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3Dipartimento di Fisica, Università di Roma Tor Vergata, Via della Ricerca Scientifica 1,
I-00133 Rome, Italy
4Nano-Bio Spectroscopy Group, Dpto. de F́ısica de Materiales, Universidad del Páıs Vasco
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Abstract. We study transport through an interacting model system consisting of a
central correlated site coupled to finite bandwidth tight-binding leads, which are considered
as effectively noninteracting. Its nonequilibrium properties are determined by real-time
propagation of the Kadanoff-Baym equations after applying a bias voltage to the system.
The electronic interactions on the central site are incorporated by means of self-energy
approximations at Hartree-Fock, second Born and GW level. We investigate the conditions
under which multiple steady-state solutions occur within different self-energy approximations,
and analyze in detail the nature of these states from an analysis of their spectral functions.
At the Hartree-Fock level at least two stable steady-state solutions with different densities and
currents can be found. By applying a gate voltage-pulse at a given time we are able to switch
between these solutions. With the same parameters we find only one steady-state solution when
the self-consistent second Born and GW approximations are considered. We therefore conclude
that treatment of many-body interactions beyond mean-field can destroy bistability and lead to
qualitatively different results as compared those at mean-field level.

1. Introduction
The experimental observation [1, 2] of a hysteresis loop in the I/V characteristic of double-barrier
resonant tunneling structures prompted intense theoretical activities to gain a microscopic
understanding of this phenomenon. Several authors have been able to reproduce the hysteresis
behavior by treating the Coulomb interaction at a mean field level [3, 4, 5, 6]. Self-
consistent calculations have revealed the presence of bistable solutions, one of the solution
being characterized by a considerable accumulation of charge in the potential well. Subsequent
experimental work on double-barrier resonant tunneling diodes has, however, demonstrated that
hysteresis loops do not always occur [7]. The suppression of the intrinsic bistability has been
attributed to exchange-correlation effects [8].
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With the advent of molecular electronics [9] the study of intrinsic bistability in nanoscale
devices has gained attention due to the possibility of developing, for example, molecular diodes.
So far, most of the work has focused on the steady-state I/V curve of molecular junctions
attached to metallic leads. Up to date calculations are performed within the one-particle
scheme of time-independent density functional theory (DFT). At the Hartree level bistability
was reported by Negre et. al for a double quantum dot structure [10].

The mechanism of bistability and the calculation of switching times between two different
states are mostly unexplored and the question how correlations affect the bistability has received
very scarce attention. The purpose of the present exploratory paper is twofold: to extend the
analysis to the time-domain and to study the role of memory effects in a bistable interacting
resonant level model (IRLM).

Two complementary theoretical approaches will be used for calculating the time-dependent
current and density, namely Time-Dependent (TD) DFT and Many-Body Perturbation Theory
(MBPT). TDDFT [11] provide an exact framework to account for correlation effects both in the
leads and the central region [12]. Within TDDFT the basic quantities that are propagated in time
are the one-particle orbitals which depend on only one time variable. This property renders the
implementation computationally favorable [13]. Most approximations to the TDDFT potential,
however, do not include memory effects and the exchange-correlation part is approximated by
local or semi-local functionals of the density. The lack of more sophisticated approximations
represents, at present, a major obstacle for an accurate first principle description of TD
quantum transport through interacting regions. MBPT has the advantage over TDDFT of
allowing for a systematic inclusion of relevant physical processes through a selection of Feynman
diagrams. Thus, MBPT provides an important tool to proceed beyond the commonly used
adiabatic approximations and to quantify the importance of memory effects through advanced
approximations to the self-energy. We recently proposed [14, 15] a time dependent MBPT
formulation of quantum transport, based on the real-time propagation of the Green function
[16, 17, 18] for open and interacting systems. First the Dyson equation for the connected system
is solved to self-consistency on the imaginary axis. After that the Green function is propagated
with the Kadanoff-Baym equations using different level of conserving approximations. As the
Green function depends on two time variables the implementation of the MBPT scheme is more
demanding than that of the TDDFT scheme. We expect that the interplay between MBPT and
TDDFT will be essential to develop accurate approximation for systems more complex than the
one studied here.

2. Interacting Resonant Level Model
We study an Anderson-type of system [19] where the impurity is an interacting site coupled to
the infinite one dimensional tight-binding leads of finite band width. The Hamiltonian of the
system reads

Ĥ(t) =
∑

σ

[ε0 + Vg(t)]d̂
†
0 σd̂0,σ +

1
2

∑
σ,σ′

U d̂†0,σd̂†0,σ′ d̂0,σ′ d̂0,σ +
∑
i,α,σ

[a + Uα(t)]ĉ†iα,σ ĉiα,σ

+
∑
i,α,σ

[bĉ†iα,σ ĉi+1α,σ + h.c.] +
∑
α,σ

[V0,1αd̂†0,σ ĉ1α,σ + h.c.], (1)

where i denotes the site indices and σ is the spin index, ε0 is the on-site energy of the localized
site, U is the strength of the two-particle interaction on the central site, b is the hopping
parameter between lead sites, Uα(t) is time-dependent bias voltage in the leads (α = L/R),
a is the on-site parameter in the leads and V0,1α denotes coupling between the lead and the
localized site. The fermionic creation- and annihilation operators in the leads α are denoted

Progress in Nonequilibrium Green’s Functions IV IOP Publishing
Journal of Physics: Conference Series 220 (2010) 012018 doi:10.1088/1742-6596/220/1/012018

2



as ĉ†, ĉ whereas for the localized site they are denoted as d̂†, d̂. The quantity Vg(t) denotes a
time-dependent gate voltage.

The main reason for studying the IRLM is that for this system the multiple steady-state
solutions are easily found from a fixed-point equation for the density on the localized site.
The IRLM is the simplest system in which bistability occurs and hence allows for a clear
interpretation of its multiple steady-state solutions. We study the system at a finite temperature
and under a finite bias, such that we are out of the Kondo regime in which the IRLM is often
used.

HCL HRC

HCRHLC
CCHHLL

HRR

(a)

t0

t0 − iβ

t−

t+

(b)

Figure 1: a) A schematic representation of the studied system. The correlated central region (C)
is coupled to infinite one dimensional left (L) and right (R) tight-binding leads via a coupling
Hamiltonian. b) The Keldysh contour c. Times on the lower branch t+ are later than times on
the upper branch t−. The imaginary track extends up to the inverse temperature β.

3. Theoretical approach
3.1. Kadanoff-Baym equations
We study the nonequilibrium properties of the IRLM by means of time-propagation of the
Kadanoff-Baym equations for the nonequilibrium Green function [20]. We assume the system to
be contacted and in equilibrium at a chemical potential μ and at inverse temperature β before
the time t = t0. For t > t0 the system is driven out of equilibrium by an external bias and
we aim to study the time-evolution of the electron density and current. We give here a brief
description of the approach described in more detail in Ref. [14].

The Keldysh Green function is defined as the expectation value of the contour ordered
product [17]

G(1, 2) = −i
Tr{Û(t0 − iβ, t0)TC [ψ̂H(1)ψ̂†

H(2)]}
Tr{Û(t0 − iβ, t0)}

, (2)

where TC denotes the time ordering operator along the Keldysh contour c (see Fig.1b) and Û is
the time evolution operator. The average is taken over the grand canonical ensemble. We use the
compact notation 1 = (x1, t1) and 2 = (x2, t2) where x = (r, σ) is a collective space-spin index.
From the Green function it is possible to calculate any one particle property of the system. For
example the time-dependent density is given as

〈n̂(1)〉 = −iG<(1, 1+), (3)
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where t+ approaches t from an infinitesimally later time t+ = t + δ. The equation of motion for
the full system can be derived from the definition of the Green function Eq. (2) and reads

[i∂t1 − H(1)]G(1, 2) = δ(1, 2) +
∫

c
d3 ΣMB[G](1, 3)G(3, 2), (4)

where H is the one-body part of the Hamiltonian. The self-energy Σ[G] incorporates all of
the effects of exchange and correlation in the central region and is a functional of the Green
function [17, 16]. In a localized basis the one-body part of the Hamiltonian (1) and the many-
body self-energy can be written in a block-matrix form

H =

⎛
⎝ HLL HLC 0

HCL HCC HCR

0 HRC HRR

⎞
⎠ , ΣMB =

⎛
⎝ 0 0 0

0 ΣMB
CC [GCC ] 0

0 0 0

⎞
⎠ , (5)

where the Hαα and HCC components describe the leads and the central system respectively,
whereas the off-diagonal components describe the hopping between them [14]. We only
consider the central region as interacting whereas the leads are effictively noninteracting. As
a consequence, the many-body self-energy in Eq. (5) has non-vanishing elements only for the
central region because the diagrammatic expansion starts and ends with an interaction line. In
this work the electronic interactions are incorporated in ΣMB[G] at HF, 2B and GW level [14].

Solving the problem of an open infinite system is equivalent to solving the problem of a closed
system with an equation of motion which considers the leads through an embedding term [14].
In our case this reads (in the reminder of this paper we will suppress the spatial indices of the
objects involved)

[i∂t − HCC(t)]GCC(t, t′) = δ(t, t′) +
∫

c
dt̄

{[
Σem(t, t̄) + ΣMB

CC [GCC ](t, t̄)
]
GCC(t̄, t′)

}
, (6)

where the embedding self-energy Σem(t, t′) accounts for the tunneling of electrons between leads
and central region. In its general form, the embedding self-energy reads [14, 15, 21]

Σem(t, t′) =
∑
α

Σem,α(t, t′) =
∑
α

HCαgαα(t, t′)HαC , (7)

where gαα(t, t′) is the lead Green function and HCα, HαC is the coupling Hamiltonian between
the central site and the leads.

The current through the lead α can be expressed in terms of Keldysh Green functions as
[14, 15]

Iα(t) = 2Re
{

TrC

[ ∫ t

t0

dt̄[G<
CC(t, t̄)ΣA

em,α(t̄, t) +
∫ t

t0

dt̄GR
CC(t, t̄)Σ<

em,α(t̄, t)]

−i

∫ β

0
dτ̄G

�
CC(t, τ̄)Σ�

em,α(τ̄ , t)
]}

, (8)

where we integrated on the Keldysh contour and where the superscripts A, R, < refer to
advanced/retarded/lesser component of Green function/self-energy and �, � are the mixed
components having one time argument on a imaginary axis and the other on the real axis
[20, 18, 14]. The trace is taken over the central region. The current accounts for the initial
many-body and embedding effects through the last term in equation (8) which is an integral
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over the vertical track. Equation (8) is a generalization of the Meir-Wingreen formula [22]. We
further define the nonequilibrium spectral function

A(T, ω) = −Im Tr
∫

dτ

2π
eiωτ [G> − G<](T +

τ

2
, T − τ

2
), (9)

where τ = t−t′ is a relative time and T = (t+t′)/2 is an average time coordinate. In equilibrium,
this function is independent of T and has peaks below the Fermi level at the electron removal
energies of the system, while above the Fermi level it has peaks at the electron addition energies.
If the time-dependent external field becomes constant after some switching time, then also the
spectral function becomes independent of T after some transient period and has peaks at the
addition and removal energies of the biased system.

3.2. Time-dependent density functional theory
TDDFT provides an alternative framework to describe electron transport through interacting
systems. In TDDFT [23] the time-dependent density of the interacting system is obtained
through time-propagation of a Kohn-Sham system in an effective local potential. While in
MBPT the correlation level is determined by the choice of the many-body self-energy, in TDDFT
the main approximation is the functional used for the effective potential. The difficulty of
TDDFT, compared to MBPT is the current lack of sufficient accurate approximations to the
time-dependent exchange-correlation potential. However, the computational effort is much lower
compared to a MBPT propagation.

The problem brought forward by considering an open system can be resolved in a very similar
manner as in MBPT, with the help of an embedding self-energy. The equation of motion for
the k-th single-particle orbital projected onto the central region, ψk,C(t), reads

[i∂t − HCC(t)]ψk,C(t) =
∫ t

0
dt̄ ΣR

em(t, t̄)ψk,C(t̄) +
∑
α

HCαgR
αα(t, 0)ψk,α(0), (10)

where ΣR
em(t, t̄) is the retarded embedding self-energy (see Eq. (7)) and gR

αα is the retarded lead
Green function. The time-dependent density in the central region is obtained by

n(t) =
occ∑
k

|ψk,C(t)|2, (11)

where the summation is taken over all occupied orbitals in the time-dependent Slater determinant
[24]. The technique to propagate Eq. (10) is described in detail in Ref. [13]. In this work we
used this approach at a level, in which, for the system studied, the local exchange potential is
equal to half the Hartree potential of the localized site. The results were found, as expected, to
be identical to those obtained from the Kadanoff-Baym approach at HF level.

3.3. Steady-state density
We begin our study of the bistable regime by deriving an equation for the density on the localized
site. This quantity is given by the lesser Green function at equal times

〈n̂(t)〉 = −iG<(t, t+). (12)

Since we consider the steady-state, we can assume that in the long-time limit the Green functions
depend only on the relative time coordinate t−t′. In that case the Green function can be Fourier
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transformed with respect to the relative time variable and the expression for the steady-state
becomes

n =
∫

dω

2πi
G<(ω). (13)

The Green function appearing in this expression satisfies the equation

G<(ω) = GR(ω)Σ<
tot(ω)GA(ω), (14)

where Σ<
tot(ω) = Σ<

em(ω) + ΣMB,<
CC (ω) and where GA = [GR]

∗
. The retarded Green function has

the expression
GR(ω) =

[
ω − ε0 − Re[ΣR

tot(ω)] − iIm[ΣR
tot(ω)]

]−1
. (15)

For the tight-binding leads, that we consider, the retarded embedding self-energy is given by

ΣR
em,α(ω) = Λα(ω) − i

2
Γα(ω) =

V1α,0V0,1α

2b2

⎧⎪⎪⎨
⎪⎪⎩

ωα −
√

ω2
α − 4b2 , ωα > 2|b|

ωα +
√

ω2
α − 4b2 , ωα < −2|b|

ωα − i
√

4b2 − ω2
α , |ωα| < 2|b|

(16)

where ωα = ω − a + μ − Uα, with the lead-on-site parameter a and the hopping parameter
between the lead sites b. The chemical potential is denoted by μ, the applied bias for the lead α
by Uα, and V1α,0, V0,1α are the left/right couplings between leads and the central site. The lesser
component of the embedding self-energy can be expressed as Σ<

em,α(ω) = ifα(ω)Γα(ω) where fα

is the Fermi distribution of lead α and Γα is defined in Eq. (16).
If we integrate the left hand side of Eq. (14) over all frequencies then according to Eq. (13)

we obtain an expression for the density per spin n on the localized site

n =
∫ ∞

−∞
dω

2π

ΓL(ω)fL(ω) + ΓR(ω)fR(ω) − iΣMB,<
CC (ω)

(ω − Re[ΣMB,R
CC (ω)] − Λ(ω))2 + (Im[ΣMB,R

CC (ω)] − Γ(ω)/2)2
, (17)

where Λ = ΛR + ΛL and Γ = ΓR + ΓL. This is a Meir-Wingreen-type equation for the
density [25, 22] and is valid for transport through interacting systems. Within the HF
approximation for the IRLM one has ΣMB,< = Im[ΣMB,R] = 0 and Re[ΣMB,R] = Un. Note that
we include the time-singular part of the self-energy in the definition of the retarded/advanced
component, see e.g., [18]. Within this approximation, Eq. (17) now becomes a self-consistent
fixed-point equation for the density n, since the value of the integral (17) depends on the density
via the term U n in the denominator.

4. Results and discussion
We consider a biased system with the following parameters: V0,1R = V0,1L = V = −0.35, Ul
= 1.5, Ur = 0.0, U = 2.0, b = -0.5, a = μ and μ = 0.3, β = 90. The leads are half-filled
such that the Fermi level of lead α is positioned at μ + Uα and the width of the lead band is
[μ + Uα − 2b, μ + Uα + 2b]. With these parameters, within the HF approximation, the Meir-
Wingreen approach [25, 22] predicts three solutions for the steady-state density n in Eq. (17).
The three fixed points are shown in the inset of Fig. 2a, where we display the left and right hand
side of Eq. (17). The corresponding densities are n1 = 0.33, n2 = 0.58 and n3 = 0.66, which
should be compared to the density of n0 = 0.28 of the unbiased equilibrium state.

In 2a we show the steady-state spectral functions corresponding to these three solutions,
which can be obtained directly from the retarded Green function GR(ω). The peak of the
spectral function corresponding to density n1 = 0.33 is positioned at the energy 0.5. We thus
see that this spectral function is located in an energy range within the right lead energy-band
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Figure 2: a) Spectral functions for the HF approximation corresponding to different steady-state
solutions. Inset: The graphical solution of the integral in Eq. (17): (1) is the left hand side of
the equation whereas (2) is the value of the integral on the right hand side with given density
n. b) Steady-state spectral functions for the 2nd Born and GW approximations.

(see right side of Fig. 2a). The spectral function corresponding to density n3 = 0.66 is peaked
approximately at energy 1.5 and is located in an energy range within the left lead energy-band.
The HF spectral function corresponding second solution with density (n2 = 0.58) is peaked
on the top edge of the right lead energy-band and located in between the spectral functions
corresponding to the densities n1 and n3. By time-propagation (see below), we find that the two
solutions corresponding to densities n1 and n3 lead to stable steady-states, i.e, states that are
reachable by time-propagation after applying a bias. On the other hand, the state corresponding
to density n2 is unstable and cannot be reached by time-propagation. The spectral function
corresponding to the state with density n2 has a large overlap with the one of density n3. This
indicates that (for sufficiently slow gate switching, see below) during the time-propagation more
charge will flow onto the central site resulting in a stable steady-state with density n3. From
the analysis of the spectral functions we thus conclude that the density bistability in this system
occurs when the spectral functions of the two stable solutions are localized well within one of
the lead energy-bands and are well-separated. This happens exactly when the leads have a small
overlap and the system is within the region of negative differential resistance (NDR).

Let us now consider the situation when we go beyond the HF approximation. In Fig. 2b
we show the steady-state spectral functions for the 2B and GW approximations, as obtained
from time-propagation of the Kadanoff-Baym equations. With these approximations we found
only one steady-state solution, with very broad spectral function due to enhanced quasi-particle
scattering at finite bias [14]. The spectral weight of the 2B and GW states is spread almost
uniformly over the energy range from the bottom of the right lead energy band to the top of left
lead energy band and extends well outside the lead bands. We also observe two small peaks in
these spectral functions which occur approximately at 0.8 and 1.3, corresponding to the edges
of the lead energy bands.

We now go to the time domain and consider how the steady-states at HF level, corresponding
to densities n1 = 0.33 and n3 = 0.66, can be reached by time-propagation starting from the
initially unbiased equilibrium state. We generate these steady-states by applying time-dependent
gate pulses and we use the same technique to switch between them. In this work we have used
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an exponentially decaying gate voltage of the form

Vg(t) =

⎧⎪⎨
⎪⎩

Vge
−γt , if 0 < t < Tg

−Vge
−γ(t−Tg) , if Tg < t < 2Tg

Vge
−γ(t−2Tg) , if t > 2Tg

. (18)

The steady-state with density n1 is obtained by time-propagation after applying a sudden
constant bias UL(t) = ULθ(t) in the left lead, without applying the gate voltage. This is displayed
in Fig. 3a. The steady-state of highest density n3 is obtained (in addition to switching on the
sudden bias in the leads) by applying an exponentially decaying gate voltage to the impurity
site (with amplitude Vg = 1.5, decay rate γ = 0.1 and Tg = ∞).
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Figure 3: a) Two different steady-state densities and the switching between the solutions by
applying a gate voltage in the form of the equation (18). b) Two different steady-state currents
through right lead and the switch between the solutions with a gate voltage of the form (18).

In Fig. 3a we show the time evolution of the density for various switchings between the
steady-states. After we apply the first (sufficiently slow) gate voltage of equation (18) we let
the system reach the steady-state of density n3. At a time Tg we apply a second gate voltage in
the opposite direction. The system shows a transient behavior after which, the system reaches
the steady-state of density n1. If we apply the third gate voltage at time 2Tg (see equation
(18)), the system exhibits a short transient behavior and attains again the original steady-state
of density n3.

Corresponding to the densities n1 and n3 there are two distinguishable solutions for the
currents IR(t) flowing into the right lead. These are shown in Fig. 3b where the lower value of
the current corresponds to the state of density n1 and the higher value of the current corresponds
to the state of density n3. The various transients observed in the density correspond directly to
the transients in current shown in Fig. 3b. The frequency of the strongly damped oscillations
of the transients (observed upon switching between the states in Fig.3b) is approximately given
by the gate voltage, which causes a temporary change of Vg in the level position. As one can see
from the Fig. 3a, if the decay rate γ > 0.5, i.e., when the switching is too fast, the steady-state of
density n3 = 0.66 cannot be reached from the initial ground state of density n0 = 0.28, because
the system does not have enough time to acquire sufficient density.

In Fig. 4a we show, within the HF approximation, the nonequilibrium spectral function
A(T, ω) of Eq.(9) for a switch (with Tg = 60, Vg = 1.5, and γ = 0.1) from the steady-state with
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density n1 to the state with density n3. When the gate is applied, the upper side of the spectral
peak, starts to oscillate. The spectral peak undergoes a transition and overshoots before it
settles to a new value of 1.5 within the right lead band. During this transition we can observe
the appearance of a sharp peak in the spectral function located approximately at energy 1.3
corresponding to the top edge of the right lead band. This is shown in the inset of Fig. 4a,
where we display a snapshot of A(T, ω) at time T = 70 at which the central site has density
n(T ) = 0.53, which is very close to the density of unstable state n2. Therefore, although this
state does not lead to a steady-state, it can still be observed in the nonequilibrium spectral
function.
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Figure 4: a) Nonequilibrium spectral function A(T, ω) within the HF-approximation for the
switch from the density n1 to density n3. Inset: Snapshot of spectral function corresponding to
density n2. b) The densities and currents calculated within the 2B and the GW approximations
with and without an exponentially decaying gate voltage.

In Fig. 4b we show the densities and the currents obtained within the 2B and the GW
self-energy approximations. For these cases only one steady-state is obtained with a density
of about 0.5 on the central site. We have applied a time-dependent gate voltage of the form
Vg(t) = Vge

−γt for t > 0. If no gate is applied the transient regime is shorter and the density
attains its steady-state value faster, compared to the case where the gate is applied. One can
observe that the steady-state values of the currents and the densities for both GW and 2B are
close to each other implying that for this system the single-bubble diagram, common to both
approximations, plays a crucial role [14].

We conclude that for both the 2B and the GW approximation the spectral functions are very
broad (see Fig. 2b) which makes it impossible to locate these spectral functions within an energy
range in one of the lead energy-bands leading to two well-separated states. As a consequence the
bistable regime is lost in the 2B and GW approximations, at least for the parameters considered.

5. Conclusions
In this paper we have investigated the switching between the steady-states of an interacting
resonant level model connected to leads. For a given set of parameters we used a Meir-
Wingreen type of approach to identify three different steady-state values for the density within
the HF approximation. We showed that by applying an exponentially decaying gate voltage
pulse during the time-propagation, at Hartree-Fock level, we can reach two different solutions
and switch between them. However, due to a strong quasi-particle broadening of the spectral
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function, bistability is lost when the second Born and GW approximations are considered.
Hence treatment of many-body interactions beyond mean-field can destroy bistability and lead
to qualitatively different results as compared to those at mean-field level.
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[14] P. Myöhänen, A. Stan, R. van Leeuwen, and G. Stefanucci. Phys. Rev. B, (accepted), 2009.
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