyses in-
corporating other kinds of data (InSAR, gravity, etc.) could provide
a better understanding of volcanic sources and media.
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