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ELSEVIER 

Improving Human-Machine Collaboration 
Through Transparency-based Feedback – 
Part II: Control Design and Synthesis ˜ 

Kumar Akash ̃  Tahira Reid ̃  Neera Jain ̃  

˜ School of Mechanical Engineering, Purdue University, West 
Lafayette, IN 47907 USA (e-mail: kakash@purdue.edu, 

tahira@purdue.edu, neerajain@purdue.edu). 

Abstract: To attain improved human-machine collaboration, it is necessary for autonomous 
systems to infer human trust and workload and respond accordingly. In turn, autonomous 
systems require models that capture both human trust and workload dynamics. In a companion 
paper, we developed a trust-workload partially observable Markov decision process (POMDP) 
model framework that captured changes in human trust and workload for contexts that involve 
interaction between a human and an intelligent decision-aid system. In this paper, we defne 
intuitive reward functions and show that these can be readily transformed for integration with 
the proposed POMDP model. We synthesize a near-optimal control policy using transparency as 
the feedback variable based on solutions for two cases: 1) increasing human trust and reducing 
workload, and 2) improving overall performance along with the aforementioned objectives for 
trust and workload. We implement these solutions in a reconnaissance mission study in which 
human subjects are aided by a virtual robotic assistant in completing a series of missions. We 
show that it is not always benefcial to aim to improve trust; instead, the control objective should 
be to optimize a context-specifc performance objective when designing intelligent decision-aid 
systems that infuence trust-workload behavior. 

© 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. 

Keywords: trust in automation, human-machine interface, intelligent machines, Markov 
decision processes, stochastic modeling, parameter estimation, dynamic behavior 

1. INTRODUCTION 

With the increasing use of autonomous and intelligent 
systems, humans must interact and collaborate with these 
systems in both complex situations (e.g., warfare and 
health-care) and daily life (e.g., robotic vacuums). To 
maximize the benefts of these interactions, human trust 
in the system plays an important role (Lee and See, 
2004; Sheridan and Parasuraman, 2005). More specifcally, 
published studies have shown that human trust can be 
improved by increasing the transparency of intelligent 
systems’ decisions (Helldin, 2014; Mercado et al., 2016). 
Chen et al. (2014) defnes transparency as “the descrip-
tive quality of an interface pertaining to its abilities to 
aŒord an operator’s comprehension about an intelligent 
agent’s intent, performance, future plans, and reasoning 
process.” Greater transparency allows humans to make 
informed judgments and accordingly make better deci-
sions. Nonetheless, very high levels of human trust are 
not always desirable and can lead to humans trusting an 
error-prone system. Moreover, high transparency requires 
communicating more information to the human and can 
thus increase the workload level of the human (Lyu et al., 

˜ This material is based upon work supported by the National Sci-
ence Foundation under Award No. 1548616. Any opinions, fndings, 
and conclusions or recommendations expressed in this material are 
those of the author(s) and do not necessarily refect the views of the 
National Science Foundation. 

2017). In turn, high levels of workload can lead to fatigue, 
which can reduce the human’s performance (Bohua et al., 
2011). Therefore, we aim to design intelligent systems that 
can respond to changes in human trust and workload to 
achieve optimal performance. 

Although researchers have developed various models of 
human trust (Moe et al., 2008; Malik et al., 2009; Akash 
et al., 2017; Hu et al., 2018) and workload (Wickens, 
2008; Parasuraman, 2000), there does not exist a closed-
loop framework for infuencing human trust and workload 
to improve human-machine collaboration. Furthermore, 
published studies have shown that transparency aŒects 
both human trust (Helldin, 2014; Mercado et al., 2016) 
and workload (Lyu et al., 2017; Bohua et al., 2011) but 
has not been systematically used to control trust-workload 
behavior. Therefore, a fundamental gap remains in using 
machine transparency to dynamically improve human-
machine collaboration. 

In a companion paper titled “Improving Human-Machine 
Collaboration Through Transparency-based Feedback – 
Part I: Human Trust and Workload Model” (Akash et al., 
2018), we developed a partially observable Markov decision 
process (POMDP) framework for estimating human trust 
and workload as it changes with machine transparency. 
The model captures changes in trust and workload for 
contexts that involve interaction between a human and an 
intelligent decision-aid system. In this paper, we establish 

2405-8963 © 2019, IFAC (International Federation of Automatic Control) Hosting by Elsevier Ltd. All rights reserved. 
Peer review under responsibility of International Federation of Automatic Control. 
10.1016/j.ifacol.2019.01.026 
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a systematic method for shaping the reward function for 
the trust-workload POMDP model framework so as to 
close the loop between human and machine. We design 
and synthesize feedback control policies that vary machine 
transparency based on solutions for two cases: 1) reward 
functions designed to improve human trust and reduce 
workload, and 2) reward functions designed to improve 
a context-specifc performance metric along with trust 
and workload. We implement these control policies in a 
reconnaissance mission study in which human subjects are 
aided by a virtual robotic assistant. Finally, we analyze the 
performance of these two control policies against an open-
loop baseline. 

This paper is organized as follows. Section 2 provides back-
ground on our POMDP model for trust-workload behav-
ior. The proposed framework to obtain reward functions 
for the trust-workload model is described in Section 3. 
The algorithm used for determining the two sets of reward 
functions along with a near-optimal control policy are pre-
sented in Section 4. Section 5 describes the reconnaissance 
mission study used to test two feedback control policies. 
Results and discussion are presented in Section 6, followed 
by concluding statements in Section 7. 

2. BACKGROUND 

In the aforementioned companion paper (Akash et al., 
2018), we established a POMDP model for trust-workload 
behavior of humans during interactions with an intelligent 
decision-aid system. The model consists of a fnite set of 
states, 

TS = [Trust , Workload ] , 
where both trust T and workload W can be either low ( ˜ ̃) 
or high ( ˜ °), that is, Trust ° {T˜, T°} and Workload ° 
{W˜,W°}. We defne a fnite set of actions 

A = [Recommendation, Experience, Transparency ]T , 
where recommendation SA can be either Stimulus Absent 
S− or Stimulus Present SA 

+ , experience E depends on theA 
reliability of the last recommendation which can be either 
Faulty E− or Reliable E+ , and transparency ˆ can be 
either Low Transparency ˆL, Medium Transparency ˆM , 
or High Transparency ˆH . Finally, we defne a fnite set of 
observations 

TO = [Compliance, Response Time] , 
where compliance C can be either Disagree C− or Agree 
C+ and response time RT can be either fast response time 
RTF , medium response time RTM , or slow response time 
RTS . 

We collected human subject data using study adapted 
from the literature in which human subjects were aided 
by a virtual robotic assistant while completing a series 
of reconnaissance missions. Participants interacted with 
assistive robots to perform reconnaissance missions in 
three diœerent locations. In each location, the participants 
searched 14 buildings and classifed them as safe or unsafe 
based on the absence or presence of danger, respectively. 
Their goal was to successfully search all buildings as fast as 
possible. Prior to entering each building, the participants 
needed to decide if they would wear protective gear or 
not. They were informed that searching a building with 
the protective gear would take approximately 15 seconds 

but would ensure they would not be injured if danger 
was present. Conversely, searching without the gear would 
only take 5 seconds, but if danger was present, they 
would be injured and a 2-minute recovery time penalty 
would be applied. In order to assist the participant in 
their decision-making, the robotic companion surveyed 
each building frst and provided a recommendation as to 
whether or not the protective gear was advised. In each 
mission, a diœerent robot with a diœerent transparency 
level provided the recommendation for each building. Data 
from 79 participants was collected and used to estimate the 
transition probability functions T (s˝|s, a) and observation 
probability functions O(o|s) for separate and independent 
POMDP models for trust and workload. We refer the 
reader to Part I of this paper (Akash et al., 2018) for the 
parameter values of the estimated probability functions. 

Here in Part II, we consider reward functions RT (s
˝|s, a) 

and RW (s
˝|s, a) with respect to trust and workload, re-

spectively, along with a discount factor � to fnd the 
optimal control policy that varies machine transparency 
to improve the human-machine collaboration. 

3. REWARDS FOR TRUST-WORKLOAD POMDP 

We use a general defnition of the reward function 
R(s˝|s, a), defned as the reward received for transitioning 
from a state s to s˝ given an action a. A discounting 
factor � is used to discount the future rewards so that 
immediate rewards are preferred. An optimal control pol-
icy using transparency as the feedback variable maximizes 
the expected total reward earned. In this section we defne 
the rewards for the context of humans interacting with 
intelligent decision-aid systems. 

State Rewards: During a human-machine interaction, 
we do not want the human to have low trust in the 
machine. Therefore, we assign a reward of −� (negative 
reward implies a penalty) for transitioning to the state of 
Low Trust T˜ from any existing state of trust given any 
action. Furthermore, we want the human to avoid high 
levels of workload; therefore we assign a reward of −� for 
transitioning to the state of High Workload W°. These 
rewards can be represented as 

S ˝RT (s = T˜|s, a) =  −�; s ° {T˜, T°} and a ° A, (1) 
S ˝RW (s = W°|s, a) =  −�; s ° {W˜,W°} and a ° A. (2) 

S SHere, RT and RW are the state reward functions for 
the trust and workload models, respectively. The relative 
values of � and � determine the relative importance of 
trust and workload, respectively. 

Performance Rewards: Apart from maintaining trust 
and workload in human-machine collaborations, it is im-
portant to achieve the goals that are specifc to a given in-
teraction or collaboration. Machines are never completely 
reliable and are instead prone to errors and failures. Thus, 
it is not always benefcial for the human to trust the 
machine. Instead, in the context of a human being helped 
by an intelligent decision-aid system, we want the human 
to make correct decisions; in other words, we want the 
human to comply with the system’s recommendation when 
it is correct, and not comply when it is incorrect. In order 
to enforce this in our framework, we introduce a penalty 
when the human makes incorrect decisions. 
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Table 1. Reliability characteristics of the 
decision-aid system representing the probabil-
ities of the assistive system’s inference given 

the true situation. 

Decision-aid System’s 
Inference 

Stimulus 
Absent S− 

A 

Stimulus 
Present S+ 

A 

T
ru
e

S
it
u
a
ti
o
n Stimulus 

Absent S−   − ° ° 

Stimulus 
Present S+ ˛   − ˛ 

Although we have defned the recommendation SA of 
the decision-aid system based on its inference about the 
situation, we also need to distinguish what the human 
infers about the situation and what the true situation is. 
For example, in the context of the reconnaissance mission 
described earlier, it is possible for the recommendation 
of the decision-aid system to indicate the presence of 
danger but for the human to believe that the decision-aid 
system is unreliable. In this situation, the human may infer 
that there is no danger, when in fact danger is present. 
We denote the true (or actual) absence or presence of 
the stimulus as S ˜ {S−, S+}, the decision-aid system’s 
inference or recommendation as SA ˜ {S−, S+}, and theA A 
human’s inference as SH ˜ {S−, S+ }. Here, ˜− and ˜+ 

H H 
represent absence and presence of stimulus, respectively. 
We denote the probability of true presence of stimulus 
Pr(S+) := d and, therefore, Pr(S−) = 1  −d. Furthermore, 
an agent (decision-aid system or human) can make two 
types of errors, namely, alpha-errors or beta-errors. 

Defnition 1. An alpha-error is the error an agent makes 
by inferring a true absence of the stimulus S− as the 
presence of the stimulus (S+ or S+ ).A H 

Defnition 2. A beta-error is the error an agent makes by 
inferring a true presence of the stimulus S+ as the absence 
of the stimulus (S− or S−).A H 

In practice, the reliability with which a decision-aid system 
makes correct predictions is a system characteristic and 
known a priori ; therefore, we denote the probabilities of 
the decision-aid system making a beta-error or alpha-error 
as Pr(S−|S+) =  ̋  and Pr(S+|S−) =  ̇ respectively. These A A 
reliability characteristics of the decision-aid system are 
summarized in Table 1. 

In order to enforce penalties in our framework when the 
human makes incorrect decisions (i.e., makes an error), 
we assign a reward of −ˆ when the human makes an 
alpha-error and a reward of −ˇ when the human makes 
a beta-error. The relative values of ˆ and ˇ determine 
the relative importance of alpha- and beta-errors made 
by the human, respectively. It should be noted that an 
error made by the human is dependent on whether or 
not the decision-aid system made an error. A human can 
make an error by either agreeing with the decision-aid 
system’s erroneous recommendation or disagreeing with 
the decision-aid system’s correct recommendation. These 
rewards (penalties) are summarized in Table 2. 

Until this point, we have defned these performance re-
wards in terms of the observations of our POMDP frame-
work (i.e. human compliance) and the true situation. In 

Table 2. Performance rewards based on errors 
made by the human. 

Human’s Inference 

Stimulus 
Absent S− 

H 

Stimulus 
Present S+ 

H 

T
ru
e

S
it
u
a
ti
o
n Stimulus 

Absent S− 0 −˝ 

Stimulus 
Present S+ −˙ 0 

a POMDP framework, the reward function must be de-
fned in the form R(s ° |s, a). Therefore, we transform these 
performance rewards to derive the expected performance 

° rewards for transitioning to state s ˜ {T˛, T˝} from any 
Pstate s ˜ {T˛, T˝} given action a ˜ A, i.e., R (s ° |a).T 

Here, we only consider states of trust (and not workload) 
because compliance is only dependent on trust behavior 
in our independent models of human trust and workload. 
Since the human’s decision is dependent on their trust 
level and the recommendation provided by the decision-

° aid system, we only consider the next state s and the 
system’s recommendation SA for calculating the expected 
reward. Therefore, 

P PRT (s ° |s, a = [SA, E, � ]T ) =  RT (s ° |SA) . (3) 

Proposition 1. Given a reward function r : S × SH � R 
defned in terms of true absence or presence of stimulus 
S ˜ {S−, S+} and the human’s inference SH ˜ {S−, S+ }H H 
as shown in Table 2, an equivalent standard reward func-

Ption in the form R (s ° |SA) calculated as E[r|s ° , SA] isT 
given by 

PRT (T˛|S−) =  −OT (C
−|T˛)(1 − �)ˆ−OT (C

+|T˛)�ˇ ,A 
PRT (T˝|S−) =  −OT (C

−|T˝)(1 − �)ˆ−OT (C
+|T˝)�ˇ ,A 

P S+RT (T˛| ) =  −OT (C
−|T˛)(1 − µ)ˇ −OT (C

+|T˛)µˆ ,A 
P S+RT (T˝| ) =  −OT (C

−|T˝)(1 − µ)ˇ −OT (C
+|T˝)µˆ ,A 

(4) 

where OT (o|s) is the observation probability function, 
E[ ˜] is the expected value of ˜ , � := Pr(S+|S−), and A 
µ := Pr(S−|S+).A 

We can calculate � and µ from Table 1 using Bayes’ 
theorem as 

˝d ˙(1 − d)
� = , µ = . (5) 

˝d+ (1 − ˙)(1 − d) ˙(1 − d) + (1  − ˝)d 

Proof. We show the proof for the frst reward function 
° S−in (4), where s = T˛ and SA = A . The other three 

equations can be proved similarly. Using the law of total 
probability over a disjoint set C, we get 

PRT (T˛|S−) = E[r|T˛, S
−]A A˜ 

(6) = Pr(C|T˛, S
−)E[r|C, T˛, S

−] .A A 
C 

Compliance C ˜ {C−, C+} is only dependent on the trust 
state T and not on the decision-aid system’s recommen-
dation SA. Similarly, the performance rewards we defned 
are only dependent on the human’s decision SH and the 
actual situation S (and not on the human trust state T ). 
Therefore, (6) can be simplifed as ˜ 

PRT (T˛|S−) =  Pr(C|T˛)E[r|C, S−] .A A (7) 
C 
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When C = C− , the human disagreeing C− to a recommen-
dation of stimulus absent S− is equivalent to the human A 
inferring the situation as stimulus present S+ ; therefore, H 
we can write 

E[r|C−, S−] = E[r|S+ , S−]A H A˜ 
S+ (8) = Pr(S| , S−)E[r|S, S+ , S−] .H A H A 

S 

Since the true situation S is independent of the human’s 
inference SH , and the reward r is only dependent on the 
true situation S and the human’s inference SH ,˜ 

E[r|C−, S−] =  Pr(S|S−)E[r|S, S+ ]A A H 
S (9) 

= −(1 − ˆ)ˇ .  
Similarly, we derive 

E[r|C+, S−] =  −ˆ˘ . (10) A 

Using (7),(9), and (10), we get 
PRT (T°|S−) =  −OT (C

−|T°)(1 − ˆ)ˇ −OT (C
+|T°)ˆ˘ . ˜A 

Remark 1. This result can be extended to the case when 
the rewards for making correct decisions, i.e., r(S−, S− )H 
and r(S+, S+ ) are non-zero. H 

Therefore, using (1) and (4), the cumulative reward for 
S Ptrust is RT = R + R and using (2), the reward for T T 

Sworkload is RW = RW . Finally, to select an appropriate 
discount factor � we consider the number of trials per 
mission in our study, i.e., N = 14. We select the discount 
factor � such that the reward of the 14th trial has a weight 
of e−1; such a value of � can be approximated as 

N 
� = = 0.933 (11) 

N + 1  
With this reward function and discount factor, we calcu-
late the solution for the POMDP model in the next section. 

4. POMDP SOLUTION 

To determine the optimal transparency for a given human-
machine interaction, we solve the combined POMDP 
model for trust and workload. Although the exact opti-
mal solution for a POMDP can be obtained using value 
iteration, the time complexity of solving POMDP value 
iteration is exponential in actions and observations. Con-
sidering that one may need to defne even larger sets of 
actions and observations for a real scenario, using exact 
value iteration is not feasible. Therefore, we use a greedy 
approach called the Q-MDP method to obtain a near-
optimal solution (Cassandra et al., 1994). This involves 
solving the underlying MDP to obtain the Q-function 
QMDP : S × A ˇ R and choosing the action based on 
the current belief state as̃  

a ̨  = argmax b(s)QMDP(s, a) , (12) 
a 

s˝S 

where the belief state b(s) can be iteratively calculated as ° ˆPr(o|s , a) Pr(sˆ|s, a)b(s) 
s˝S

bˆ(s ̂) = Pr(s ̂|o, a, b) =  ° ° . 
Pr(o|sˆ, a) Pr(sˆ|s, a)b(s) 

s˜˝S s˝S 

(13) 

Fundamentally, the Q-MDP method fnds the optimal 
solution assuming that the POMDP were to become ob-
servable after the next action. The underlying MDP can 

be solved directly using value iterations to obtain the 
Q-function (Puterman, 2014). However, the solution ob-
tained assumes that the decision-aid system can take any 
action a ˘ A, while in this case, the system can only 
control the transparency because the recommendation and 
experience depend on the true situation and machine reli-
ability. In other words, the transparency is the control-
lable action and the recommendation S and experience 
E are uncontrollable actions; the latter are analogous to 
disturbance inputs in a typical control system. In order 
to accommodate uncontrollable actions during value it-
erations, we calculate the expected Q-function that is 
only dependent on the controllable action considering the 
probabilities of the uncontrollable actions. We calculate an 
intermediate Q-function of the form Q� : S ×  ˇ R and 
iterate (14) until convergence to obtain QMDP(s, a). ˜ 

QMDP(s, a) =  T (s ̂|s, a) (R(s ̂|s, a) +  �V (s ̂)) 
s˜˝S˜ 

Q� (s, ) =  Pr(SA, E)QMDP(s, a = [SA, E,   ]) 
SA,E 

V (s) = max Q� (s, )
� 

(14) 

Here, SA ˘ {S−, S+} and E ˘ {E−, E+}. Furthermore, A A 
the present recommendation SA and experience E due to 
the reliability of the last recommendation are independent, 
that is, Pr(SA, E) = Pr(SA) Pr(E). Pr(SA) and Pr(E) can 
be calculated as 

Pr(S−) =  d + (1 − �)(1 − d) ,A 

Pr(S+) = 1  − Pr(S−) ,A (15) 
Pr(E−) =  �(1 − d) +  d , 

Pr(E+) = 1  − Pr(E−) . 

For the human subject study described in this paper, 
d = 0.5, � = 0.2, and = 0.2. For implementation, once 
S and E are known in a trial, near-optimal transparency 
˛ can be determined as ˜ 

˛ = argmax b(s)QMDP(s, a = [SA, E,   ]) . (16) 
� 

s˝S 

We now obtain the solutions for two sets of reward 
functions. 

4.1 Case 1: Considering State Rewards Only 

We frst consider only state rewards with equal importance 
given to trust and workload. Therefore, the parameters 
of the reward function are:   = 1, � = 1, ˇ = 0, and 
˘ = 0. The solutions are represented in Fig. 1. We frst 
consider the case when the recommendation indicates no 
danger (Stimulus Absent S−) as shown in Fig. 1(a) and A 
1(b). This case represents a high risk situation in that 
it can cause a human to make beta-errors and can lead 
to injury, resulting in a penalty of 2 minutes. When Low 
Trust T° is more probable, high transparency should be 
used to increase trust. However, high transparency should 
be avoided at high workload as shown in Fig. 1(b). When 
the recommendation indicates danger S+ (see Fig. 1(c) A 
and 1(d)), low transparency is better at maintaining high 
trust and low workload as the associated risk is low. 
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Fig. 1. Solution considering state rewards only with ˜ = 1, 
° = 1, ˛ = 0, and ˝ = 0. 
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Fig. 2. Solution considering state and performance rewards 
with ˜ = 1, ° = 1, ˛ = 25, and ˝ = 250. 

4.2 Case 2: Considering State and Performance Rewards 

We now consider performance rewards along with state 
rewards with higher weights given to performance. We also 
penalize the human more for making beta-errors than for 
making alpha-errors as those have greater consequences 
in the specifc context considered in our human subject 
study. Therefore, the parameters for the reward function 
are: ˜ = 1, ° = 1, ˛ = 25, and ˝ = 250. The solutions are 
presented in Fig. 2. 

We frst consider the high risk case when the recommen-
dation indicates no danger S− (see Fig. 2(a) and 2(b)). A 
The solution aims to avoid over-trust by providing higher 
levels of transparency when high trust is more probable. 
This allows the human to make a more informed choice 
and avoid the chances of a beta-error. When the recom-

mendation indicates danger S+ (see Fig. 2(c) and 2(d)), A 
lower transparencies are more e—ective for maintaining 
high trust and low workload as the associated risk is low. 

In the next section, these solutions are used to implement 
transparency-based feedback based on the participant’s 
current trust and workload in a reconnaissance mission 

 study. 

5. HUMAN SUBJECT STUDY 

The goal of the following human subject study is to exper-
imentally validate the performance of the proposed control 
policy for transparency-based feedback in interactions be-
tween humans and an intelligent decision-aid system. The 
experiment described below is identical to that used in our 
companion paper but with transparency controlled using 

 
feedback between the machine and human based on the 
solution of the POMDP. 

Stimuli and Procedure: A within-subjects study was 
performed in which participants were told they would 
interact with assistive robots to perform reconnaissance 
missions in three di—erent locations. In each location, the 
participant searched 14 buildings and classifed them as 
safe or unsafe based on the presence of danger. In order 
to aid in their decision, a robotic companion surveyed 
each building frst and provided a recommendation on 
whether or not protective gear was advised. Each robot 
was equipped with a camera to detect the presence of 
gunmen and a chemical sensor to detect chemicals. 

 

In the frst mission, the robot reported to the human 
with a transparency level randomly chosen from the three 
levels. Each transparency level was chosen approximately 
an equal number of times. This acted as a baseline case 
against which the closed-loop interactions could be com-
pared. In the subsequent two missions, the machine deter-
mined the transparency with which to communicate to the 
human based on each of the POMDP solutions described 
in Section 4.1 and 4.2, respectively. The choice of which 

 POMDP solution (Case 1 or Case 2) to apply in mission 
2 versus 3 was randomized to avoid ordering e—ects. 

Partici ants: Eighty-one participants (36 males and 45 
females) recruited using Amazon Mechanical Turk (Ama-
zon, 2005), ranging in age from 24-71 (mean 39.68 and 
standard deviation 10.76) participated in the study. The 
compensation was $1.50 for their participation, and each 
participant electronically provided their consent. The In-
stitutional Review Board at Purdue University approved 
the study. 

6. RESULTS AND DISCUSSIONS 

Using the collected human subject data, we defne fve 
metrics to quantify and evaluate each participant’s per-
formance in both the baseline case as well as in the 
cases that included transparency-based feedback. We re-
moved outlying values for each of the metrics deter-
mined by the interquartile range (IQR) rule (the 1.5×IQR 
rule) (Rousseeuw and Hubert, 2011). We use repeated 
measures one-way analysis of variance (ANOVA) tests to 
determine whether the use of feedback had any signifcant 
e—ect on these metrics. Post hoc analyses are conducted if 
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Fig. 3. Eˇect of feedback control policies on the number of Fig. 4. Eˇect of various feedback control policies on the 
compliant trials. Error bars represent standard error average response time of the participants after re-
of the mean. ceiving robot’s recommendation. Error bars represent 

standard error of the mean. 

the signifcant ANOVA F test is obtained. Specifcally, we 3 
conduct paired t-tests on all possible pairwise contrasts. 

1. Number of compliant trials. The number of compli-
ant trials is defned as the number of trials in which a par-
ticipant agreed with the robot’s recommendation. Agree-
ing with the robot is an indicator of the participant’s trust 
level with more compliant trials implying higher trust. 
Figure 3 shows the eˇect of using a feedback control policy 
on the number of compliant trials. An ANOVA test showed 
that the use of feedback did not have a signifcant eˇect 
on the number of compliant trials, F (2, 158) = 1.8080, 
p = 0.1673. Nonetheless, we observe fewer compliant trials 
when the control policy based on the Case 2 rewards was 
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number of trials participants got injured due to beta-
errors. Error bars represent standard error of the 
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used as compared to that of the Case 1 rewards and the 
baseline case. In other words, the control policy based on 
the Case 2 rewards decreased the trust of participants. 
This is expected as participants needed to distrust the 
robot in order to avoid injuries when the robot made an 
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2. Average response time. The average response time 
Fig. 6. Eˇect of various feedback control policies on the is defned as the average time a participant took to 

number of correct decisions made by participants. respond to the robot’s recommendation. Response time 
Error bars represent standard error of the mean. 

(p = 0.0084). Furthermore, the number of injured trials 
decreased signifcantly for Case 2 rewards as compared 
to Case 1 rewards (p = 0.0017). This shows that both 
the control policies were able to signifcantly reduce beta-
errors made by the participants. Moreover, the control pol-
icy based on the Case 2 rewards was signifcantly better in 
reducing the beta-errors made by the participants. This is 
expected as the control policy based on the Case 2 rewards 
prioritized performance rewards with a high penalty for 
beta-errors. 

is an indicator of the participant’s workload, with higher 
response time implying higher workload. Figure 4 shows 
the eˇect of the use of a feedback control policy on the 
average response time. An ANOVA test showed that the 
use of feedback had a signifcant eˇect on average response 
time, F (2, 126) = 20.3223, p ˜ 0.0000. Specifcally, the 
average response time with the use of control policy 
based on the Case 2 rewards was signifcantly lower as 
compared to that of the baseline case (p = 0.0020), but was 
signifcantly higher as compared to that of Case 1 rewards 
(p = 0.0008). This shows that both control policies were 
able to reduce the workload as compared to the baseline 
case. However, the control policy based on Case 2 rewards 
was worse at reducing the workload as compared to the 
Case 1 rewards. This is expected as participants saw a 
higher transparency user interface more often in Case 2 
as recommended by the performance and state reward-
dependent control policy. 

3. Number of injured trials. The number of injured 
trials is defned as the number of trials in which a partici-
pant made beta-errors and received a penalty of 2 minutes. 
Figure 5 shows the eˇect of the use of a feedback control 
policy on the number of injured trials. An ANOVA test 
showed that the use of feedback had a signifcant eˇect 
on the number of injured trials, F (2, 134) = 15.7611, p ˜ 
0.0000. Specifcally, the number of injured trials decreased 
signifcantly when the control policy based on the Case 1 
rewards was used as compared to that of the baseline 

4. Number of correct decisions. The number of correct 
decisions is defned as the number of correct decisions 
made by the participants, i.e., the trials in which they 
avoid both alpha- and beta-errors. Figure 6 shows the 
eˇect of the use of a feedback control policy on the number 
of correct decisions. An ANOVA test showed that the use 
of feedback did not have a signifcant eˇect on the number 
of correct decisions, F (2, 156) = 0.32349, p = 0.7241. 

5. Total mission time. The total mission time is 
defned as the total time a participant took to complete 
the mission, which includes lost time due to alpha-errors 
(15 seconds) and beta-errors (2 minutes) made by the 
participants along with their response times. This is an 
overall indicator of the participants’ performance in the 
mission as their objective was to complete the mission in 
the least possible time. Figure 7 shows the eˇect of the 
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Fig. 7. Eˇect of various feedback control policies on the 
total mission time. Error bars represent standard 
error of the mean. 

use of a feedback control policy on the total mission time. 
An ANOVA test showed that the use of feedback had a 
signifcant eˇect on the total mission time, F (2, 128) = 
9.2173, p = 0.0002. Specifcally, we observe a signifcantly 
lower total mission time as compared to the baseline case 
with the control policy based on Case 1 rewards (p = 
0.0438) and Case 2 rewards (p = 0.0002). The decrease 
in the total mission time was more apparent using the 
control policy based on the Case 2 rewards. 

Though published studies have shown that transparency 
a°ects both human trust (Helldin, 2014; Mercado et al., 
2016) and workload (Lyu et al., 2017; Bohua et al., 
2011), we have used it to systematically control the trust-
workload behavior of humans. We observe that the control 
policy based on the Case 1 rewards, which focused on 
improving human trust and reducing workload, was not 
able to increase participants compliance but was better at 
reducing their response time. However, the control policy 
based on the Case 2 rewards was signifcantly better at 
reducing the beta-errors made by human and at improv-
ing the overall performance. Therefore, we conclude that 
when designing intelligent systems to aˇect human trust-
workload behavior, overall improvement in the collabora-
tive performance should be considered in addition to ob-
jectives related to increased trust and decreased workload. 

7. CONCLUSION 

To attain improved human-machine collaboration, it is 
necessary for autonomous systems to infer human trust 
and workload and respond accordingly. In turn, au-
tonomous systems require models that capture both hu-
man trust and workload dynamics. In a companion paper, 
we developed a trust-workload POMDP model framework 
that captured changes in human trust and workload for 
contexts that involve interaction between a human and an 
intelligent decision-aid system. In this paper, we defned 
intuitive reward functions and showed that these could 
be readily transformed for integration with the proposed 
POMDP model. We synthesized a near-optimal control 
policy using transparency as the feedback variable based 
on solutions for two cases: 1) increasing human trust and 
reducing workload, 2) improving overall performance along 
with the aforementioned objectives for trust and workload. 
We implemented these solutions in a reconnaissance mis-
sion study in which human subjects were aided by a virtual 
robotic assistant. We found that it is not always benefcial 
to increase trust; instead, the control objective should be 
to optimize a context-specifc performance objective when 
designing intelligent decision-aid systems that infuence 
trust-workload behavior. Future work will include consid-

ering coupled trust-workload dynamics and validating it 
in other contexts. 
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