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ABSTRACT 

This work is an attempt to learn more about the role of several experimental 

variables in the corrosion behaviour of magnesium alloys in immersion tests 

carried out in 0.6 M NaCl. In particular, the study has considered the effect of 

as-received and polished surface conditions,  geometrical characteristics of the 

exposed area, and different aluminium contents in the magnesium based alloys. 

Special attention has been paid to the three forms of attack normally found in 

this research. In addition to the morphology of attack, the effect of the tested 

variables on the corrosion rate of the specimens has also been investigated.  
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1. Introduction 

As can be seen in the literature, different studies on the corrosion of magnesium 

alloys in apparently similar experimental circumstances may yield unequal 

results [1]. This casts doubts as to the true meaning of certain results, which 

could be clarified by means of  a knowledge of  the factors that influence them 

and their relative importance.  

In several studies[2-8] it has become apparent the effect of certain 

combinations of variables, relating to specimen preparation and testing 

conditions, on the results obtained. The purpose of the present work has been 

to gain a better understanding of  the influence of surface condition and 

specimen configuration variables on the corrosion behaviour of AZ31 and AZ61 

magnesium based alloys in immersion corrosion tests carried out in 0.6 M NaCl 

solution. It is well known that the presence of chloride ion promotes the 

corrosion of magnesium alloys in aqueous solutions; a relatively high chloride 

concentration has been selected in order to accentuate possible effects. 

Specifically, this study addresses the effect on the attack morphology and 

corrosion rate of AZ31 and AZ61 alloys of the: (a) configuration of the exposed 

surface area of the specimens; (b) surface condition at the start of the test; and 

(c) a change in the metallic composition using the two aforementioned 

commercial magnesium-aluminium alloys. In (a), special attention has been 

paid to the possible repercussion of the confinement of the exposed area by 

means of a circular plastic gasket and to the presence of cut edges on the 

square coupon specimens entirely exposed to the aggressive solution. 

Depending on the special circumstances of each case, examination of the 

corroded surfaces has shown substantially varied morphologies, which include 
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uniform corrosion, filiform corrosion, and localised attack with the formation of 

pits and cavities. 

2. Experimental 

2.1. Materials 

The chemical composition of the tested AZ31 and AZ61 magnesium alloys is 

given in Table 1. These alloys were manufactured in wrought condition and 

supplied in 3 mm thick plates by Magnesium Elecktron Ltd. 

2.2. Surface conditions 

The research compares the behaviour of specimens of the above alloys in the 

following two surface conditions: (a) specimens in as-received condition; and (b) 

freshly polished specimens. In the as-received condition, the untreated surfaces 

were only cleaned with distilled water and dried with hot air. As these are 

commercial materials, precise information is not available on the various stages 

of their manufacturing, in particular about heat treatment and hot rolling 

operations with a probable influence on the as-received surface properties. For 

obtaining the freshly polished condition, the specimens were dry ground through 

successive grades of silicon carbide abrasive paper, from P600 to P2000, 

followed by finishing with 3 and 1 µm diamond paste, cleaned in distilled water 

and dried with hot air. 

The difference between as-received and polished surfaces has been clearly 

evident in the roughness measurements carried out using atomic force 

microscopy (AFM). The as-received surfaces of alloys AZ31 and AZ61 yielded 

the highest roughness values, 198 and 116 nm RMS (root mean value), 
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respectively, while the corresponding values for the polished surfaces were only 

29 and 17 nn RMS. 

2.3. Corrosion testing 

 The corrosion rate of the specimens was monitored by measuring the volume 

of hydrogen evolved during the experiments. Hydrogen was collected in a 

burette above the corroding sample using a similar procedure to that described 

in the literature[7,8]. Corrosion weight loss rates were estimated from the 

hydrogen evolution data[1]. 

2.4. Specimen configuration 

In general, square coupon specimens, with dimensions of 2 cm x 2 cm x 0.3 

cm, have been used. All or part of the specimen surface has been exposed to 

the corrosion test. In the latter case the different configurations were: (i) 

specimens with a free surface area of  0.5, 0.8 or 9,0 cm2 ,defined by the inner 

diameter of a circular plastic gasket (Fig. 1); (ii) specimens with one of its two 

faces masked with epoxy resin; and (iii) specimens with a hole 0.3 cm in 

diameter drilled through them. 

Tested specimens were suspended vertically in the 0.6 m NaCl solution and 

others were exposed in horizontal position. 

2.5. Corrosion morphology observations 

The attack morphology on the corroded surface was examined at low 

magnification. Photographic images were taken with an optical zoom camera. 
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3. RESULTS 

3.1. Morphology of the corroded surfaces  

In this research, repeated tests have been carried out in order to analyse the 

corrosion attack morphologies developed on the 130 specimens that reasonably 

represented the effect of the different variables taken into consideration. These 

specimens belong proportionately to alloys AZ31 and AZ61 and to the as-

received and polished surface conditions. 

Particular attention has been paid to the three forms of corrosion ordinarily 

found in this research: uniform corrosion, localised corrosion and filiform 

corrosion. The latter term is applied when the dark thread-like filaments that 

characterise this type of morphology are clearly perceived. Filiform corrosion is 

usually initiated at different points on the metallic surface, and, at a rate which 

depends on the alloy type and surface preparation, gradually becomes 

converted into a dense mesh of indiscernible filaments. When this occurs, the 

attack morphology becomes confused with that of uniform corrosion and is 

classified under this heading. 

Macroscopic examination of the corroded specimens has often shown the 

presence of filiform-like attack together with areas of uniform corrosion. 

Localised forms of attack have been less abundant, but can nevertheless be 

observed at microscopic scale, as in Fig. 2, this revealing a large number of 

small pits of less than one micron diameter, or Fig. 3, with series of pits 

distributed on the filament grooves left on the corroded surface. 

Full information on the combined effect of alloy type and surface condition is 

summarised below. The following nomenclature is used in the remainder of the 
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paper to designate the four dual combinations tested: AZ31-O, AZ31-P, AZ61-

O, and AZ61-P, where the letters O and P, that accompany the alloy type, 

denote: O = original surface condition (e.g.,as-received condition);  P = polished 

surface condition. The tested specimens normally exposed an area of 9 to 14 

cm2 to the corrosive solution, while the specimens labelled "small exposed 

area" exposed an area of 0.5 to 0.8 cm2 limited by a circular gasket on the flat 

surface. 

In general, the following trends have been disclosed when examining the attack 

morphologies on the specimens exposed to the 0.6 M NaCl solution: 

AZ31-O: Predominance of uniform attack on all the exposed surface with 

possible signs of filiform corrosion on some specimens. In the case of the small 

exposed area, uniform attack is accompanied by pitting or cavities that occupy 

part of the surface. A typical example of this morphology is shown in Fig. 4. 

AZ31-P: Large areas of uniform attack with the occurrence of filiform corrosion 

close to the shear cut specimen edges and the drilled hole. This morphology 

can be seen in Fig. 5. In the case of the small exposed area, attention is drawn 

to the abundance of pits and some larger cavities in the central zone of the 

exposed surface. 

AZ61-O: Uniform attack and areas of filiform corrosion close to the specimen 

edges which can occupy 30-60% of the exposed surface. In the case of the 

small exposed area, numerous pits and some larger cavities in the central zone 

of the exposed surface. 

AZ61-P: Uniform attack on a large part of the exposed surface. In parallel, 

occurrence of filiform corrosion, generally initiated at the cut specimen edges 
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(e.g. morphology in Fig. 6). In the case of the small exposed area, variety of 

localised forms, including pitting and some open cavities. 

The visual evolution of the corrosion morphology of alloys AZ31 and AZ61 with 

immersion time is well illustrated in the series of photographs displayed in Fig. 7 

for specimens immersed horizontally about 50 mm below the surface of the test 

solution, obtained  with a photographic camera mounted above the solution. On 

the AZ31 alloy, filiform corrosion is initiated almost immediately after immersion, 

especially on the as-received surface;  the population of filaments expands in 

less than one day across the entire exposed surface. On the AZ61 alloy, the 

initiation and evolution of filiform corrosion is significantly slower than on AZ31, 

and clusters of propagating filaments do not appear until after 19 h of immersion 

on the as-received surface or 70 h on the polished surface. With increasing 

immersion time, expansion and densification of the mesh of filaments causes 

the corroding surface of both alloys to become darker and to take on the 

apperance of uniform corrosion, a development that occurs much faster with 

alloy AZ31 than with AZ61. 

In Fig. 7 it is curious to see that after relatively long immersion times ‒around 

200 h for alloy AZ31 in as-received surface condition and around 43 h for the 

polished condition‒ the formation of filiform corrosion clusters recommences, 

these differing from those initially formed by the greater thickness of the 

filaments and the almost nil tendency to expand and evolve with time. 
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4. DISCUSSION 

The triggering and degree of activity of the corrosion processes that take place 

on the metallic surface is normally related with defect sites present in the oxide 

film that covers the surface, which can be stimulated by the adsorption of 

chloride ions in a saline medium and by the difference in potential between bore 

exposed alloy ( in the defects) and the neighbouring oxide film. Microstructural 

features often promote the formation of points of attack due to the 

discontinuities that they cause in the oxide film. In alloy AZ61 the aluminium is 

partly precipitated in the form of β-phase, preferentially along the grain 

boundaries, and so this second phase can cause micro-galvanic corrosion 

acceleration of the α-Mg matrix [9,10]. In contrast, this effect is irrelevant in the 

alloy AZ31 due to its lower Al content and practically nil presence of β-phase. 

As will be seen later, galvanic corrosion can explain some of the differences in 

the corrosion rates of the tested specimens. 

On the square specimens, whose entire surface (~ 9-14 cm2) is exposed to the 

saline solution, areas of uniform corrosion and filiform corrosion have 

predominated.  A few signs of localised corrosion have also been observed.  

It is interesting to note the connection between the importance of localised 

corrosion and certain exposed area configurations of the tested specimens. 

With an exposed area of ~ 0.5-0.8 cm2, limited by a circular gasket, the 

presence of abundant corrosion cavities has normally been observed, while on 

the specimens with an exposed area of ~ 9-14 cm2 it has been usual to see the 

presence of clusters of filiform corrosion with hardly any sign of localised attack. 
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A greater tendency towards the appearance of pits and cavities has been 

shown on polished AZ61 alloy than on polished AZ31 alloy surfaces, probably in 

consonance with the higher second phase particle content in the microstructure 

of the former. 

According to the literature, filiform corrosion is assumed to proceed on 

magnesium alloys under a relatively resistant oxide film from points where this 

film is no longer continuous [11,12], and so the properties of the oxide film play 

a fundamental role in the development of enhanced filiform corrosion, probably 

via an electrolytic mechanism [13]. Figs. 6 and 7 show representative images of 

the filament clusters encountered on the specimens tested in this work. The 

proliferation of filament populations in regions close to the shear cut specimen 

edges is probably related with the high level of residual stresses in these 

regions;  the tangled network of dislocations produced in the cold working 

process of cutting the metal plate must be a preferential site for attack initiation, 

with prevalence of the nucleation of filaments over other forms of corrosion.  

The results of this research reveal a slightly lower tendency towards filiform 

corrosion on polished surfaces than on as-received surfaces, perhaps because 

polishing removes the original mill finished surface layer responsible for 

enhanced corrosion susceptibility [14,15]. 

Another factor that may influence surface activity is the presence of aluminium 

in the oxide layer that coats the Mg-Al alloys. Many studies [16-23] mention the 

beneficial effect of  aluminium, which can be en essential factor in determining 

the passivity of the surface, improving the resistance to local breakdown of the 

oxide and decreasing the chance of chloride ions penetrating to the surface. In 



10 
 

the present work, this effect seems to be reflected in the corrosion of the 

polished AZ61 alloy specimens, where a large part of their surface retains for a 

quite some time the initial shine, while soon the polished surface of the AZ31 

alloy ,with a notably lower Al content, appears affected by the corrosion (Fig. 7). 

4.1. CORROSION RATE 

In parallel with the analysis of the influence of experimental variables on the 

attack morphology. It is also interesting to establish their impact, if any, on the 

corrosion rate, as well as to identify any possible relationship between these 

two different manifestations of the attack. 

The chemical composition and the microstructure are well known to have 

significant effects on the corrosion rate of many metallic materials. In Mg-Al 

alloys these effects are related with the alloying aluminium concentration in 

whose structure it is found partly in solid solution in the α-matrix and partly 

precipitated as β-phase. 

The surface oxide film on the specimens play a fundamental role in the 

corrosion rate. In tests carried out in NaCl solution, the quality of the surface 

film can be deteriorated if it is penetrated by the chloride ions. The addition of 

aluminium to magnesium modifies the composition and the structure of this film, 

improving its resistance to the aggressive attack of Cl- ions. In contrast with this 

beneficial action of aluminium, it is also necessary to taken into account the 

possibility that in certain circumstances a negative effect of Al on the corrosion 

of Mg-Al alloys can also be prevalent in the final result due to an enhanced 

microgalvanic action promoted by the β-phase [9]. 
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If a significant improvement in the properties of the surface film is to be 

achieved, the bulk content of Al in the Mg-Al alloys must exceed a certain 

critical level situated around 4%  [20,22]. The Al content is below this level in 

alloy AZ31 and above it in alloy AZ61. Therefore, an improvement in corrosion 

resistance due to the segregation of Al on the surface is only foreseeable in the 

latter alloy. Fig. 8 shows the intense attack of the AZ61 alloy with the surface in 

the as-received condition. 

Tables 2-4 give values of the instantaneous corrosion rates evaluated from the 

slope of hydrogen evolution versus time curves, at the immersion times of 2, 4.5 

and 10 days. These results refer to specimens immersed:  vertically (Table 2); 

horizontally, with their top side exposed (Table 3 ); and placed horizontally, with 

the exposed area delimited by a circular gasket (Table 4). It is important to note 

the influence of the exposed area size and configuration on the variability of the 

results obtained. In the series of repeated tests, the lowest scatter  has been 

obtained with square specimens  exposing a surface area of ~ 14 cm2 (Table 2), 

while the greatest specimen to specimen variability is found in the specimens 

with a small exposed area limited by a gasket (Table 4). 

Referring principally to the data given in Tables 2 and 3, in which the scatter is 

smaller, notable aspects include: (i) the marked reduction in the corrosion rate 

with immersion time for the AZ31-O and AZ31-P specimens; (ii) the less defined 

tendency for the corrosion rate to also decrease with immersion time for the 

AZ61-O specimens; and (iii) the reverse tendency of the AZ61-P specimens, 

which show increasing corrosion rates with immersion time. These tendencies 

are also reflected in Table 4, though less clearly due to the wide spread of the 

data. 
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If the corrosion rate values determined after two hours of immersion are taken 

as a reference, little difference is seen between the data for AZ31-O, AZ31-P 

and AZ61-P specimens (Tables 2 and 3), but the difference is great when 

compared to the data for AZ61-O specimens, which show three or four times 

higher corrosion rates. This special behaviour may be explained taking into 

account the negative effect on the corrosion resistance of AZ61-O specimens of 

the presence of a not very compact, and little  protective, oxide film in the as-

received condition, and the accelerated micro-galvanic corrosion due to the 

significant β-phase fraction in the AZ61 alloy. 

In the initial phase of the immersion test attention is drawn to the notably lower 

corrosion rate on the polished AZ61 specimens compared to the specimens of 

the same alloy in the as-received surface condition. The difference may be due 

to the strong protective effect of the oxide film that forms spontaneously on the 

polished AZ61 alloy surface, which is much more perfect and protective than 

the film on the as-received surface (formed during sheet production). As long as 

these properties do not noticeably deteriorate with testing time, said film will 

prevent or slow  micro-galvanic corrosion on the AZ61-P specimens. 

The reduction in the corrosion rate of the AZ31 alloy specimens with immersion 

time up to the 10 days duration of the test (Tables 2 and 3) suggests a 

progressive accumulation of corrosion products on the metallic surface, 

phenomenon not perceived  by simple macroscopic observation. The corrosion 

rate also tends to decrease on the AZ61 alloy specimens in as-received 

condition, but much more slowly than on the AZ31 alloy specimens, perhaps 

because the effect of the accumulation of corrosion products is now partly 
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countered by the effect of micro-galvanic corrosion present on the two-phase 

AZ61 alloy. 

The fact that the corrosion rate on the AZ61-P specimens grows during the 10 

days of testing (Tables 2 and 3) suggests the idea of progressive deterioration 

due to the action of Cl- ions in the protective film that initially coats the polished 

surface of this alloy. 

On the basis of the experimental results described in this paper it is not possible 

to speak of any regular interrelation between the macroscopic morphology of 

the corroded surfaces and corrosion rate. In general, the factors determining the 

different rates of corrosion and their changes with immersion time are not 

related with the morphological changes observed at macroscopic scale, 

probably because the true relations are  rather  with structural features 

discernible only at micro- or submicroscopic scale. 

 

5. CONCLUSIONS 

1. The study of the effect of experimental variables on the morphology of attack 

on AZ31 and AZ61 magnesium alloys in NaCl solution has revealed the 

possibility of a notable effect of the exposed area size and configuration. The 

initial surface condition of the specimens has also been seen to exert a certain 

influence on the results obtained, with a moderate tendency for corrosion 

resistance to improve on polished surfaces compared to as-received surfaces. 

2. The morphology of the corroded surfaces has been predominated by areas of 

uniform corrosion and filiform corrosion. In contrast, few signs of localised 
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corrosion have been seen on most of the examined specimens. The occurrence 

of localised corrosion has shown a dependence  on the configuration of the 

exposed surface;  small pits and other forms of localised corrosion have been 

found on specimens with an exposed area (delimited by a circular gasket) of ~ 

0.5-0.8 cm2, upon which filiform corrosion was, however, virtually  absent. 

3. Square coupon specimens with shear cut edges, whose entire surface area 

of ~ 9-14 cm2 was exposed to the aggressive solution, have shown great 

susceptibility to the development of filament populations in regions close to the 

cut edges. 

4. A special feature of the AZ61 alloy specimens in as-received surface 

condition is that they showed corrosion rates three or four times higher than the 

other tested specimens, a phenomenon that is explained by the combination of 

a poorly protective oxide film on the as-received surface and an accelerated 

micro-galvanic effect on this alloy. In contrast, the notably lower corrosion rate 

on the polished surface condition may be attributed to the special protective 

effect of the continuous oxide film that tends to spontaneously form on the 

smooth surface of the AZ61 alloy. 

5. On a macroscopic scale, no clear relationship between attack morphology 

and corrosion rate has been observed, probably due to the micro- or 

submicroscopic nature of the structural features that affect the various corrosion 

mechanisms. 
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  FIGURE CAPTIONS 

Fig. 1. Detail of the joint between square test specimen  and cylindrical cell 

limiting  the exposed area. 

Fig. 2. Presence of sub-micron pits on the corroded surface of the tested 

specimen. 

Fig. 3. Holes of localised attack (dark spots) distributed on the filament grooves 

left by filiform corrosion after the removal of corrosion products. 

Fig. 4. Pits and open cavities on the exposed circular area. 

Fig. 5. Uniform attack with some signs of filiform corrosion close to the drilled 

hole. 

Fig. 6. Extensive areas of filiform corrosion. 

Fig. 7. Photographic images of the evolution of corrosion morphology with 

immersion time for alloys AZ31 and AZ61 in the as-received (O) and polished 

(P) surface conditions.  

Fig. 8. Intense attack of the AZ61 alloy surface exposed in the as-received 

condition. 
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Table  1.  Chemical composition of AZ31 and AZ61 alloys  (wt. %). 

Alloy          Al          Zn          Mn          Si             Fe                Ca             Mg     

AZ31        3.1        0.73        0.25        0.02        0.005         0.0014        Bal. 

AZ61         6.2        0.74        0.23        0.04        0.004         0.0013        Bal. 
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Table 2 

 Instantaneous corrosion rates (mg/cm2/d) for different immersion times. Square specimens 

placed vertically exposing the entire surface. 

(AZ31 and AZ61 specimens in the original (O) and polished (P) surface conditions) 

 

AZ31-O 

Specimen 2 days 4.5 days 14 days 

a-1 0.60 0.24 0.21 
a-2 0.55 0.22 0.18 
a-3 0.55 0.28 0.23 
a-4 0.43 0.26 - 

 

AZ31-P 

Specimen 2 days 4.5 days 14 days 

b-1 0.42 0.27 0.16 
b-2 0.39 0.25 0.15 
b-3 0.55 0.26 0.14 
b-4 0.37 0.18 - 

 

                          AZ61-O 

Specimen 2 days 4.5 days 14 days 

c-1 2.57 2.39 2.00 
c-2 2.94 2.58 2.10 
c-3 2.39 2.40 - 
c-4 2.48 2.21 - 

AZ61-P 

Specimen 2 days 4.5 days 14 days 

d-1 0.30 0.45 0.58 
d-2 0.51 0.63 1.40 
d-3 0.46 0.64 2.25 
d-4 0.41 0.49 0.56 
d-5 0.45 0.57 - 
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Table 3 

Instantaneous corrosion rates (mg/cm2/d) for different immersion times. Square specimens 

placed horizontally, exposing only the upper face. 

(AZ31 and AZ61 specimens in the original (O) and polished (P) conditions) 

 

 

AZ31-O 

Specimen 2 days 4.5 days 14 days 

e-1 0.54 0.30 0.18 
e-2 0.39 0.26 0.12 
e-3 0.32 0.15 0.13 

 

 

 

 

 

 

Specimen 2 days 4.5 days 14 days 

g-1 2.40 2.78 2.60 
g-2 2.00 2.22 1.95 
g-3 0.73 0.76 0.75 

AZ31-P 

Specimen 2 days 4.5 days 14 days 

f-1 0.35 0.23 0.19 
f-2 0.39 0.25 0.09 
f-3 0.27 0.13 0.07 

AZ61-P 

Specimen 2 days 4.5 days 14 days 

h-1 0.42 0.60 0.72 
h-2 0.39 0.41 0.51 
h-3 0.30 0.40 0.43 
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Table 4.   Instantaneous corrosion rates (mg/cm2/d) for different immersion times . Exposed 

area delimitated by a circular gasket on the specimens placed horizontally. 

(AZ31 and AZ61 specimens in the original (O) and polished (P) surface conditions) 

 

AZ31-O 

Specimen 2 days 4.5 days 

i-1 1.44 1.10 
i-2 1.25 0.72 
i-3 14.4 9.16 
i-4 6.24 4.40 
i-5 2.62 1.05 
i-6 0.20 0.25 
i-7 0.87 - 
i-8 1.80 - 

 

 

 

 

 

 

 

 

AZ61-O 

Specimen 2 days 4.5 days 

k-1 0.96 0.90 
k-2 0.22 0.13 
k-3 2.97 3.20 
k-4 0.50 0.35 
k-5 4.61 - 
k-6 0.96 - 
k-7 4.76 5.81 
k-8 2.50 2.50 

AZ31-P 

Specimen 2 days 4.5 days 

j-1 0.65 0.27 
j-2 0.57 0.20 
j-3 8.07 8.45 
j-4 0.42 - 
j-5 0.40 - 

AZ61-P 

Specimen 2 days 4.5 days 

l-1 0.50 0.56 
l-2 0.41 0.44 
l-3 0.33 - 
l-4 0.14 - 
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   Figure  1.    
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Figure  2   
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Figure  3   
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Figure 4 
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Figure 5. 
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Figure.6 
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31 
 

 

 

 

Figure 8. 


