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ABSTRACT4

Fast flows and avalanches of rock and debris are among the most dangerous of all landslide5

processes. Understanding and predicting post-failure motion (runout) of this kind of flow-6

like landslides is thus key for risk assessment, justifying the development of numerical models7

able to simulate their dynamics. In this work a numerical method for the resolution of the8

depth-averaged debris flow model is presented. This set of non-linear differential equations9

is formed by a variation of the shallow water equations, including strong bed slope, and a10

rheology resistance term. This paper focus on the numerical discretization of the resistance11

term, exploring three different approximations: pointwise, implicit and unified. Well-balance12
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between numerical flux and source terms is only achieved using the unified discretization.13

In order to avoid non-physical values of the water depth and discharge, a limitation of the14

unified resistance term is also needed. This correction is made following three conditions15

that identify the physical boundaries of the resistance term in the debris flow. This technique16

does not affect the computational efficiency of the method, keeping the original time-step.17

Furthermore, proposed analytical test cases show that the three resistance limitations do18

not significantly perturb the numerical solution. The properties of the resulting numerical19

scheme are studied using a set of numerical experiments that include steady and transient20

flows. The results show the convenience of the unified discretization and the need of the21

three-condition limitation in order to avoid unphysical solutions.22

Keywords: Debris flow, Shallow water, Voellmy rheology, Upwind scheme, Strong slope, Nu-23

merical friction treatment, Well-balanced scheme, Depth-averaged model, Friction physical24

limitation25

INTRODUCTION26

Rock avalanches and debris flows are flow-like landslides characterized by fast motion27

and high damaging potential. They constitute an important hazard in mountainous areas28

of the world, being responsible for loss of live and property every year. As such, signifi-29

cant effort has been devoted to understanding their behaviour and dynamics (Iverson 1997;30

Coussot and Ancey 1999). Numerical runout models have been developed to simulate the31

motion of granular avalanches and flows. These models are able to describe flow charac-32

teristics such as their velocity, depth and final travel length, which are of high interest for33

risk assessment. A number of authors developed simulation models based on the ’equiv-34

alent fluid’ concept of Hungr (1995), i.e. on the assumption that the major properties of35

the moving mass (depth and velocity) are well described by a homogeneous fluid character-36

ized by a rheological law (Koerner 1976; McLellan and Kaiser 1984; Kent and Hungr 1995;37

Hungr and Evans 1996; Rickenmann and Koch 1997; Bertolo and Wieczorek 2005; Begueŕıa et al. 2009a).38

Despite the simplification involved in the equivalent fluid approach, these models proved ad-39
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equate at simulating the main characteristics of laboratory and real world flows, and some40

of them such as DAN (Hungr 1995) and FLO-2D (O’Brien and Julien 1993) are well known41

by the debris flow hazard research community and have been used in a number of practical42

studies.43

On this article we present a debris flow runout model based on the shallow water equations44

and the Voellmy rheological law that has been often applied to the simulation of debris flows45

and rock avalanches (Begueŕıa et al. 2009b). We then discuss several issues arising from46

the numerical treatment of the resistance term. Three numerical correction procedures are47

presented, and their performance is discussed with the help of a set of case tests with and48

without analytical solution.49

This work is focused in the numerical treatment of the resistance term in the Voellmy rhe-50

ology. Some other resistance models have been proposed. For instance Takahashi (1991) sug-51

gests a model based on the collisional dilatant fluid hypothesis. Binghammodel (Coussot 1997)52

describes laminar processes for visco-plastic materials. These are well modeled by the53

Coulomb rheological law (Begueŕıa et al. 2009a) when a basal friction angle is included.54

This paper is organized as follows. In the following section we present the Debris Flow55

Equations and introduce the strong slope model and the Voellmy rheology. Then in section56

“The Numerical Method: First Order Upwind Explicit Scheme” the numerical scheme is57

developed with detail. Next section is “Numerical Treatments and Corrections of the Resis-58

tance Term”. There the numerical treatments are introduced: Unified Resistance Treatment59

(URT), Pointwise Resistance Treatment (PRT) and Implicit Resistance Treatment (IRT).60

In the same section three corrections are discussed. These are the Maximum Resistance at61

each Edge Limitation (MREL), the Depth-Change Limitation (DCL) and the Discharge Sign62

Conservation (DSC). The numerical treatments and corrections are discussed in the section63

“Results”, where analytical and ideal dambreak tests show that just URT treatment is able64

to compute resistance accurately, although it is only well stabilized if the three corrections65

presented before are enabled at the same time. Finally, in “Conclusions” the results are66
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summarized and we discuss the main conclusions of this work.67

DEBRIS FLOW EQUATIONS68

Assuming that a system is well described by the fluid mass and momentum conser-69

vation equations and negligible variations in the vertical coordinate, such fluid mass and70

momentum equations can be integrated over depth. Then, the shallow water equations are71

obtained. Usually debris flow and avalanche processes have been modeled with the shal-72

low water equations by a number of authors (Laigle and Coussot 1997; Brufau et al. 2000;73

Denlinger and Iverson 2001; Mangeney-Castelnau et al. 2005; Begueŕıa et al. 2009a).74

In this section we present the set of equations that describes the dynamics of the system.75

We work with a particular realisation of the shallow water equations adapted to the descrip-76

tion of debris flow. Debris flow equations differ from standard shallow water equations in77

two aspects: friction is described by a different rheology and bed slopes are usually stronger78

than those found in traditional shallow water problems.79

Strong slope pressure model80

Here we work out the pressure term in an incompressible, steady, well developed flow81

over a strong constant slope. Our reference frame is choosed in such a way that the system82

is invariant under y translations, where y = y′ is the axis perpendicular to both x and z (see83

fig. 1). In this case the Navier-Stokes equations are expressed as:84

∂u′

∂x′
+

∂w′

∂z′
= 0,85

86

u′
∂u′

∂x′
+ w′

∂u′

∂z′
= g sin θ − 1

ρ

∂P

∂x′
+

∂

∂x′

(

ν
∂u′

∂x′

)

+
∂

∂z′

(

ν
∂u′

∂z′

)

,87

88

u′
∂w′

∂x′
+ w′

∂w′

∂z′
= −g cos θ − 1

ρ

∂P

∂z′
+

∂

∂x′

(

ν
∂w′

∂x′

)

+
∂

∂z′

(

ν
∂w′

∂z′

)

. (1)89

Observe that the equations are written in the (x′, z′) orthogonal coordinate system, where90

z′ is normal to the bed surface, as shown in fig. 1. For a vector velocity ~v, the x′ and z′91

components are u′ and w′, respectively. ~g is the gravity acceleration, P the pressure, ν92
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the kinematic viscosity, ρ the fluid density and θ the angle of the bed with respect to the93

horizontal.94

In the conditions depicted in fig. 1, w′ ≃ 0. In addition, derivatives with x′ vanish. Then,95

system of equations (1) yields (Landau and Lifchitz 1988):96

g sin θ +
∂

∂z′

(

ν
∂u′

∂z′

)

= 0, −g cos θ − 1

ρ

∂P

∂z′
= 0. (2)97

Integrating the last equation and setting P = Pat as the atmospheric pressure in the free98

surface (Landau and Lifchitz 1988):99

P = Pat + ρg cos θ (h′ − z′) , (3)100

where h′ is the local depth in the (x′, z′) coordinate system.101

We rotate the system of equations to the Cartesian one, where z is parallel to ~g. Then,102

see fig. 1, h′ = (zs − zb) cos θ and z′ = (z − zb) cos θ (Burguete 2003)103

P = Pat + ρg cos2 θ (zs − z) , (4)104

where in such coordinate system zb is the bed surface while zs is the free surface. In conditions105

of soft slopes (θ ≈ 0, cos θ ≈ 1) hydrostatic pressure is obtained:106

P = Pat + ρg (zs − z) , (5)107

Note that eq. (4) corrects the hydrostatic pressure model by a cos2 θ factor.108

Debris flow equations109

Debris flow dynamics is often described by the so-called shallow water equations (de Saint-Venant 1871;110

Begueŕıa et al. 2009a). They derive from these of Navier-Stokes, under the assumption of hy-111

drostatic pressure and averaging over the vertical coordinate, i.e., integrating over the depth112
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variable. The relationship between Navier-Stokes and shallow water equations is detailed in113

Burguete (2003) for several pressure models. Debris flow equations are:114

∂~U

∂t
+

∂ ~F 0

∂x
= ~S0,115

116

~U =







h

q






, ~F 0 =







q

q2

h






, ~S0 =







0

ḡh
[

−∂h
∂x

+ Sx − Sf

]






, (6)117

where we split the equation terms into: conserved variables (~U), quasi-conservative flux (~F 0)118

and sources (~S0). In eq. (6) h is the local depth, q = hu is the discharge per unit width,119

u is the x component of the depth averaged velocity, Sx = tan θ is the bed slope and Sf120

is the resistance slope. Here we define ḡ = g cos2 θ to account for the slope angle θ, as121

inferred in (4), and resistance to flow is described by the Voellmy rheology. Free surface122

friction term is assumed to be negligible. This system of equations is written in the so called123

quasi-conservative form.124

Some numerical methods such as Finite Volume types are developed on the basis of the125

conservative form. In this way, these numerical algorithms force the conservation of the total126

flux. Observe that the system keeps invariant if we arrange its terms in the denominated127

conservative form:128

∂~U

∂t
+

∂ ~F 1

∂x
= ~S1,129

130

~U =







h

q






, ~F 1 =







q

q2

h
+ 1

2
ḡh2






, ~S1 =







0

ḡh [Sx − Sf ]






, (7)131

with ~F 1 the conservative flux and ~S1 the conservative source term.132

Both formulations are equivalent and produce the same solutions. We prefer the quasi-133

conservative form because the system of equations gets slightly simplified.134
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Resistance model135

Several hazardous landslide processes that take place in nature are rather well described136

by the so called Voellmy rheology (Voellmy 1955). The Voellmy model was originally aimed137

at describing shear stress at the base of the flow for snow avalanches, but it has been success-138

fully applied to granular flows of rock and debris (Koerner 1976; McLellan and Kaiser 1984;139

Kent and Hungr 1995; Hungr and Evans 1996; Rickenmann and Koch 1997; Bertolo and Wieczorek 2005).140

It consists of two-terms (Sf ) reaction of the bed: the basal friction and the velocity dependent141

(turbulent) term:142

Sf =

(

tanϕ+ ξ
q2

h3

)

q

|q| , (8)143

where ϕ is the equilibrium slope angle and ξ is the dynamic parameter of the resistance.144

The sign of Sf is always that of q. When q = 0 there is still friction. Sf can take non-zero145

values, if needed, to keep (free surface) slopes smaller than the equilibrium slope.146

Being relatively simple since it relies in only two empirical parameters (ϕ and ξ), the147

Voellmy model is a convenient choice for calibration / back analysis applications.148

THE NUMERICAL METHOD: FIRST ORDER UPWIND EXPLICIT SCHEME149

Assuming that advection is the dominant term in the dynamics of our system, it can be150

classified (and numerically dealt with) as belonging to the family of hyperbolic equations.151

Here we define the Jacobian matrix J of the flux term ~F 1:152

J =
∂ ~F 1

∂~U
=







0 1

ḡh− q2

h2 2 q
h






≡







0 1

c2 − u2 2u






, (9)153

with c =
√
ḡh the velocity of the infinitesimal waves. So that we rewrite eq. (7) in the154

non-conservative form:155

∂~U

∂t
+ J

∂~U

∂x
= ~S1. (10)156

The Jacobian has been defined with the aim of “linearizing” our equations system. Then,157
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we compute the eigenvalues (λi) and eigenvectors (~ei) of J.158

|J− λI| = 0 =⇒

∣

∣

∣

∣

∣

∣

∣

−λ 1

c2 − u2 2u− λ

∣

∣

∣

∣

∣

∣

∣

= 0 =⇒











λ1 = u+ c,

λ2 = u− c.
(11)159

Then, eigenvectors are calculated:160

~ei =







1

λi






. (12)161

The Jacobian can be diagonalized as a product of matrices calculated with the eigenvalues162

and eigenvectors:163

J = PΛP−1, Λ = P−1JP, (13)164

where165

P =







1 1

λ1 λ2






, P−1 =

1

λ2 − λ1







λ2 −1

−λ1 1






, Λ =







λ1 0

0 λ2






. (14)166

This formulation allows us to rewrite equation (10):167

P−1∂
~U

∂t
= P−1

(

~S1 −PΛP−1∂
~U

∂x

)

= P−1~S1 −ΛP−1∂
~U

∂x
. (15)168

Here we define a new differential variable d~ω =
(

dω1

dω2

)

in such a way that:169

∂~ω

∂t
= P−1∂

~U

∂t
,

∂~ω

∂x
= P−1∂

~U

∂x
=⇒170

171

∂~ω

∂t
= P−1~S1 −Λ

∂~ω

∂x
= ~S ′ −Λ

∂~ω

∂x
, (16)172

with ~S ′ = P−1~S1, so the elements of d~ω are computed straightforwardly:173

∂~ω

∂t
=







∂ω1

∂t

∂ω2

∂t






=







s′1 − λ1
∂ω1

∂x

s′2 − λ2
∂ω2

∂x






.174
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In order to capture correctly the influence region, for positive λk, the evolution in i-th cell175

has to be computed considering the flux in the left wall. Similarly, negative fluxes (λk) allow176

us to define the flux in the right wall:177

∂ωk

∂t

∣

∣

∣

∣

n

i

=











(

s′k − λk
∂ωk

∂x

)n

i−1/2
, if λk ≥ 0;

(

s′k − λk
∂ωk

∂x

)n

i+1/2
, if λk ≤ 0;

(17)178

where sub-indexes i+ 1/2 and i− 1/2 indicate, respectively, evaluation in the right and left179

walls of i-th cell. In compact notation, we write the evolution using:180

o±k =
1

2
[1± sign (λk)] ,181

182

∂ωk

∂t

∣

∣

∣

∣

n

i

=

[

o+
(

s′k − λk
∂ωk

∂x

)]n

i−1/2

+

[

o−
(

s′k − λk
∂ωk

∂x

)]n

i+1/2

. (18)183

At this point it is useful to define the matrices O± and Ω±:184

O± =







o±1 0

0 o±2






,185

186

Ω± = PO±P
−1

=
1

λ2 − λ1







o±1 λ2 − o±2 λ1 −o±1 + o±2
(

o±1 − o±2
)

λ1λ2 −o±1 λ1 + o±2 λ2






. (19)187

These matrices and eigenvalues must be computed at each cell edge. From the numerical188

point of view, the most accurate choice for u and c is to build the eigenvalues and the189

matrices at the cell edges as proposed by Roe (1981):190

ui+1/2 =
ui

√
hi + ui+1

√

hi+1√
hi +

√

hi+1

, ci+1/2 =

√

ḡ
hi + hi+1

2
. (20)191

Resorting to expressions (13) and getting back to the ~U notation, eq. (18) can be rewritten192
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as:193
(

P−1∂
~U

∂t

)n

i

=

[

O+

(

P−1~S1 −ΛP−1∂
~U

∂x

)]n

i−1/2

194

195

+

[

O−

(

P−1~S1 −ΛP−1∂
~U

∂x

)]n

i+1/2

, (21)196

and left-multiplying by P:

∂~U

∂t

∣

∣

∣

∣

∣

n

i

=

(

Ω+~S1 −Ω+J
∂~U

∂x

)n

i−1/2

+

(

Ω−~S1 −Ω−J
∂~U

∂x

)n

i+1/2

=

[

Ω+

(

~S1 − ∂ ~F 1

∂x

)]n

i−1/2

+

[

Ω−

(

~S1 − ∂ ~F 1

∂x

)]n

i+1/2

=

[

Ω+

(

~S0 − ∂ ~F 0

∂x

)]n

i−1/2

+

[

Ω−

(

~S0 − ∂ ~F 0

∂x

)]n

i+1/2

. (22)

Now, we discretize time and write the derivatives as a quotient between increments:197

∆~Un
i δxi = ∆t

[

Ω+
(

~S0δx− δ ~F 0
)]n

i−1/2
+∆t

[

Ω−

(

~S0δx− δ ~F 0
)]n

i+1/2
. (23)198

where δxi is the i-th cell side size and δxi+1/2 is the distance between the i-th and i + 1-th199

cell centers (see fig. 2). Note that δfi+1/2 terms are the difference between f at i-th and200

i+ 1-th cells. Using Sx = tan θ = − δzb
δx
, with zb the bed surface, ~S0δx and ~F 0 arrays are:201

δ ~F 0 =







δq

δ
(

q2

h

)






, ~S0δx =







0

ḡh (−δh− δzb − Sfδx)






. (24)202

The time step is computed in such a way that oscillations in the conserved variables are203

not enhanced.204

∆t = CFLmin
i,k

(

δx

|λk|

)n

i+1/2

, (25)205

with CFL < 1 the dimensionless Courant-Friedrichs-Lewy number (Courant et al. 1928).206

Transitions from subcritical to supercritical flow are not well resolved by the method207
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described in expression (23), as shown in Burguete and Garćıa-Navarro (2004). In this ref-208

erence, authors demonstrate that an entropy correction must be employed. To develop this209

correction we introduce some notation to be employed latter: the change in the conserved210

variables ∆~Un
i can be split into predicted increment ∆~UP (without resistance) and corrected211

increment ∆~UC (only resistance):212

~S2δx =







0

ḡh (−δh− δzb)






, ~Sfδx =







0

−ḡhSfδx






,213

214

~A±

i+1/2 =







ah

aq







±

i+1/2

=
[

Ω±

(

~S2δx− δ ~F 0
)

∓ µδ~U
]n

i+1/2
,215

216

~B±

i+1/2 =







bh

bq







±

i+1/2

=
[

Ω±~Sfδx
]n

i+1/2
,217

218

∆~UP
i =

∆t

δxi

(

~A−

i+1/2 +
~A+
i−1/2

)

, ∆~UC
i =

∆t

δxi

(

~B−

i+1/2 +
~B+
i−1/2

)

,219

220

∆~Un
i = ∆~UP

i +∆~UC
i . (26)221

where µ is an artificial viscosity coefficient (Burguete and Garćıa-Navarro 2004) computed222

as follows:223

µi+1/2 = max
k











(λk)i+1
−(λk)i
4

, if (λk)i+1 > 0 and (λk)i < 0;

0, otherwise;
(27)224

Observe that µ 6= 0 only in transitions from subcritical to supercritical flow.225

NUMERICAL TREATMENTS AND LIMITATIONS OF THE RESISTANCE TERM226

This section is structured as follows: First, we present three numerical treatments of the227

resistance term, pointwise resistance treatment, implicit resistance treatment, and unified228

resistance treatment. Then, we present three protection methods to deal with the unphysical229

effects arising from the overestimation of resistance, these are the maximum resistance at230

11



each edge limitation, depth-change limitation and discharge sign conservation.231

Numerical resistance treatments232

Pointwise resistance treatment (PRT)233

It has been suggested that pointwise discretization of resistance provides numerical stable234

results with a lower computing effort (Brufau et al. 2000; Delis et al. 2011). That consists,235

essentially, in the evaluation of the resistance contribution at the center of each cell, instead236

of the cell edges. The numerical scheme as described in eq. (26) is modified in the following237

manner:238

~B−

i+1/2 =
~B+
i−1/2 =

1

2

(

~Sfδx
)n

i
. (28)239

However, in Burguete et al. (2008) authors demonstrated that PRT does not provide a240

correct balance among terms of the shallow water equations.241

Implicit resistance treatment (IRT)242

Implicit treatment of the resistance term has been often presented as a solution for the243

instabilities and numerical oscillations that may appear when dealing with resistance in244

explicit schemes (Brufau et al. 2000; Burguete and Garćıa-Navarro 2001; Delis et al. 2011).245

In this case eq. (26) is modified as:246

~B−

i+1/2 =
~B+
i−1/2 =

1

2

(

~Sfδx
)n+1

i
. (29)247

So, the IRT is implemented in the following way:248

qPi = qni +∆qPi , qn+1
i = qPi −∆t(ḡh)n+1

i Sf (q
n+1
i , hn+1

i ). (30)249

For several resistance models, as the one we are working with, it is possible to work out250

the value of qn+1
i . Let us introduce the resistance expression (8) into the implicit scheme251

(30). Thus,252

qn+1
i = qPi −∆t(ḡh)n+1

i

(

f(hn+1
i )

(

qn+1
i

)2
+ tanϕ

) qPi
|qPi |

. (31)253
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where the dependence of Sf with h has been enclosed in f(h) = ξ
h3 . For the moment,254

realisation of f(h) either in tn or tn+1 is irrelevant for us. Observe that f(h) is defined255

positive. In practice, the sign of the resistance contribution (i.e. qn+1
i ) is given by qPi .256

Otherwise, there would be a sign indetermination when q = 0.257

Expression (31) includes two equations that must be solved separately for positive and258

negative qPi . They are two second order equations, each one of them with two mathematical259

solutions. Here negative root must be discarded since it entails a change in the sign of q: it260

implies different senses for the discharge with and without resistance, which is an undesired261

numerical overestimation of resistance. Then, the solution for qn+1
i can be written using a262

general expression for positive and negative values of qPi :263

qn+1
i =

−1 +
√

1− 4∆t(ḡh)n+1
i f

(

hn+1
i

)

(∆tḡh tanϕ− |q|)n+1
i

2∆t(ḡh)n+1
i f

(

hn+1
i

)

qPi
|q|Pi

. (32)264

Physically, resistance can slow down the moving mass, but never change the sense of265

motion. The choice of the right root does not imply necessarily sign conservation. The266

squared root needs to be greater than 1 (remind that ḡhf(h) > 0). This introduces a time267

step restriction:268

1− 4∆t(ḡh)n+1
i f

(

hn+1
i

)

(∆tḡh tanϕ− |q|)n+1
i > 1 =⇒269

270

∆t <
|q|Pi

(ḡh)n+1
i tanϕ

. (33)271

Thus, the IRT does not fulfill the stability criterion of no-sign-change condition for272

Voellmy rheologies: if q → 0, ∆t → 0.273
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Unified resistance treatment (URT)274

First order upwind method as described in eqs. (23) and (26) requires the evaluation of275

the resistance term at the cell walls, as well as any other term of the equations.276

hi+1/2 =
hi + hi+1

2
, qi+1/2 =

qi + qi+1

2
, (Sf )i+1/2 = Sf

(

hi+1/2, qi+1/2

)

. (34)277

We denominate this as unified resistance treatment (URT).278

Burguete et al. (2008) shows that URT provides a well-balanced scheme for shallow water279

steady flows.280

Limitations to the numerical resistance281

Because of its numerical realisation, calculated resistance inside some cell might be larger282

than the physically maximum allowed resistance, i.e., the value such that flow is stopped.283

This overestimation of resistance is due to two main reasons: numerical integration of the284

resistance term is not exact and upwind schemes may introduce non-physical effects in the285

mass conservation equation. It is important to stress that the flow equations (6) with the286

Voellmy rheology does not produce unphysical effects, while the numerical treatment of the287

Sf contribution is the only source of such kind of errors. Under no resistance conditions, the288

upwind scheme (with the CFL restriction) produces adequate solutions.289

Observe that our rheology equation states that, as the absolute value of the discharge290

decreases |q| → 0, the resistance level tends asymptotically to its minimum value |Sf | →291

tanϕ. For small q and small δq, δzb and δh, the resistance contribution to the evolution292

of the conserved variables in some cell may be dominand: B±

i±1/2 terms are dominant over293

A±

i±1/2 terms in eq. (26). As a consequence, numerical errors may appear and, eventually,294

propagate. For instance, there may be cases such as the one described in fig. 3: very small295

depth differences and equal non-zero discharges over horizontal bed, such that the only flux296

terms across the cell wall are the -small- source because of pressure differences and the -large-297

resistance.298
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In the hypothetic case where Sf = 0, a time step later the difference dh between cells299

i − 1 and i should decrease. However, a large resistance response may deal to increases in300

dh, which is physically senseless.301

Similarly, unphysical results of q may be obtained. For instance, the sign of q with and302

without resistance might be different, while it is well known that resistance can stop the303

moving mass, but it is unable to change the sense of motion. In this section we discuss sev-304

eral techniques to fix the resistance term. Some techniques to stabilize resistance are: time305

step reduction (Murillo et al. 2007; Begueŕıa et al. 2009a) or grid characteristic distance re-306

duction (Burguete et al. 2007). In Murillo et al. (2009), URT is preferently employed, and307

replaced by the more stable (but less accurate) PRT method in those cells where stability308

problems arise. A set of resistance fixes is proposed in Murillo and Garćıa-Navarro (2012)309

to avoid negative depth solutions produced by numerical overestimation of resistance effect.310

In this paper we present a set of techniques to deal with Voellmy resistance in such a way311

that no limitations in time step size, cell size or accuracy are introduced.312

Maximum resistance at each edge limitation (MREL)313

The contribution of the resistance to the evolution of the discharge is analyzed in (Burguete et al. 2007;314

Burguete et al. 2008). Let us take the i + 1/2-th edge defined by i-th and i + 1-th cells, as315

shown in fig. 4. Integrating the quasi-conservative equation (6) between xi and xi+1:316

∫ tn+1

tn
dt

∫ xi+1

xi

dx

(

∂~U

∂t
+

∂ ~F 0

∂x
− ~S0

)

= ~0, (35)317

this equation can be approximated as:318

~Un+1
i + ~Un+1

i+1 − ~Un
i − ~Un

i+1

2
δxi+1/2 +∆t

[

(

~F 0
)n

i+1
−
(

~F 0
)n

i
−
(

~S0δx
)n

i+1/2

]

= ~0. (36)319

The second component of this vectorial equation can be split into predicted and corrected320

terms. By predicted term we mean the result for q that would be obtained under the321

hypothetical condition of no resistance. The corrected contribution is obtained if only Sf is322
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introduced in equation (6)323

qn+1
i+1/2 = qPi+1/2 − (Tf )

n
i+1/2 ,324

325

qPi+1/2 =
qni + qni+1

2
−∆t

[

ḡh (δh+ δzb) + δ

(

q2

h

)]n

i+1/2

,326

327

(Tf )
n
i+1/2 = ∆t (ḡhδxSf )

n
i+1/2 . (37)328

According to Burguete et al. (2008), to avoid unphysical changes of q sign, the corrector329

contribution to the variation of q across each edge should not be larger than qP ( =⇒ |Tf | ≤330

qP ). It is achieved making:331

qn+1
i+1/2 = qPi+1/2 − (Tf )

P
i+1/2 ,332

333

(Tf )
P
i+1/2 =















(Tf )
n
i+1/2 , if |Tf |ni+1/2 ≤ |q|Pi+1/2;

|q|Pi+1/2

(

Tf

|Tf |

)n

i+1/2

, if |Tf |ni+1/2 > |q|Pi+1/2;
(38)334

Equation (38) is the basis of the MREL method and it provides, for every single cell edge,335

a maximum value of Tf which should not be exceeded.336

Depth-change limitation (DCL)337

Another undesired effect of the inaccurate treatment of the resistance term is the excessive338

reaction in depth. Despite the resistance reaction vector ~Sf is not supposed to change depth,339

in the URT method a correcting term in h may arise because of the the matrix decomposition340

of ~B± in eq. (26). Then, with URT method, although the h component is 0 in ~Sf , in b±h it341

is not, in general.342

The numerical scheme does not insure that the predicted increment in a±h is larger than343

the correcting term b±h . Furthermore, the URT method often produces situations where344

|b±h | > |a±h | while b±h · a±h < 0. This is contradictory with the idea of resistance as a passive345

mitigation of the result of the evolution of the conserved variables but not as an active346

counteracting contribution larger than any other.347

Here we propose a new correction to the resistance contribution which consists on the348

reduction (of the absolute value) of the resistance term b±h when it is too large.349

16



Note that this must be done carefully to keep the mass conservation. In this protection350

we reduce the correcting increment in b±h , when its absolute value is larger than that of351

the predicting increment a±h . Since our numerical method provides two correcting terms352

evaluated in the edge between cells i and i+ 1, we must check in both components either if353

there is a surplus (SP ) or not:354

SPi+1/2 = max

(

|bh|+i+1/2 − |ah|+i+1/2

δxi+1

,
|bh|−i+1/2 − |ah|−i+1/2

δxi

, 0

)

(39)355

Then, this surplus or excessive resistance contribution to h must be taken out. This is done

by modifying the balance between cells i and i+ 1.

(b′h)
+
i+1/2 = (bh)

+
i+1/2 − SPi+1/2

(bh)
+
i+1/2

|bh|+i+1/2

δxi+1,

(b′h)
−

i+1/2 = (bh)
−

i+1/2 + SPi+1/2

(bh)
+
i+1/2

|bh|+i+1/2

δxi, (40)

where the vector ∆~UC in eq. (26) is substituted by:356

( ~B′)± =







b′h

bq







±

, ∆~UC
i =

∆t

δxi

[

( ~B′)−i+1/2 + ( ~B′)+i−1/2

]

. (41)357

The excessive resistance is removed keeping the mass balance.358

Note that both MREL and DCL corrections modify the numerical fluxes at the edges.359

Then, these methods can be only applied to the URT method.360

Discharge sign conservation (DSC)361

MREL provides (when needed) a reduction in the effective corrector term for each cell362

edge. The aim of MREL is to keep the sign of the predicted q. To do so, the method takes363

into account the predicted q flow across each cell edge.364

However, the sum of all edges contribution to the dynamics in a single cell might not365
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preserve the q−sign, even if MREL applies. Indeed, after accounting for each edge predictor366

and then each edge corrector term contributions, the method might produce in some cells367

predicted and corrected q values with different signs.368

To solve such undesired solutions for q, we propose a new scheme. Resistance is treated369

separately from other contributions. The total predicted variation (i.e., accounting for each370

edge) of the conserved variables ∆~UP
i is computed with Sf = 0, and a corrector term ∆~UC

i371

is computed with only resistance. At every single cell, one must update ~Ui performing two372

steps between time step tn and tn+1 = tn +∆t:373

~UP
i = ~Un

i +∆~UP
i ,

~UC
i = ~UP

i +∆~UC
i . (42)374

The second component of ~U , the discharge q might have different signs in its predicted and375

corrected realisations. This two steps scheme corrects this undesired solution.376

hn+1
i = hC

i , qn+1
i =











0, if qPi · qCi < 0;

qCi , otherwise.
(43)377

Observe that DSC is intuitive since the change of the sign of q should be interpreted as378

an overestimation of the effective Sf . This term may stop q but never change its sign. This379

correction modifies the updated value of q inside each cell if needed. Therefore, it can be380

applied to the URT, PRT and IRT methods.381

DSC works on the cell, just taking into account q values inside each cell. On the other382

hand, MREL works on cell edges.383

RESULTS384

In this section we present several test cases, some of which are with analytical result, in385

order to evaluate the methods presented in the previous section.386

Whenever some modification is introduced in a numerical method, it is important to387

check if we are distorting the solution or not. In principle, resistance protection schemes388
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might dramatically change the solution. Here we present some examples with analytical389

solution and some ideal dambreaks to evaluate the impact of the protection methods in the390

resolution of the flow.391

Steady flow tests with analytical solution392

In Burguete et al. (2008), it was shown that pointwise resistance (see eq. (28)) may deal393

to a wrong balance in the shallow water equations terms. This conclusion was achieved after394

studying a MacDonald test case (MacDonald et al. 1997) with analytical solution. Here we395

follow the same procedure and propose new tests for the Voellmy resistance.396

Here we proceed analogously to MacDonald et al. (1997) to obtain steady flow tests with397

analytical solution. In such test cases, q is invariant under time-space translations and h is398

constant in time. The balance equations are:399

∂q

∂x
= 0,

∂

∂x

(

q2

h
+

1

2
ḡh2

)

= ḡh (Sx − Sf ) . (44)400

In the limit S2
x =

(

∂zb
∂x

)2 ≪ 1, ḡ can be approximated by g:401

ḡ =
g

1 + tan2 θ
=

g

1 +
(

∂zb
∂x

)2 ≈ g. (45)402

If h(x) is analytic, then another analytical expression can be obtained for the bed source Sx:403

Sx = −∂zb
∂x

= Sf +
1

gh

∂

∂x

(

q2

h
+

1

2
gh2

)

. (46)404

We use the following analytical h:405

h = h0 + 0.2 sin

(

2πx

L
− π

2

)

(47)406

where L is the length of the domain. In our numerical test, L = 200 m. Integrating407

numerically eq. (46), the shape of the soil bed zb(x) is achieved. We have performed two408
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different simulations in subcritical and supercritical regimes with Voellmy rheology. In table 1409

the parameters of each case are shown. We have done these simulations using δx = 2 m and410

CFL=0.9.411

The shapes of h and zb are depicted in fig. 5 for the subcritical case. Note that the slope412

is around 0.06. That confirms that ḡ ≈ g
1+0.062

≈ 0.9996 g ≈ g is a good approximation. In413

fig. 6 the h and q profiles in equilibrium are depicted for the unified method and PRT for the414

subcritical case. In the URT simulation, the resistance fix set made up by MREL, DCL and415

DSC limitations has been applied, while in the pointwise case only DSC limitation has been416

activated, for the reasons explained before. In fig. 7 we depict the functions h and zb for417

the supercritical case. In this case, ḡ ≈ g
1+0.152

≈ 0.98 g ≈ g is a reasonable approximation.418

Results of h and q in equilibrium are plotted in fig. 8. The main conclusion is that the419

PRT for the Voellmy resistance works well only in supercritical flows. This is an unexpected420

result and further research is needed to clarify this point. In subcritical states, the balance421

of terms fails with this method. URT solves accurately the debris flow in both cases. The422

proposed corrections MREL, DSC and DCL do not perturb the steady state solutions.423

Ideal dambreak424

Dambreak is a classical test-bed to check the performance of hydraulic numerical simu-425

lations, since it can detect the unbalanced terms and physical inconsistencies, even if it has426

no analytical solution in general. By ideal dambreak we mean an initial situation such that427

on each side of the discontinuity, h = const., and q = 0. Here we present two cases of ideal428

dambreaks over a dry bed. The domain size is L = 200 m, and the discontinuity in h takes429

place at x = L
2
. Our study cases are characterized by the parameters shown in table 2. We430

have done these simulations using δx = 2 m and CFL=0.9.431

Case I432

In the Case I dambreak the purely frictional rheology is studied. This case does not433

consider the turbulent term of the resistance. Despite we shown that IRT is not suited for434

our rheology (see eq. (33)), we present here the results of our simulation. In fig. 9 we show435
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the results.436

Remind that we expected wrong results in the IRT, since there is no time step to ensure437

that the friction keeps the sign of the discharge. Indeed, we observe in fig. 9 that q is438

negative in the nearby of the shock, even if we enable the DSC limitation. In addition, the439

local depth becomes higher than it was in the left side of the front. This is an undesired440

effect that does not take place when friction is computed with the URT with the limitations441

set (MREL+DCL+DSC), as shown in the same plot.442

Keeping in the URT, the same simulation illustrates the importance of the MREL. We443

have simulated such system activating the following corrections: MREL (eq. (38)), DSC444

(eq. (43)) and DCL (eqs. (39), (40) and (41)). Then, we have disabled the MREL and445

compared results. After a simulated time 10 s, we observe several differences in figs. 10 and446

11.447

When MREL correction is disabled, we detect roughness in the equilibrium profile of h.448

However, the profile becomes flat after enabling it. In addition, we detect sharp peaks in q449

if MREL protection is disabled. We can conclude that the MREL correction stabilizes the450

resistance term when dealing with purely frictional rheology.451

Case II452

Here both Voellmy terms contribute to the debris flow dynamics. This case has been453

used to test either the DSC (see eq. (43)) needs to be enabled or not. With this particular454

protection one does not need to go to purely frictional rheologies in order to detect undesired455

effects.456

In fig. 12 we observe negative values in q at t = 1 s when the DSC is not enabled, despite457

MREL and DCL corrections are activated. This is due to an excessive resistance response458

to the flow generated by the dambreak. Observe that this undesired effect vanishes if we let459

our DSC protection work.460

Ideal dambreak test case II has been simulated to check the DCL too. Here we show that461

the protection that does not permit anti-advection changes in the depth across the walls is462
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necessary as well. The last example is illuminating. If the DCL protection is activated, there463

are no abnormal results. However, when it is disabled, we detect peaks in depth in the front464

of the dambreak, see fig. 13. This test shows that the DCL correction is necessary for the465

correct computation of the resistance in our rheology model.466

Invariant depth test467

Another case with analytical solution to check the performance of the resistance numerical468

treatment is presented here. It consists of a current over flat bed where h is invariant under469

space-time translations and q is invariant under spatial translations. Here q is expected to470

decay in time (because of the resistance) until the flow stops. The system of equations is:471

∂h

∂t
=

∂h

∂x
=

∂q

∂x
=

∂zb
∂x

= 0 =⇒ ∂q

∂t
= −ḡhSf (48)472

Then, we substitute expression (8):473

∂q

∂t
= −ḡh

(

tanϕ+ ξ
q2

h3

)

q

|q| (49)474

For simplicity we solve the q > 0 case:475

tdecay =

√

h

ḡ2ξ tanϕ
arctan

(
√

ξq0
h3 tanϕ

)

,476

477

q =











√

h3 tanϕ
ξ

tan

[

arctan
(√

ξq0
h3 tanϕ

)

−
√

ḡ2ξ tanϕ
h

t

]

, if t < tdecay;

0, if t ≥ tdecay;

(50)478

where q0 is q(t = 0). To solve this problem accurately, we need to take time step sizes479

much smaller than the decay time (∆t ≪ tdecay). Observe that resistance contribution, if480

overestimated, may deal to q < 0 solutions. Thus the performance of both MREL and DSC481

limitations is tested in this case.482
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We have run a case with the following parameters:483

q0 = 10 m2/s, h = 10 m, tanϕ = 0.01, ξ = 0.003.484

We have done these simulations using δx = 2 m and CFL=0.9. This set of parameters485

makes the decay non-linear, but the typical time step size is still small enough: ∆t ≈ 0.02 s486

≪ tdecay ≈ 10.1 s.487

In fig. 14 we show the numerical results with and without limitations, together with the488

analytical decay for q(t). The decay function is well reproduced by the simulation in both489

cases. The numerical results only differ themselves when q → 0, when both DSC and MREL490

activate. When these limitation methods are activated, the decay is softer. We observe that491

the limitations do not introduce a significant change in the discharge. Furthermore, DSC492

and MREL avoid wrong numerical solutions such as the triangle wave-like shape of q(t) when493

the mass is supposed to stop.494

Discontinuity within normal flow (DNF) test495

Burguete et al. (2006) developed some analytical tests based on the Rankine-Hugoniot496

equation for 1D propagating shock waves with a Gauckler-Manning rheology and normal497

flows. In this section we propose another analytical test, adapting the previous procedure498

to a Voellmy rheology.499

Here we have a constant slope, Sx and the Voellmy expression for Sf . In the fig. 15 we500

observe a discontinuity propagating with velocity U . In the left hand side of the discontinuity,501

there are constant velocity and discharge: h1 and q1. In the right hand side, h2 and q2 are502

constant as well. In both sides of the shock, the space-time derivatives of h and q vanish.503

Then, eq. (7) becomes:504

ḡh(Sx − Sf ) = 0 =⇒505

506

Sx = tanϕ+ ξ
q21
h3
1

= tanϕ+ ξ
q22
h3
2

, (51)507

23



having a normal flow (Sx = Sf ) at both sides of the discontinuity. In addition, in the

discontinuity limits, according to Burguete et al. (2006):

h1

(

q1
h1

− U

)

= h2

(

q2
h2

− U

)

,

h1

(

q1
h1

− U

)2

+
1

2
ḡh2

1 = h2

(

q2
h2

− U

)2

+
1

2
ḡh2

2. (52)

expressions (51) and (52) make up a four equations system with eight variables (Sx, ϕ, ξ, q1,508

q2, h1, h2 and U). Then, there are four degrees of freedom. We set the following parameters:509

Sx = 0.3, tanϕ = 0.1, ξ = 0.004 s2/m, h2 = 0.4 m, (53)510

and solving the four equations system we obtain:511

h1 = 1.5576 m, q2 = 1.7888 m2/s, q1 = 13.7463 m2/s, U = 10.3291 m/s. (54)512

The domain size is L = 2000 m. We have done these simulations using δx = 2 m and513

CFL=0.9.514

In fig. 16 we plot the depth at time t = 0 s and t = 25 s with and without protections.515

Observe that protections do not change the result. In addition the velocity of the shock516

matches up very well with the analytical result for U .517

CONCLUSIONS518

The Voellmy rheology, as shown, deals to undesired effects whenever resistance contri-519

bution is not treated carefully. In this paper we demonstrate that two typical techniques520

for the stability of the resistance such as IRT and PRT are not appropriate in general for521

Voellmy rheologies. PRT produces wrong solutions in the subcritical steady flow test as522

shown in figs. 5 and 6, and non-physical solutions are obtained if resistance contribution is523

computed implicitly, as shown in fig. 9. Only URT is able to produce well balanced outputs,524
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although some resistance fix techniques are needed to avoid undesired effects, mainly due to525

the numerical overestimation of resistance.526

The already existing technique of MREL (see eq. (38)) has been shown to improve the527

results. Although necessary, this technique is insufficient to correctly solve the system. In528

this paper we propose two new methods to stabilize resistance and avoid unphysical solutions:529

These are (i) DSC (eq. (43)), splitting the time step evolution of the discharge into530

predicting and correcting contributions and (ii) DCL (eqs. (39), (40) and (41)) affecting531

the numerical flux across cell edges. These methods have been checked with dambreak532

tests that demonstrate that each one of them is needed in order to produce physically533

acceptable solutions. In addition, they do not produce spurious effects when compared with534

analytical tests: the numerical solution of Steady Flow Test matches up pretty well when535

the set of protections is activated (see figs. 6 and 8). Besides, the physical inconsistencies in536

the Invariant depth simulation (see fig. 14) and the Rankine-Hugoniot discontinuity within537

normal flow (see fig. 16) vanish when the set of protections applies. When enabled, the538

protection methods only modify the solution whenever it is necessary just to avoid undesired539

numerical results.540

Finally, two aspects about the techniques suggested in this paper should be stressed.541

First, our resistance fix set (URT+MREL+DSC+DCL) produces solutions that make sense,542

from the viewpoint of physics, not only in the steady or equilibrium state, but also in the543

transient states. Second, such results are obtained with CFL values close to 1, at least544

for the tests performed in this paper. Similarly, no time step reduction is required. Thus,545

we can conclude that the resistance fix presented here is efficient from the physical and546

computational points of view.547
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NOTATION552

∆qC = Corrector term of q.553

∆qP = Total predicted variation of q (i.e., with Sf = 0).554

∆t = Time step.555

∆~UC = Total correction variation of ~U (i.e. with only Sf ).556

∆~Un
i = Variation in ~U at n-th time step in i-th cell.557

∆~UP = Total predicted variation of ~U (i.e. with Sf = 0).558

δxi = i-th cell size.559

θ = Bed angle.560

Λ = Eigenvalues diagonal matrix.561

λi = i-th eigenvalue of J.562

µ = Artificial viscosity coefficient for entropy correction.563

ν = Kinematic viscosity.564

ξ = Dynamic parameter of resistance.565

ρ = Fluid density.566

ϕ = Equilibrium angle or static parameter of friction.567

Ω± = Upwind matrices.568

~A±

i+1/2 = Contribution vector to ∆~UP across the i+ 1/2-th edge.569

a±h = First component of ~A±.570

a±q = Second component of ~A±.571
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~B±

i+1/2 = Contribution vector to ∆~UC across the i+ 1/2-th edge.572

( ~B′)±i+1/2 = Corrected ~B± in DCL method.573

b±h = First component of ~B±.574

(b′h)
± = First component of ( ~B′)±.575

b±q = Second component of ~B± and ( ~B′)±.576

CFL = Courant-Friedrichs-Lewy number.577

c = Velocity of the infinitesimal waves c =
√
ḡh.578

d~ω = Differential characteristic variable: d~ω = P−1d~U .579

~ei = i-th eigenvector of J.580

~F 0 = Quasiconservative flux.581

~F 1 = Conservative flux.582

f(h) = h-dependent term of Sf .583

g = Gravity acceleration.584

ḡ = Effective gravity in developed flow: ḡ = g cos2 θ.585

h = Depth.586

h0 = Average depth of h in the MacDonald-like tests.587

h1 = Initial h in the left hand side of discontinuity in the ’DNF test’.588

h2 = Initial h in the right hand side of discontinuity in the ’DNF test’.589

hi = Initial depth in the left hand side of dambreak discontinuity.590

J = Jacobian of ~F 1.591
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L = System size.592

O± = Diagonal sign matrices.593

o±i = i-th diagonal term of O± matrix.594

P = Fluid pressure.595

P = Eigenvectors of J matrix.596

Pat = Atmospheric pressure.597

q = Discharge per unit width.598

q0 = Initial q in the ’invariant depth test’.599

q1 = Initial q in the left hand side of discontinuity in the ’DNF test’.600

q2 = Initial q in the right hand side of discontinuity in the ’DNF test’.601

qC = Corrected value of q.602

qP = Predicted value of q.603

~S ′ = Auxiliary vector: ~S ′ = P−1~S1.604

~S0 = Quasiconservative source.605

~S1 = Conservative source.606

~S2 = No resistance quasiconservative source.607

Sf = Resistance slope.608

~Sf = Resistance vector.609

Sx = Bed slope: Sx = − tan θ.610

SPi+1/2 = Surplus of numerical flux between i-th and i+ 1-th cells.611
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t = Time.612

tdecay = Decay time for the ’invariant depth test’.613

Tf = Resistance corrector term.614

U = Velocity of the discontinuity step in the ’DNF test’.615

~U = Conserved variables vector.616

~UC = Corrected value of ~U at n+ 1-th time step (i.e., ~UC = ~UP +∆~UC).617

~UP = Predicted value of ~U at n+ 1-th time step (i.e., ~UP = ~Un +∆~UP ).618

u = Velocity (x component).619

u′ = Velocity (x′ component).620

~v = Vector velocity.621

w = Velocity (z component).622

w′ = Velocity (z′ component).623

x = Spatial coordinate ⊥ ~g.624

x′ = Spatial coordinate in primed coordinate system (x′ ‖ zb surface).625

z = Spatial coordinate ‖ ~g.626

z′ = Spatial coordinate in primed coordinate system (z′ ⊥ zb surface).627

zb = Bed level.628

zs = Surface level.629
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Begueŕıa, S., van Hees, M. J., and Geertsema, M. (2009b). Landslide processes: from geomor-634

phology mapping to dynamic modelling. CERG Editions, Strasbourg, Chapter Comparison635

of three landslide runout models on the Turnoff Creek rock avalanche, British Columbia,636

243–247.637

Bertolo, P. and Wieczorek, G. F. (2005). “Calibration of numerical models for small debris638

flows in yosemite valley, california, usa.” Natural Hazards in Earth System Sciences, 5,639

993–1001.640
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TABLE 1: Parameters for the subcritical and supercritical cases of the steady flow tests
with analytical solutions.

Subcritical case Supercritical case
q (m2/s) 5 5
ξ (s2/m) 0.003 0.003
tanϕ 0.05 0.05
h0 (m) 2 1
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TABLE 2: Ideal dambreak initial conditions and rheology parameters.

Case I Case II
hi (m) 10 10
tanϕ 0.7 0.5

ξ (s2/m) 0 0.003
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FIG. 1: Reference systems on a well developed flow over strong constant slope. The velocity
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also h′ = h cos θ.
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FIG. 6: Steady flow test: comparing PRT with unified method in the subcritical case. h
(left) and q (right) profiles.
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FIG. 8: Steady flow test: comparing PRT with unified method in the supercritical case. h
(left) and q (right) profiles.
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t = 10 s: general view (left) and detail (right).
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FIG. 11: q profiles of ideal dambreak case I with MREL protection enabled and disabled at
t = 10 s.
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FIG. 12: q profiles of ideal dambreak case II with DSC enabled and disabled at t = 1 s:
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FIG. 13: h profiles of ideal dambreak case II with DCL correction enabled and disabled at
t = 1 s. General view (left) and detail (right).
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