
Comparison of MOMDP and Heuristic
Methods to Play Hide-and-Seek

Alex GOLDHOORN a Alberto SANFELIU a René ALQUÉZAR a

a Institut de Robòtica i Informàtica Industrial, CSIC-UPC, Barcelona, Spain.

Abstract. The hide-and-seek game is considered an excellent domain for studying
the interactions between mobile robots and humans. Prior to the implementation
and test in our mobile robots TIBI and DABO, we have been devising different
models and strategies to play this game and comparing them extensively in simula-
tions. We propose the use of MOMDP (Mixed Observability Markov Decision Pro-
cesses) models to learn a good policy to be applied by the seeker. For two players
the amount of states is quadratic in the number of discrete map cells. The number
of cells were reduced by using a two-level MOMDP, where the policy is computed
on-line at the top level with a reduced number of states independent of the grid size.
In this paper, we also introduce a new fast heuristic method for the seeker and com-
pare its performance to both off-line and on-line MOMDP approaches. We show
simulation results in maps of different sizes against two types of automated hiders.

Keywords. Robotics, Human Robot Interaction, Hide-and-Seek, POMDP

Introduction

Hide-and-seek is an interactive game that has been suggested as an ideal domain for
studying cognitive functions in robots and human-robot interaction [1], because the game
requires the robot to search, navigate, anticipate on and predict the behaviour of the oppo-
nent. In the simple two-players setting, a seeker tries to find and catch a hider, while the
latter tries to reach a base without being caught. Players of the game can follow several
strategies to win depending on their role. Because of uncertainties in the location of the
opponent due to obstacles Partially Observable Markov Decision Processes (POMDPs)
[2,3] can be used to model the environment and the location of the agents. POMDPs have
been applied in [4,5,6] to solve variants of the hide-and-seek game.

In our hide-and-seek version the seeker and the hider move – at maximum one dis-
crete step – at the same time. The seeker computes a belief (a probabilistic state es-
timate) and chooses an action to maximize its expected future reward, meanwhile the
hider chooses also an action following its own strategy. POMDPs have been successfully
applied to various robotic tasks [7,8], but unfortunately, computing an optimal policy
exactly is generally intractable (PSPACE-hard, [9]) because the size of the belief space
grows exponentially with the number of states.

Instead of using POMDPs, we have recently proposed to use MOMDPs (Mixed Ob-
servability Markov Decision Processes) for this game [10] because there are fully ob-
servable and not fully observable components of the state (the own and the opponent po-

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36156163?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

sition, respectively). The MOMDP uses a factored model to represent separately the fully
and partially observable components of a state and derive a compact lower-dimensional
representation of its belief space [4,5]. Although MOMDP solvers clearly improve the
efficiency of the corresponding ones for POMDPs [4], they are still limited by the num-
ber of partially observable states in the problem. As an alternative to off-line MOMDP
policy computation with the complete grid fine resolution, we have devised a two-level
MOMDP, where the policy is computed on-line at the top level with a reduced number
of states independent of the grid size so in principle it may be applied to larger maps.

In this work, we introduce a new fast heuristic method for the seeker and analyze
its computational cost. Its effectiveness is compared experimentally to both off-line and
on-line MOMDP approaches. We also investigate new variants of the on-line MOMDP
model. We show simulation results in maps of different sizes against two types of auto-
mated hiders: a random one and a heuristically-driven one.

1. Definition of the Hide-and-Seek Game

In our version of the hide-and-seek there are only two players, a seeker and a hider, who
play on a grid of rows× cols cells. The grid exists of obstacle (cells), free cells and a
special free cell called the base. The seeker starts on the base and the hider can start
on any free cell. At each time step, both players can take one of nine actions: stay in
the same cell or move to a free neighbor cell in an 8-connectivity neighborhood. The
seeker wins if it approaches the hider sufficiently and ”catches” it (in the simulations we
defined it as being in the same cell). The hider wins if it reaches the base before being
caught by the seeker. And the result is a tie when no player has won within the maximum
predefined time H. Both players are supposed to have 360◦ visibility at each time step,
only limited by the obstacles. Hence, the visibility for each player is calculated with a
ray-tracing algorithm.

The focus of the work has been from the point of view of the seeker, meaning that we
want to apply or learn the best strategy to win the hide-and-seek game. It is also assumed
that the seeker’s position is fully observable for itself (i.e. no local uncertainty), whereas
the hider’s position is only known – again without uncertainty – if it is observable. Even
though the focus is on the seeker, the same type of heuristic and models could be applied
to play the game as a hider.

To quickly and thoroughly test and compare different strategies, models and param-
eters, two automated hiders have been used: a randomly moving hider and a ”smart”
(heuristically driven) hider; these will be explained in section 5.

2. Triangle Heuristic for Hide-and-Seek

The previously defined hide-and-seek game has three important distances: between the
seeker and hider (dsh), between the seeker and the base (dsb), and between the hider and
the base (dhb). With this we have created a heuristic reward function:

R(s,h,b) =

{
D−dsh, if dhb > dsb

−dsh, otherwise
(1)

where s is the seeker, h the hider and b the base. D is a maximum value, in our simula-
tions we defined it as D = rows× cols. The score increases as the distance to the hider
decreases (dsh); to protect the base an extra score of D is given when the seeker is closer
to the base than the hider. In order to compute these three distances one may use the
simple Euclidean distance or the the shortest path length that depends on the map [10].
We have used the last one for our experiments.

With this heuristic an automated SmartSeeker has been made. This seeker calculates
a score for each action it can take and then chooses the action with the maximum score.
At maximum 9 actions are possible (one step or staying at the same position) for both the
seeker and hider. One action gets the seeker to a position, which can be used to calculate
R; but at the same time the hider can make a move, which we take into account by
averaging the score over these moves: w(s′,h,b) = ∑h′∈moves(h) R(s′,h′,b)/|moves(h)|.
When the hider is not visible to the seeker the only thing we know is that the hider is at a
not visible position; therefore the score w is calculated for every possible hider’s position
and then averaged.

The complexity of the calculation of Eq. (1) depends on the complexity of
the distance calculation. For the standard Dijkstra algorithm the complexity [11] is
O(|V | log |V |+ |E|) where V and E are the vertices and the edges of the tree. For Eq. (1)
three distances have to be calculated. If the hider position is known then Eq. (1) has to
be calculated at maximum 81 times (9 possible actions of both players). If the hider is
not visible then the previous calculation has to be done for each hidden cell; thus the
complexity grows linearly with the number of hidden cells. The scores can be calculated
a priori and the memory usage will be at maximum N2 where N is the number of cells.

3. Off-line MOMDP Models for Hide-and-Seek

The hide-and-seek game can be modelled using an MOMDP [4,5], where the state is
composed by the grid cell positions of both players. Therefore the number of states is the
square of the number of grid cells of the 2D map where the game is going to be played.
The number of grid cells depends on the resolution that we want to consider in the game
(e.g., a grid cell of 1×1 m2 in a 2D map of 10×10 m2 implies 10000 MOMPD states).
Formally, the hide-and-seek game is modelled as:

〈X ,Y ,A ,OX ,OY ,TX ,TY ,ZX ,ZY ,R,γ〉 (2)

where:

• X : the space of all values for fully-observable seeker’s state x = (xseeker,yseeker),
the seeker’s position;

• Y : the space of all values for partially-observable hider’s state y = (xhider,yhider),
the hider’s position;

• A : the 9 actions of the seeker: north, northwest, west, ..., halt. Each of the actions
represents a movement of only one grid cell per time step, except for the action
halt which represents staying at the same state;

• OX : OX = X , since ox = x for all states of the seeker;

• OY : OY = Y ∪{unknown}, which is the union of the set of hider’s states and a
special observation value unknown, which represents the cases when the hider is
not visible to the seeker;

• TX : the transition probabilities of the seeker’s state given an action, TX (x,y,a,x′)=
p(x′|x,y,a). The next position of the seeker is directly given by its current posi-
tion x, its action a and the map, but independently of the current position of the
hider y. Therefore these probabilities will always be 1 or 0, taking into account
that the result of an infeasible action is defined as staying on the same cell (e.g
going north if a wall is there results in not moving). Also reaching the final state
will result in staying in the same state;

• TY : the transition probabilities of the hider’s state given a seeker’s action and lo-
cations of the seeker and hider, TY (x,y,a,x′,y′) = p(y′|x,y,a,x′). These probabil-
ities are not as evident as the previous ones since the own action of the hider is not
known. There are two suggested solutions: the first is to spread the probabilities
of the movement of the hider uniformly, the second option is to use historical data
of human players. Both options are discussed in detail in [10]; and we have used
uniform probabilities since using historical data did not give significantly better
results, and gathering this information requires a great amount of games played
by humans. Also here the probability will be 1 if a final state has been reached;

• ZX : the observation probabilities ZX (x′,y′,a,ox)= p(ox|x′,y′,a) will be 1 if ox =
x′ and 0 otherwise;

• ZY : the observation probabilities ZY (x′,y′,a,ox,oy) = p(oy|x′,y′,a,ox) depend
on the locations of the seeker and hider and the map. The probability will be 1
if oy = y′ and y′ is visible from x′ or oy =unknown and y′ is not visible from x′,
otherwise it will be 0;

• R: the instantaneous reward for a state, two reward functions were tried: The
simple reward which has non-zero values only for final states (positive for x = y
and negative for y =base, x 6= y), and the triangle reward: using Eq. . (1).

• Finally γ: the discount factor.

While the triangle reward is much more informative than the simple reward, its compu-
tational cost is also higher. Note that the simple reward can be computed extremely fast
at each step without the need of memorizing its values for each state. On the other hand,
for the triangle reward, either its values are precalculated for each state (higher memory
cost) or the computation time is increased considerably if calculated at each step.

The initial belief bY,0 is based on the position of the hider. If the hider is visible then
the belief of that state is 1.0, otherwise the belief is uniformly distributed over the not
visible states. As can be seen the definition of the transition and observation probabilities
are simple, but they depend on the amount of cells N. Their complexity is O(N3) since
three variables depend on the map size. Although TY has a four state variables the x′ is
not used by us, neither is ox in ZY . The calculation of the reward, if the triangle rule is
used, depends on the distance calculation, as explained in the previous section.

The off-line usage of the MOMDP model means that the policy is calculated a priori.
When playing the game the actions are based directly on the already available policy.
The time of calculating a policy off-line took 2 hours for maps of 12× 12 up to more
than 40 hours, using the CPU described in section 5, for maps of 20× 20. Furthermore
the time and memory complexity grows with the number of states due to the curse of

history and dimensionality [12]. In order to still handle big maps we suggest an on-line
method in which the states are segmented, as explained in the next section.

4. On-line MOMDP Model for the Hide-and-Seek Game

A hierarchical model is described next in which the bottom-level is an MOMDP as de-
scribed in the previous section, and the top level is an MOMDP with less states. Only for
the top level MOMDP a policy is calculated. Top level states are generated by grouping
adjacent lower level states, at the same time the probability matrices have to be changed.

4.1. Bottom-level MOMDP

The bottom level MOMDP is defined as in the previous section, Eq. (2). However this
model is only used to update the beliefs at full resolution and to calculate the top
MOMDP transition and observation probabilities. The belief is initialized as in the off-
line version. Before generating the top-level MOMDP, the bottom-level belief is updated
with the new observations ox and oy, action a, belief state (bY ,x) and new state x′:

b′Y (y
′) =

p(ox|x′,y′,a)p(oy|x′,y′,a,ox)×∑y∈Y p(x′|x,y,a)p(y′,x,y,a,x′)bY (y)
p(o|b,a)

(3)

4.2. Top-level MOMDP

The partially observable states Y are reduced to YT by grouping spatially adjacent states.
Formally, a function ψ(yT) is defined that gives the set of bottom-level adjacent states
which are covered by each value of the top level states yT ∈ YT . The problem of finding
a proper function ψ can be posed as a segmentation based on the map itself, the location
of the players, the reward obtained in each state and/or the belief of each state.

We propose a method that centers on the robot location and divides the space in the
eight directions and distance, as seen from the robot. Figure 1 shows the robot centered
segmentation in which the robot is at location 0, and the segmentation is done from that
point in the eight directions and based on a fixed distance to the center. Since the hider
and base positions are of vital importance for the game, they are added as a separate
superstate if known; these superstates will represent only one cell in the bottom level.
Since the goal is to catch the hider and to protect the base, the direction to go is the most
important; which is represented by this segmentation, taking into account that at each
step a new top model is generated. The top-level MOMDP can be defined as follows:

〈XT ,YT ,A,OX ,T ,OY ,T ,TX ,T ,TY ,T ,ZX ,T ,ZY ,T ,RT ,γ〉 (4)

where A is the same as the bottom MOMDP. The state reduction has been tried on only
the partially visible states Y and on both state variables X and Y . The advantage of the
first case is that it reduces the belief space, but keeps the precision of the fully observable
states X . In the latter case it reduces the number of states even more.

The transition and observation probabilities and rewards are averaged from the bot-
tom level. When only the Y states are segmented, then the new probabilities are:

(a) Robot centered segmentation (b) Layered segmentation

Figure 1. The robot centered segmentation (a) centers on the robot’s location (0 in the figure) and from there
on creates segments based on the direction and distance, based on the bottom layer (b).

p(x′|x,yT ,a) =
1

|ψ(yT)| ∑
y∈ψ(yT)

p(x′|x,y,a) (5)

p(y′T | x,yT ,a,x′) =
1

|ψ(yT)| ∑
y′∈ψ(y′T)

∑
y∈ψ(yT)

p(y′|x,y,a,x′) (6)

p(oy|x′,y′T ,a) =
1

|ψ(y′T)|
∑

y′∈ψ(y′T)

p(oy|x′,y′,a) (7)

When both state variables X and Y are segmented with functions ψX , ψY and ψO
respectively then the transition and observation probabilities change slightly:

p(x′T |xT ,yT ,a) =
1

|ψX (xT)||ψY (yT)| ∑
x′∈ψX (x′T)

∑
x∈ψX (xT)

∑
y∈ψY (yT)

p(x′|x,y,a) (8)

p(y′T |xT ,yT ,a,x′T) =
∑y′∈ψY (y′T) ∑x′∈ψX (x′T) ∑x∈ψX (xT) ∑y∈ψY (yT) p(y′|x,y,a,x′)

|ψX (xT)||ψY (yT)|
(9)

p(oT,Y |x′T ,y′T ,a) =
∑x′∈ψX (x′T) ∑y′∈ψY (y′T) ∑oy∈ψO(oT,Y) p(oy|x′,y′,a)

|ψX (x′T)||ψY (y′T)|
(10)

Note that ψX and ψY could be different, but we used the same functions if we segmented
both state variables. ψO is the same as ψY but has the unknown value added.

The top reward function RT (xT ,yT ,a) can be defined as an average of the rewards
of the bottom states; however also an explicit reward was tested. The explicit reward is
1 when the seeker is in the hider’s superstate (x ∈ ψ(yT) or x ∈ ψX (xT)∧ x ∈ ψY (yT)),
and −1 if the hider is at the base. To speed up the process of finding a good policy the
final state can be defined as staying in the same super state independent of the action
a: p(xT, f |xT, f ,yT, f ,a) = 1.0 and p(yT, f |xT, f ,yT, f ,a,xT, f) = 1.0 where (xT, f ,yT, f) is a
final state. The final state is defined as either yT, f being on the base, or if ∃x ∈X : x ∈
ψY (yT, f)∧ x ∈ ψX (xT, f), i.e. the seeker is in the same superstate as the hider.

4.3. Summary

For the on-line layered method first an MOMDP model of the lower level has to be
defined using Eq. (2), and an initial belief b0, as described in section 3. The location of the
robot is then used to segment the states using the robot centered segmentation (Figure 1),
with which the top level states XT and/or YT are generated. To generate the rest of the
Top MOMDP, Eqs. (5)-(7) are used when only Y is segmented or Eqs. (8)-(10) when
both X and Y are segmented. For the top model the initial belief is calculated using
the bottom belief: bY ,0,T (yT) = ∑y∈ψ(yT) bY (y). Next a policy is generated and then the
action for the current state is executed. Thereafter an observation is done, which is used
to update the belief using Eq. (3). This process is continued until the game finishes.

5. Simulations

Simulations have been done on four manually made maps on three different sizes; Fig-
ure 2 shows some of those. Two versions of an automatic hider have been created: a

(a) Map 1: 6×5 (b) Map 2: 10×10 (c) Map 3: 12×12

Figure 2. The maps used in the simulated and real experiments. Black cells are obstacles, the gray cell is the
base.

random hider, and a smart hider. The first moves completely randomly and the second
uses the triangle rule: Rh(s,h,b) = D−dhb +0.4dsh +noise where D = rows× cols, dhb
the distance between the hider and the base, and dsh the distance between the seeker and
the hider. The noise is 2 at maximum and reduces when the distance is less than 3 cells,
because when a hider is either close to the seeker or to the base, it should respectively
always flee or go to the base directly. Each action is scored and the action with the maxi-
mum score is chosen. Since the seeker can move at the same time, all the possible moves
of the seeker are taken into account and Rh is calculated and averaged. When the seeker
is not visible, a score is calculated for all the not visible grid cells and averaged.

To generate policies for the MOMDP models we used the Approximate POMDP
Planning Software (APPL) 1 [4]. The simulations were done on a stand alone PC
with 8 GB of RAM and an Intel CoreTMi5 CPU 760 @ 2.80 GHz with 4 cores and
Ubuntu 12.04 as OS. APPL uses SARSOP [6,4], which is a state-of-the-art off-line solver
for POMDPs, but can be used on-line by simply alternating a planning and an execution
phase [13]. The policy of the off-line MOMDP method is run beforehand with a maxi-
mum time of one hour. The smart seeker is implemented such that it buffers the distance
results. To prevent the game running endlessly a maximum number of time steps is set
relative to the map size: 2(rows+ cols), since in bigger maps it probably requires more
steps to win. Reaching the maximum time without a winner is counted as a tie.

1http://bigbird.comp.nus.edu.sg/pmwiki/farm/appl/

5.1. Results

An overview of the win percentages of the different seekers can be seen in Table 1;
in these simulations only maps until a size of 12× 12 have been used because of the
model’s current limitations, and for the on-line MOMDP methods a maximum learning
time of 300 s per step was allowed. Comparing the different seeker models the off-line
MOMDP model wins the most games, next the heuristic smart seeker and finally the
on-line MOMDP models (p < 0.001; Fisher’s exact test, two-sided, this has been used
to check all the win percentages). The off-line MOMDP with the triangle reward and the
smart seeker won more often against the smart hider, while the off-line method with the
simple reward and the on-line methods won more against the random hider (p < 0.01).
In all the results the smart hider works better, like expected, with an 12% win against a
1% of the random hider (p < 0.001).

For the on-line methods several parameters have been tested. First a reduction of
the number of states by also segmenting the fully observable space (X), this gave no
significant difference in the number of wins. Neither did the optimization of setting the
final state and a reward of either 1 in winning states or −1 in losing states in the top
level MOMDP, later called on-line (top rew.). However limiting the time to learn the
policy to 10 s reduces the win percentage to 69% of the latter, which is significantly
less (p < 0.001) than the 84% of the standard on-line method. In the robot centered
segmentation we - by default - used only the direction (and the location of the seeker,
base, and hider if known), which gives at maximum 11 segments. We tested to add a
layer more based on the distance (see Figure 1) which increased the number of segments
to 19 at maximum. The latter gave marginally significant better results.

Table 1. The simulation statistics for the different models against the different hiders.

Model Hider Win Lose Tie Total

off-line (simple) random 1224 (98.6%) 3 (0.2%) 15 (1.2%) 1242
smart 1051 (86.6%) 162 (13.4%) 0 (0.0%) 1213

off-line (triangle) random 1317 (96.8%) 0 (0.0%) 43 (3.2%) 1360
smart 601 (99.0%) 5 (0.8%) 1 (0.2%) 607

on-line random 293 (93.9%) 15 (4.8%) 4 (1.3%) 312
smart 109 (63.4%) 58 (33.7%) 5 (2.9%) 172

on-line (top rew.) random 294 (96.7%) 3 (1.0%) 7 (2.3%) 304
smart 124 (56.9%) 88 (40.4%) 6 (2.8%) 218

smart seeker random 758 (89.5%) 0 (0.0%) 89 (10.5%) 847
smart 455 (95.0%) 0 (0.0%) 24 (5.0%) 479

TOTAL 6226 (92.2%) 334 (4.9%) 194 (2.9%) 6754

The map size does influence the results, the bigger the map the lower the win per-
centage as can be seen in Table 2. Furthermore for bigger maps the on-line MOMDP
methods need more time. Since the on-line MOMDP methods learn a policy on every
time step, they take more time the bigger the map. The on-line MOMDP method with
top rewards takes significantly longer on the 6×5 and 10×10 maps, but on the 12×12
maps the standard on-line method takes more time (p < 0.05, Wilcoxon ranksum test,
2-sided; see Table 2). Only against the smart seeker games on 40×40 maps were tested,

because for the other methods the number of states was too big to be able to calculate a
policy.

Segmenting also the X states seems to take more time, but this is not significant.
Using the on-line MOMDP with rewards redefined at the top takes less time than the
normal MOMDP with rewards averaged from the bottom level, this is marginally signifi-
cant. Using the extra layer of the robot centered segmentation method takes significantly
more time than only segmenting based on the direction.

The off-line MOMDP and the smart seeker take less time than the on-line MOMDP
models (p < 0.001,Wilcoxon ranksum). Nonetheless we should take into account that
the off-line MOMDP method requires to learn the policy beforehand; this took from 1.4 s
on average for the 6×5 maps to 1 hour (the set maximum) for bigger maps. The off-line
MOMDP method wins the games in statistically less steps than any of the other methods
(p < 0.001,Wilcoxon ranksum; see Table 2). And using the simple reward results in
winning in less steps than using the triangle reward (p < 0.001).

Table 2. The win statistics per map size and seeker type played against both hiders. The last columns show
the average ± standard deviation of the number of actions and the duration per action for won games.

Map Size Model Win Lose Tie Total Numb. actions Duration/act.(s)

6×5 off-line 97.0% 1.2% 1.8% 2249 5.49 ± 4.21 0.15 ± 0.13
on-line 93.3% 6.7% 0.0% 268 5.06 ± 3.49 0.69 ± 0.62
on-line (t.r.) 93.0% 6.6% 0.4% 242 5.71 ± 4.22 0.88 ± 1.36
smart seeker 91.7% 0.0% 8.3% 360 7.59 ± 4.99 0.13 ± 0.09

10×10 off-line 96.6% 2.1% 1.4% 1407 11.48 ± 7.11 0.11 ± 0.08
on-line 78.9% 17.6% 3.5% 142 14.67 ± 7.57 14.73 ± 17.69
on-line (t.r.) 81.4% 15.3% 3.4% 118 13.49 ± 7.84 64.63 ± 69.38
smart seeker 91.6% 0.0% 8.4% 856 13.97 ± 9.22 0.12 ± 0.1

12×12 off-line 85.2% 14.8% 0.0% 766 9.87 ± 6.0 0.11 ± 0.1
on-line 54.1% 40.5% 5.4% 74 14.43 ± 12.41 92.83 ± 63.01
on-line (t.r.) 59.9% 35.2% 4.9% 162 15.06 ± 11.26 70.53 ± 61.63
smart seeker 92.0% 0.0% 8.0% 100 15.68 ± 12.11 0.1 ± 0.07

40×40 smart seeker 55.4% 0.2% 44.4% 448 44.59 ± 24.94 0.1 ± 0.15

6. Conclusions

This work has presented several methods to play the hide-and-seek game as an automated
seeker. A heuristic based player, and an MOMDP model to learn a policy. We have
used an off-line version with two reward types, one based on the heuristic, and another
based on a reward only in the final states. Because the MOMDP requires exponential
time complexity on the square of the number of states, we have proposed a two level
hierarchical structure for which the MOMDP policy is calculated at the top level, where
the number of states has been reduced drastically by using a robot centered segmentation,
a segmentation process that fixes the maximum number of states that we consider at that
level.

The methods have been tested in simulation against two automated hiders: a ran-
dom and an heuristically driven seeker. It has shown that the MOMDP models all work
very well against the random hider winning 94% or more, whereas the smart seeker and
the off-line MOMDP model with the triangle reward work best against the smart hider,
winning 95% or more. Overall the off-line MOMDP and the smart seeker have the best
performance in running time and winning, with the off-line MOMDP model winning in
less steps. The MOMDP model and the smart seeker are comparable, however the smart
seeker is greedy and does not have memory. A problem of the off-line method is that
the complexity of finding a policy is exponential with the states. Our suggested on-line
methods solve this by reducing the model to a fixed low number of states, and these work
very well against the random hider, but worse against the smart hider.

The goal in the future is to learn strategies that do not depend on the size of the map.
Furthermore, experiments with real world robots will be done to test the human robot
interaction aspects.

Acknowledgements

Work supported by the Spanish Ministry of Science and Innovation under project Rob-
TaskCoop (DPI2010-17112).

References

[1] E. Johansson and C. Balkenius, “It’s a child’s game: Investigating cognitive development with playing
robots,” in International Conference on Development and Learning, 2005, p. 0:164.

[2] D. Braziunas, “Pomdp solution methods,” University of Toronto, Tech. Rep., 2003.
[3] M. Hauskrecht, “Value-function approximations for partially observable markov decision processes,”

Journal of Artificial Intelligence Research, vol. 13, pp. 33–94, 2000.
[4] S. C. W. Ong, S. W. Png, D. Hsu, and W. S. Lee, “Planning under Uncertainty for Robotic Tasks with

Mixed Observability,” The International Journal of Robotics Research, vol. 29, no. 8, pp. 1053–1068,
May 2010.

[5] M. Araya-López, V. Thomas, O. Buffet, and F. Charpillet, “A closer look at MOMDPs,” in 22nd Inter-
national Conference on Tools with Artificial Intelligence - ICTAI, 2010.

[6] H. Kurniawati, D. Hsu, and W. Lee, “Sarsop: efficient point-based pomdp planning by approximating
optimally reachable belief spaces,” in Robotics: Science and Systems, 2008, 2008.

[7] A. Cassandra, L. Kaelbling, and J. Kurien, “Acting under uncertainty: discrete bayesian models for
mobile-robot navigation,” in Intelligent Robots and Systems ’96, IROS 96, Proceedings of the 1996
IEEE/RSJ International Conference on, vol. 2, nov 1996, pp. 963–972 vol.2.

[8] M. Spaan and N. Vlassis, “A point-based pomdp algorithm for robot planning,” in Robotics and Au-
tomation, 2004. Proceedings. ICRA ’04. 2004 IEEE International Conference on, vol. 3, 2004, pp. 2399
– 2404 Vol.3.

[9] C. Papadimitriou and J. Tsisiklis, “The complexity of markov decision processes,” Mathematics of Op-
erations Research, vol. 12, no. 3, pp. 441–450, 1987.

[10] C. Georgaraki, “A POMDP approach to the hide and seek game,” Master’s thesis, Universitat Politècnica
de Catalunya, Barcelona, Spain, 2012.

[11] S. M. LaValle, Planning Algorithms. Cambridge, U.K.: Cambridge University Press, 2006, available
at http://planning.cs.uiuc.edu/.

[12] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An anytime algorithm for pomdps,” in
International Joint Conference on Artificial Intelligence, 2003, 2003, pp. 477–484.

[13] S. Ross, J. Pineau, S. Paquet, and B. Chaib-Draa, “Online Planning Algorithms for POMDPs.” The
journal of artificial intelligence research, vol. 32, no. 2, pp. 663–704, July 2008.

