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Centro de F́ısica de Materiales CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, E-20018 San Sebastián, Spain

(Dated: February 28, 2012)

We investigate the electronic and magnetic properties of NiS2, which, by varying the chemical
composition substituting S by Se atoms or applying pressure, can be driven across various electronic
and magnetic phase transitions. By combining several theoretical methods, we highlight the dif-
ferent role played by the chalcogen dimers and the volume compression in determining the phase
transitions, through variations of the chalcogen p bonding-antibonding gap, the crystal-field split-
ting and the broadening of the bandwidths. While the generalized gradient approximation (GGA)
of density-functional theory fails to reproduce the insulating nature of NiS2, it describes well the
magnetic boundaries of the phase diagram. The large GGA delocalization error is corrected to a
large extent by the use of GGA+U, hybrid functionals or the self-consistent COHSEX + GW ap-
proximation. We also discuss the advantages and the shortcomings of the different approximations
in the various regions of the phase diagram of this prototypical correlated compound.

PACS numbers: 73.20.-r, 74.25.Jb, 85.25.Am

I. INTRODUCTION

The crystal-field splitting, the onsite Coulomb interac-
tion U, and the 3d bandwidth W are almost equal in the
pyrites MX2 (M = Fe, Co, Ni, Cu, Zn; X = S or Se),
which gives rise to a large variety of electrical, magnetic
and optical properties in these compounds. Of special
interest is the insulator-metal transition (IMT) in NiS2
with Se doping or under pressure. The transition is not
accompanied by a change in the lattice symmetry and is
commonly believed to be driven by the electron-electron
interactions1,2. Thus NiS2 would be a typical strongly
correlated insulator. In the Mott-Hubbard picture, ap-
plication of pressure or the modification of the chemical
composition are in fact two equivalent ways of control-
ling the bandwidth W, keeping U unchanged. In both
cases reducing the U/W ratio leads to the IMT. Sub-
stitution of S with Se in the antiferromagnetic insulator
NiS2 makes the low-temperature NiS2−xSex phase dia-
gram quite complex2. Not only the IMT takes place at
x = 0.44, but at x = 1 there is an additional magnetic
transition to a paramagnetic phase. This is in contrast to
NiS2 under pressure, where the electronic IMT and the
magnetic transition occur at the same time (at P=2.9
GPa3).

UV and x-ray photoemission, which are among the
most prominent tools to probe the electronic structure
of materials, are surface sensitive techniques. But in
NiS2−xSex the surface electronic structure is known to
be very different compared to the bulk4–6 (in NiS2 also
surface magnetism is significantly different from bulk
magnetism7). In fact, for NiS2 even if optical measure-
ments find a 0.3 eV optical gap8–10, photoemission spec-
tra are metallic. Thus the need of first-principles meth-
ods, capable to accurately capture the delicate balance

between the many competing interactions in a real ma-
terial, is particularly evident in such a complex phase
diagram. Kohn-Sham (KS) density-functional theory
(DFT)11 band structures in either the local-density ap-
proximation (LDA) or the generalized-gradient approx-
imation (GGA) are metallic for NiS2

9,12. On the other
hand, the computational cost of the sophisticated dynam-
ical mean-field theory (DMFT) model limited its appli-
cation to the high-temperature region of the phase dia-
gram (T=580 K, which is above the Néel temperature)10,
where the magnetic transition is lost.

Here instead our goal is to describe simultaneously the
electronic and magnetic properties of NiS2 upon Se dop-
ing and under pressure. We therefore consider the two
end points of the T=0 K phase diagram of NiS2−xSex, to-
gether with a representative intermediate point (NiSSe).
Moreover, we compare NiS2 at ambient pressure and at
P = 9 GPa, which is well above the experimental tran-
sition pressure (P = 2.9 GPa). We make use of the ab
initio many-body GW approximation13 and of two more
approximated (but computationally much cheaper) ap-
proaches: GGA+U14 and the exact exchange for corre-
lated electrons (EECE) hybrid functional15. In this way,
on the one side we provide a coherent understanding of
NiS2 and on the other side we can discuss the advantages
and the shortcomings of the different methods for their
application in correlated materials.

The paper is organised as follows. In Sec. II we briefly
review the different theoretical methods that we have em-
ployed in the present study, underlying their differences
and commonalities. In Sec. III we present the crystal
and magnetic structures of the studied compounds and
in Sec. IV the computational details. We then discuss
our results. In Sec. V we focus on NiS2. We first show
that the role of non-local Fock exchange is essential to
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obtain an insulating density of states (DOS), correct-
ing the GGA metallic result. We then analyse the elec-
tronic and magnetic properties obtained with the other
advanced band structure methods, concluding that NiS2
is a charge-transfer insulator. We investigate the effects
on the electronic and magnetic properties of NiS2 by Se
doping in Sec. VI, and by applying pressure in Sec. VII.
We compare the different mechanisms that induce the
IMT and the disappearance of the magnetic order. Fi-
nally, in Sec. VIII we summarize our results, drawing our
conclusions on the electronic and magnetic properties of
NiS2, and comparing the performances of the different
methods here employed.

II. METHODS

The standard model of electronic structure calculations
is based on density-functional theory (DFT)11 in the
Kohn-Sham (KS) formalism16. In the KS single-particle
Schrödinger equation (atomic units are used throughout
this section):

(

−
∇2

2
+ Vs(r)

)

ϕi(r) = ǫiϕi(r), (1)

the KS local potential Vs(r) = Vext(r) + VH(r) + Vxc(r)
is the sum of the ionic Vext, Hartree VH and exchange-
correlation Vxc terms. In the present work, we use the
spin-polarized GGA for Vxc. By construction, the KS
orbitals ϕi yield the ground-state electronic density:

ρ(r) =
∑

i

fi|ϕi(r)|
2, (2)

where fi is the Fermi occupation of the state i (in our
shorthand notation, i represents band, k point and spin
indeces). Additionally, the KS eigenvalues ǫi from Eq.
(1) are often interpreted as band structure energies. Un-
fortunately, this approach results in an underestima-
tion of band gaps in semiconductors and insulators17–19.
Sometimes this band-gap underestimation may lead to a
more severe problem: metallic band structures in small-
gap insulators. A possible way to overcome this prob-
lem, in compounds with partially filled d or f shells, is
the LDA+U approach14,20,21 which adds an intra-atomic
Hubbard U repulsion term to the LDA (or GGA) func-
tional. This correction acts only on the “correlated” d or
f subset of electrons, leading to an orbital-dependent KS
potential (contrary to LDA/GGA, which are orbital inde-
pendent). The hopping parameters of the resulting Hub-
bard model are taken from LDA/GGA, while the Hub-
bard U is either used as adjustable parameter or evalu-
ated according to different recipes22–24 (among which the
constrained LDA scheme, used here). A double-counting
correction has to be added to the LDA+U functional21 in
order to subtract the interaction between d or f electrons
that is partially accounted for in LDA/GGA. The effect

of the additional Hubbard U term is to favor integer oc-
cupations with respect to LDA/GGA. This gives rise to
a band gap opening, when the gap is located between d
or f bands that are partially occupied in LDA/GGA.
Actually, DFT is a ground-state theory and KS eigen-

values are formally only Lagrange multipliers with no
physical meaning. Instead, the additional and removal
energies Ei, measured e.g. by photoemission experi-
ments, are the poles of the one-particle Green’s func-
tion G13,18,25. These quasiparticle (QP) energies Ei can
be obtained by solving a more complex Schrödinger-like
equation:

(

−
∇2

2
+ Vext(r) + VH(r)

)

φi(r)

+

∫

dr′Σ(r, r′, Ei)φi(r
′) = Eiφi(r), (3)

where the self-energy Σ is a non-local, energy-dependent
and non-hermitian operator. In the GW approxima-
tion (GWA)13, the self-energy is given by the convolu-
tion between the Green’s function G and the dynamically
screened Coulomb interaction W :

Σ(r, r′, ω) =
i

2π

∫

dω′eiηω
′

G(r, r′, ω + ω′)W (r, r′, ω′),

(4)
where η → 0+ and W (ω) = ǫ−1(ω)v, with v the Coulomb
interaction and ǫ the dielectric function.
In standard GW calculations18,25,26, the QP energies

Ei are evaluated as first-order perturbative self-energy
corrections to the KS eigenvalues ǫi. This scheme, of-
ten named one-shot G0W0, is questionable whenever QP
wavefunctions φi cannot be safely approximated by the
KS orbitals ϕi, and KS results are a bad zeroth-order ap-
proximation. This is the case of NiS2. Therefore, in the
present case we obtain QP wavefunctions and energies
from a self-consistent (sc) solution of the QP equation
(3) in the COHSEX approximation13. In such a way
the final result is independent of the quality of the KS
starting point. COHSEX is a static approximation to
the GW self-energy with an instantaneous screened in-
teraction W . It consists of statically screened exchange
(SEX) term plus a Coulomb hole (COH) term, which
represents the induced classical potential due to an ex-
tra point charge. The sc-COHSEX result is then used
as input of a final G0W0 calculation, which further takes
into account dynamical correlation effects (neglected in
the COHSEX approximation). This sc-COHSEX + GW
approach27 has been proved to accurately describe cor-
related transition-metal oxides, in both their insulating
and metallic phases28,29.
The GWA accounts for both Fock exchange and dy-

namical correlation, which is treated at the level of the
random-phase approximation for the dynamical screen-
ing of the Coulomb interaction. When the dynamical
screening of the Coulomb interaction is neglected by set-
ting ǫ−1 = 1 in (4), the Hartree-Fock (HF) approximation
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(a) (b) (c)

FIG. 1. (Color online) Structures of (a) NiS2, (b) NiSSe (I), and (c) NiSSe (II) (see main text). Ni atoms are light blue, S atoms
gold and Se atoms red balls. In the NiS2 structure, we have highlighted the S-S dimer together with the antiferromagnetic
order (+ and - correspond to spin up and down local moments, respectively). NiSe2 has the same structure as NiS2, with Se
replacing S atoms.

is retrieved and Eq. (3) reduces to the HF equation. Dif-
ferently from KS, in HF the exchange term is a non-local
operator (the Fock potential) and the HF eigenvalues can
be formally interpreted as (approximated) additional and
removal energies (i.e. the Koopmans theorem holds in
HF).

While local and semilocal approximations, like LDA or
GGA, to the local KS Vxc potential underestimate band
gaps in solids, the HF approximation leads to their over-
estimation. Adopting a pragmatic point of view, hybrid
functionals mix the local KS potential with a portion
of non-local Fock exchange. In practice, this mixing in-
terpolates between LDA/GGA and HF results, often al-
lowing for a better agreement with the experiment. In
fact, one of the most relevant problems of LDA/GGA
is the self-interaction error (SIE), which especially af-
fects localised electrons from d and f shells. In HF
the SIE is zero. Thus, recently Tran et al.15 proposed
to correct partially for the LDA/GGA SIE by adding a
fraction α of the non-local Fock term acting only on d
and f electrons within the atomic spheres. This scheme
is named as “exact exchange for correlated electrons”
(EECE) hybrid functional15 and has been firstly imple-
mented in the Wien2k code30. The resulting approxi-
mation is an orbital-dependent potential, as within the
LDA+U scheme. Thus, EECE is a variant of other hy-
brid functionals commonly used in solid state electronic
structure calculations, like PBE0 and HSE31, which in-
stead treat all electrons on equal footing.

Both EECE and LDA+U functionals can be de-
rived from a static and local (“on-site”) approximation
to the dynamically screened Coulomb interaction W 20,
which enters the GW self-energy in convolution with
the one-particle Green’s function G. But, contrary to
the GW self-energy, EECE and LDA+U corrections to
LDA/GGA act directly only on “correlated” Ni 3d states
and depend on a parameter. In LDA+U it is the on-
site Hubbard U and in EECE the fraction α of the non-
local Fock term that is mixed inside the atomic spheres
with the LDA KS exchange-correlation potential (thus α

can be understood as a static effective screening of the
Coulomb interaction).

III. CRYSTAL AND MAGNETIC STRUCTURES

In the present work, we focus on some end points of the
phase diagram: NiS2, NiSSe, NiSe2 and non-magnetic
NiS2 under pressure (in the latter we have neglected a
small monoclinic distortion3). NiS2 in antiferromagnetic
insulator, NiSSe an antiferromagnetic metal and NiSe2 a
paramagnetic metal. The common cubic pyrite structure
of the different compounds is best described in terms of
a NaCl structure with the transition metal in one sub-
lattice and the center of mass of the chalcogen dimers in
the other (see Fig. 1). When available, we have used the
experimental crystal structures32.

We have considered the experimental antiferromag-
netic alignment of type I (M1 structure) [see Fig. 1(a)],
which has a Q = (1, 0, 0) wavevector and orders below
T1 =37-54 K (according to the sample). Experimentally,
three different magnetic orderings coexist at low temper-
ature (below T2 ∼ 30 K) in NiS2

3,33–35 (besides type-I an-
tiferromagnetism, type-II antiferromagnetism and a weak
ferromagnetism also occur), giving rise to a complicated
magnetic structure. In the M1 structure, the experimen-
tal magnetic moment is 1.0 µB

33 (which is smaller than
expected from a pure atomic d8 configuration).
As found also in the experiments5, for NiSSe we have

studied two different configurations: the first with S2 and
Se2 dimers, the second with mixed S-Se pairs [see Fig.
1(b)-(c)]. In this case, internal positions have been ob-
tained by force minimisation in GGA.
The lattice parameter is expanded by Se alloying (from

5.69 Å in NiS2 to 5.96 Å in NiSe2
32), while it is com-

pressed under pressure. For NiS2 at 9 GPa and NiSSe
we have used the theoretical values: 5.49 Å and 5.87 Å,
respectively. Moreover, while in NiS2 under pressure the
S2 dimer length hardly varies around 2.10 Å (from 2.17 Å
at ambient pressure), in NiSe2 the Se2 dimer distance is
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much longer, 2.36 Å. Turning to NiSSe, we observe that
in NiSSe (I) the S-S and Se-Se distances are comparable
to the dimer lengths of the pristine materials. In NiSSe
(II), on the other hand, the S-Se distance corresponds to
an averaged value of 2.3 Å. Already from these structural
considerations one may expect that the IMT follows two
distinct routes with Se doping or under pressure9,10,36,
as we will discuss in the following.

IV. COMPUTATIONAL DETAILS

For GGA, GGA+U and EECE calculations, we have
used the full-potential Wien2k code30. For GW and HF
calculations, we have used the plane-wave abinit code37.
In particular, the perfect agreement between results ob-
tained, at the same level of approximation, with Wien2k

and abinit has allowed us to validate the pseudopoten-
tials employed in the plane-wave calculations.
In calculations with Wien2k we have used a up to

7×7×7 mesh of k points, the following atomic sphere
radii RMT : Ni 2.31 - 2.42 a.u., S 1.98 a.u., Se 2.07 a.u., a
plane-wave cutoff RMTKmax = 7 and 168 local orbitals
(LO). The largest vector in the Fourier expansion of the
charge density Gmax has been set to 12 Ry. In GGA+U
we have obtained U from a constrained GGA calcula-
tion. Assuming a Ni d8 configuration, we have found
Ueff = U − J = 6.39 eV for NiS2, Ueff = 5.89 eV for
NiSSe, and Ueff = 4.94 eV for NiSe2. As for the double
counting correction, we have compared the fully local-
ized limit (FLL)14 and the around mean-field treatment
(AMF)38. In EECE we have tuned the α parameter to
reproduce the experimental optical gap in NiS2, finding
the value α = 0.2.
For the GW and HF calculations, we have used

Troullier-Martins39 norm-conserving pseudopotentials
with Ni 3s and 3p semicore states in valence and a 110 Ha
energy cutoff in the plane-wave basis expansion. 36 oc-
cupied and 24 unoccupied bands in 4×4×4 k-point grid
have been calculated self-consistently in the COHSEX
approximation before the final perturbative GW correc-
tion. For sake of consistency, in the following, in all
the DOS obtained in the different approximations we
will plot only those bands that have been calculated
self-consistently in the sc-COHSEX+GW scheme. sc-
COHSEX calculations have been checked starting from
either KS or HF obtaining the same results. We have
used 240 bands for W and for the GW self-energy and
1800 G vectors for the dielectric matrix (900 in NiS2) in
the Godby-Needs plasmon-pole approximation40.

V. NIS2

A. The role of non-local exchange

We start our investigation by addressing the following
issue. Why is NiS2 metallic in GGA (while it should have
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FIG. 2. Hartree-Fock density of states for NiS2. Here, and in
the following, we have set the top-valence energy to EF and
normalised the DOS to the intensity of the highest peak.

a finite band gap)? Is this a consequence of an inadequate
treatment of electronic correlation at the GGA level or,
rather, is this finding related to the usual GGA underes-
timation of band gaps? To answer to these questions, we
compare the density of states (DOS) obtained within KS
DFT using GGA (see Fig. 3) and within the HF approx-
imation (see Fig. 2). The latter, by definition, neglects
completely electronic correlation. Thus, it establishes a
clean reference to discuss the effects of electronic corre-
lation. This is a much more difficult task using GGA as
the uncorrelated reference, since KS eigenvalues are not
rigorous QP energies and LDA/GGA include (approxi-
mately) also correlation effects.

We find that, contrary to GGA, the HF DOS is in-
sulating for NiS2, with a very large indirect band gap
of 8.3 eV. We therefore conclude that NiS2 is insulat-
ing also without invoking the effect of strong electronic
correlation41. In fact, the band gap opening in HF is an
effect of the non-local Fock exchange. Since the HF gap
is much larger than the experimental one, the effect of
correlation beyond HF should be instead to reduce the
very large HF gap.

Above the Néel temperature, NiS2 remains insulat-
ing, while becoming paramagnetic. Whereas a spin-
unpolarized HF calculation would wrongly give a metal,
a proper treatment of the (disordered) local moments42

would be very helpful in establishing the role of electronic
correlation also above the Néel temperature43.

In GGA the Kohn-Sham orbitals are too much
delocalized44, and for this reason NiS2 is metallic in
GGA. In fact, the Fock non-local exchange results in
their localisation (which is actually exaggerated in HF44).
Thus, all the methods that, in a way or in another, are
able to mimick this localisation effect can be used to im-
prove over the GGA metallic results. In the following,
we discuss three of such methods: the many-body GWA,



5

-7 -6 -5 -4 -3 -2 -1 0 1 2
Energy E-EF [eV]

0

0.2

0.4

0.6

0.8

1
total
Ni d up
Ni d dn
S

GGA
NiS2

(a)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Energy E-EF [eV]

0

0.2

0.4

0.6

0.8

1
total
Ni d up
Ni d dn
S

GGA+U
NiS2

(b)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2
Energy E-EF [eV]

0

0.2

0.4

0.6

0.8

1
total
Ni d up
Ni d dn
S

EECE
NiS2

(c)

-8 -7 -6 -5 -4 -3 -2 -1 0 1 2 3
Energy E-EF [eV]

0

0.2

0.4

0.6

0.8

1
total
Ni d up
Ni d dn
S p

scCOHSEX+GW
NiS2

(d)

FIG. 3. (Color online) Total density of states of NiS2 and contributions of the Ni 3d and S 3p states, calculated in (a) GGA,
(b) GGA+U, (c) EECE and (d) sc-COHSEX+GW.

the hybrid EECE and the GGA+U functionals.

B. NiS2: a charge-transfer insulator

The discrepancy with respect to experiment is too
large to use HF results to analyse the electronic prop-
erties of NiS2, which is the goal of the present section.
Electronic correlation, and in particular the screening of
the Coulomb interaction, indeed has to be taken into
account. Here, by using the other advanced electronic
structure methods, we address the following questions:
What is the insulating nature of NiS2? Specifically,
among which states does the gap open? How do the
DOS here obtained compare with available experimental
spectra (although keeping in mind the experimental lim-
itations in the bulk sensitivity) and previous theoretical
results?
While NiS2 is metallic in GGA, it correctly turns out

to be an antiferromagnetic insulator in all the other ap-

proaches (see Fig. 3). In GGA the magnetic moment is
0.7 µB , slightly underestimating the experimental value
1.0 µB

33. In sc-COHSEX+GW it is enhanced up to 1.3
µB and this result is connected to an overestimation of
the fundamental band gap that amounts to 0.9 eV. In
EECE with α = 0.2 the magnetic moment is 1.4 µB , but
the band gap is 0.3 eV. This increase of the local mo-
ment, going from GGA to EECE or sc-COHSEX+GW,
is accompanied by an increase of the exchange splitting
of the Ni d states, which are also shifted to higher binding
energies.

Besides the different value of the gap, EECE and sc-
COHSEX+GW have pretty similar DOS. The presence
of S−2

2 dimer leads to a large splitting of 3p states into the
bonding ppσ and anti-bonding ppσ∗ states [which form in
itself a double-peak structure, respectively at the bottom
and the top of the DOS shown in Fig. 3(c)-(d)]. The
ppσ − ppσ∗ splitting, and thus the total valence band-
width, is larger in EECE and sc-COHSEX+GW than in
GGA. Inside the ppσ − ppσ∗ gap, Ni 3d and S 3p (ppπ)
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FIG. 4. (Color online) Planar cut of the difference be-
tween the quasiparticle electronic charge calculated in sc-
COHSEX+GW (ρQP ) and the Kohn-Sham density (ρKS). In
red (blue) positive (negative) variations of (ρQP −ρKS)/ρKS .
Gold (light blue) balls are S (Ni) atoms.

states are highly hybridized. In agreement with resonant
photoemission experiments45, S 3p states dominate at the
highest valence states and Ni 3d at the bottom of conduc-
tion. Therefore, according to the Zaanen-Sawatzky-Allen
classification of transition-metal compounds46, NiS2 be-
haves as a charge-transfer insulator.

Also the LDA+DMFT calculation10 for the high-
temperature paramagnetic phase obtained similar re-
sults. They differ mainly in the relative amount of Ni
3d and S 3p states that contribute to the bands around
the fundamental gap. In fact, the gap similarly opens be-
tween highly hybridized Ni-S states. However, both the
topmost valence and the bottom conduction bands are
there mainly Ni 3d (with a larger S 3p contribution in the
latter). Moreover, in LDA+DMFT an incoherent upper
Hubbard band is located at higher energies, which con-
firms that NiS2 is not a Mott-Hubbard insulator (here,
all the incoherent features, including the satellites found
in the experiment at the bottom of the valence band5

cannot be addressed by a description of the electronic
structure based on a quasiparticle DOS).

Overall, the prominent peak of Ni 3d states and the
other hybridized Ni-S structures at higher binding ener-
gies in the valence band are in good correspondence with
experimental x-ray photoemission spectra5,47,48. More-
over, the two double peaks of the empty states match the
double structure measured in bremsstrahlung isochromat
spectroscopy6,47. The presence of S p states in the con-
duction band has been confirmed by X-ray absorption
spectroscopy measurements at the K edge of sulfur10.

Instead, in GGA+U (FLL) [see Fig. 3(b)], where the
magnetic moment is 1.5µB , the DOS is quite different:
Ni 3d states are shifted to too low energies, forming a
triple peak structure at the lower band edge (similarly to

HF, see Fig. 2), S 3p states are homogeneously spread
over the whole energy range, and there is only one broad
peak for the empty states.
In Fig. 4 we analyse an example of the correction of

the LDA/GGA delocalisation error, which is at the ori-
gin of the metallic LDA/GGA DOS. We compare the
Kohn-Sham charge density ρKS(r) and the quasiparti-
cle ρQP (r) calculated in sc-COHSEX+GW. Blue regions
in the planar cut correspond to depletion of QP charge
density ρQP with respect to ρKS , while red regions cor-
respond to increased charge density going from ρKS to
ρQP . We find, indeed, that in sc-COHSEX+GW the
charge localises around the S atoms of the dimers, mov-
ing there from the interstial regions. This is associated to
an enhancement of the ppσ − ppσ∗ bonding-antibonding
splitting with respect to LDA/GGA.

VI. DOPING WITH SE: THE ROLE OF THE

DIMERS

In the previous section, we have concluded that NiS2
is a charge-transfer insulator. The minimum-energy exci-
tation across the band gap is between (mainly) occupied
S p and (mainly) unoccupied Ni d states, in a wide re-
gion of hybridized Ni d - S p states. Moreover, from the
previous analysis, one may expect that the large anion
dimer bonding-antibonding splitting of ppσ states plays
a prominent role in determining the electronic properties
of NiS2. In the present section, we focus on the effect of
this bonding-antibonding splitting in more detail.
In fact, the bonding-antibonding splitting can be tuned

by replacing S with Se. Upon doping with Se, the ppσ−
ppσ∗ bonding-antibonding splitting is reduced due to the
increased Se-Se distance in comparison with S dimers in
NiS2 (this reduction is seen also in the experiments47).
From this reduction of the bonding-antibonding splitting,
the states that lay inside the large ppσ−ppσ∗ gap, namely
the Ni 3d states and the S ppπ states, are more strongly
overlapping. In turn, NiSSe and NiSe2 are all metallic.
The DOS in NiSSe and NiSe2 are quite similar (see

Figs. 5-6). The dip at EF is more pronounced and the
conduction band width is smaller in NiSSe (II) than in
NiSSe (I). In GGA and in sc-COHSEX+GW NiSe2 is
correctly non-magnetic, and, except for a smaller valence
bandwidth in GGA, the DOS is overall the same. A pos-
teriori, this would justify the use of the G0W0 perturba-
tive approach. In this case, KS orbitals turn out to be
a rather good approximation to the QP wavefunctions,
since the orbitals are more delocalized than in NiS2, and
the non-local Fock exchange is strongly damped by the
metallic screening.
At the critical doping, in NiSSe, we find an antifer-

romagnetic order, which can be suppressed by apply-
ing pressure. In EECE, instead, the calculated moments
never vanish. They are 1.3 µB in NiSSe and 1.2 µB in
NiSe2. GGA+U results, on the other hand, depend on
the choice of the double-counting term. Using FLL the
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FIG. 5. (Color online) Total density of states of NiSe2 and
contributions of the Ni 3d and Se 4p states, calculated in (a)
GGA, (b) EECE, and (c) sc-COHSEX+GW.
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FIG. 6. (Color online) Total density of states and contribu-
tions of the Ni 3d, S 3d and Se 4p states for (a) NiSSe (I) and
(b) NiSSe (I), calculated in sc-COHSEX+GW.

ground state is a ferromagnetic metal, in case of AMF the
antiferromagnetic metal is nearly degenerate to a ferro-
magnetic metal with two different moments (for an in-
depth analysis of the differences between FLL and AMF
functionals we refer to Ref.21). These results point out
two difficulties of EECE and GGA+U in dealing with
metals.

The gap of NiS2 is very sensitive to the S-S dimer-
distance d. To illustrate this point, we consider some
artificial NiS2 structures (and employ the EECE hybrid
functional). Using a structure with d = 2.15 Å the EECE
band gap amounts to 0.3 eV, whereas it is 0.6 eV with
d = 2.10 Å. Finally, increasing the dimer distance to
d = 2.36 Å, i.e. using the structural parameter of NiSe2
but the lattice constant of NiS2, the gap closes. This
observation demonstrates that the band gap is related to
the dimer distance (instead the magnetic moment is not
sensitive to it). When the dimer distance increases, the
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ppσ − ppσ∗ splitting decreases, enhancing the overlap of
d and p states and thus inducing the closure of the band
gap.

In fact, in GGA this bonding-antibonding splitting in
NiS2 is underestimated (see Fig. 4) and, similarly to
NiSe2, NiS2 turns out to be metallic in GGA. An anal-
ogous underestimation of a dimer bonding-antibonding
splitting is at the origin of the absence of a band gap in
LDA in other correlated insulators, as for the V dimers in
monoclinic VO2 and the Ti dimers in Ti2O3. This under-
estimation is linked to the general LDA/GGA delocalisa-
tion error44. When it is amended, also those materials are
correctly described as insulators28,41. In particular, this
correction is found to be an effect of the Fock non-local
exchange, as some of us have recently discussed in those
materials by making use of HSE hybrid functional41.

VII. NIS2 UNDER PRESSURE: THE ROLE OF

CRYSTAL-FIELD SPLITTING

Applying pressure, the bandwidths are expected to in-
crease. In GGA there is actually a small increase of the
widths of the bands around the Fermi energy and the
bonding S ppσ bands with respect to NiS2 at ambient
pressure, but the main effect is a rigid shift by −0.5 eV of
the prominent Ni d peak (and a bit more for all the states
at higher binding energies), due to an enhanced crystal-
field splitting [see Fig. 7(a)]. Hence the lower band edge
is about 0.6 eV lower for a = 5.49 Å than for a = 5.69
Å and the overall bandwidth is broader. This result is
found also in sc-COHSEX+GW calculations, but accom-
panied also by a larger remodulation of the shape of the
DOS [see Fig. 7(c)]. With increasing pressure, both in
GGA and in sc-COHSEX+GW the magnetic moment de-
creases until it disappears. While in case of NiS2 under
pressure, GGA+U correctly shows that NiS2 becomes a
non-magnetic metal, in EECE, the calculated moments
become smaller under pressure but still do not vanish.

Under pressure the dimer distances remain constant, so
the electronic and magnetic phase transition can be di-
rectly associated to a volume effect, through an increase
of the crystal-field splitting and the bandwidths. Thus,
this observation highlights the different mechanism that
drives the IMT under pressure with respect to that occur-
ing with Se doping. This result is in agreement with pre-
vious studies9,10,36, which similarly connected the varia-
tion of the anion dimer splitting and the change of the
charge-transfer gap in NiS2−xSex, and contrasted this
mechanism with the change in the bandwidths in NiS2
under pressure. Here we have also remarked that this
increase in the bandwidths under pressure (already vis-
ible at the GGA level) is accompanied by an enhanced
crystal-field splitting (particularly evident at the GWA
level).
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FIG. 7. (Color online) Total density of states of NiS2 under
pressure and contributions of the Ni 3d and S 3p states, cal-
culated in (a) GGA, (b) GGA+U, and (c) sc-COHSEX+GW.
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VIII. CONCLUSIONS

In summary, we have discussed the electronic and
magnetic properties of Se-doped and compressed NiS2
in detail. The results of GGA calculations already al-
low one to identify the microscopic origin of the metal-
insulator and antiferromagnetic-paramagnetic transi-
tions in NiS2−xSex. By Se doping, the main effect is
the reduction of the bonding-antibonding splitting of p
states, which is related to the longer Se dimer distances
than for S dimers. Under pressure, there is an increase
of the crystal-field splitting and a bandwidth broadening,
both related to a volume effect. In both cases the NiS2
band gap closes, obtaining a metallic state, and the an-
tiferromagnetic order disappears, leading to a paramag-
netic state. However, corrections from hybrid EECE and
GGA+U density functionals or from the GWA of many-
body perturbation theory are necessary to compensate
the GGA delocalization error and thus provide the insu-
lating band structure of NiS2. This correction can be un-
derstood as mostly due to an effect of non-local exchange.
Moreover, although EECE overestimates the magnetic
order in the whole phase diagram and parameter-free sc-
COHSEX+GW overestimates the fundamental band gap

in NiS2, they provide a better description of NiS2−xSex
than GGA+U, which turns out to be unreliable for the
metallic compounds and in worse agreement with experi-
mental results in insulating NiS2. The sc-COHSEX+GW
is the only method always giving the correct qualita-
tive description of the electronic and magnetic properties
across the phase diagram. However, the results obtained
for NiS2 point out the need of going beyond the present
level of approximation, by including vertex corrections
beyond the GWA, in order to improve the quantitative
agreement with the experimental spectra.
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