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Abstract

Two-dimensional nematics possess peculiar properties that have been studied recently using

computer simulation and various theoretical models. Here we review our own contribution to the

field using density-functional theory, and present some preliminary simulation results on confined

two-dimensional nematics. First we discuss the possible stable bulk phases and phase diagrams and

the relation between phases and particle geometry. We then explore the adsorption properties on

a single substrate and the confinement effects that arise when the fluid is confined between parallel

walls. Next, confinement in circular cavities is presented; this geometry allows us to measure some

properties of the simplest defects that arise in two-dimensional nematics. Finally, preliminary

Monte Carlo simulation results of confined nematics in circular geometry are shown.
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I. INTRODUCTION

The nematic phase arises in liquids composed of sufficiently anisotropic particles

(molecules, colloidal particles, macroscopic grains) from the isotropic phase when the den-

sity or concentration of particles (or temperature in thermal liquids) is above (below) some

particular value [1]. In nematics, particles are oriented on average along a common direction

n, called the director, but retain their positional disorder. The gain in orientational order

that occurs when the isotropic phase transforms into the nematic phase proceeds via a phase

transition which, in three dimensions, can be shown to be of first order, although weak. In

this respect, two-dimensional (2D) nematics are peculiar, since symmetry restrictions on

the orientational order parameter, discussed most conveniently in the context of a Landau

theory, allow for a more general nature of the phase transition: it can be of either first-order

or continuous.

As is the case with three-dimensional nematics, in 2D point defects play an important

role. Point defects are points in the plane where the nematic director field n̂(x, y) is not

defined; there exists an associated region around the point defect where the director field

is highly distorted from the uniform configuration n̂ = const. The density field ρ(x, y) is

also affected. Another important aspect of nematics is that they are very sensitive to the

presence of surfaces, so that they can be used to orient the director in some specific directions.

Finally, the broken rotational symmetry of nematics brings about an elasticity which, in two

dimensions, is restricted to two independent elastic modes controlled by their corresponding

elastic constants k1 and k3. These three elements, defects, surfaces and elasticity, often

compete together to give the final configuration of the nematic, which in many cases is

highly nontrivial.

Similar to many other 2D systems, the nematic state in 2D presents anomalously large

thermal fluctuations which result in a highly fluctuating nematic director. In case the free

energy can be described by a one-elastic-constant, Frank-type elastic model,

Fe =
1

2

∫

A

d2r
{

k1 (∇ · n̂)2 + k3 |∇ × n̂|2
}

=
1

2

∫

A

d2rk |∇θ|2 , (1)

[where n̂ = (cos θ, sin θ)], the fluctuations in θ, the director tilt angle, depend on the number

of particles N as 〈θ2〉 ∼ logN , with a vanishing order parameter in the thermodynamic limit,

q1 = 〈cos 2θ〉 ∼ N−kT/2πk, and an orientational correlation function gn(r) = 〈cosnθ(r)〉 ∼

r−n2kT/2πk which decays algebraically rather than presenting long-range order. All of these
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FIG. 1: Popular models for convex hard particles in two dimensions. HE: hard ellipses. HDR: hard

discorectangles. HR: hard rectangles. In the case of HR the length L and width σ of the particle

are indicated. For HDR, the total length of the particle is L+ σ.

properties imply that, strictly speaking, the ordered nematic phase does not exist in the

thermodynamic limit, although the dependence is slow and even large nematic samples, or

confined nematics, will be well ordered.

II. BULK BEHAVIOUR OF HARD MODELS

As shown by Onsager [2], overlap or exclusion interactions alone (hard particles) can

explain the formation of the ordered nematic phase in two and three dimensions. In these

systems, one defines particles with a specific shape, a convex body in the present work, and

associates a potential energy to a pair of particles such that the energy is zero if particles

do not overlap and infinity otherwise. Overlapping configurations are thus discarded from

the partition function, and the average energy is zero. Order is controlled by the entropy:

in the case of nematics, the orientational entropy, which favours disorder, is more than

compensated by the exclusion configurational entropy, which increases as particles align

along the director. This happens above some particular particle number density.

Popular hard models for nematic formation in two dimensions are shown in Fig. 1. They

include: hard ellipses (HE), hard discorectangles (HDR), and hard rectangles (HR). The

thermodynamics and phase behaviour of these models have been analysed using computer

simulations. In the case of the HE and HDR models two liquid phases are observed: the

isotropic phase (I), which exists at low density, and the uniaxial nematic phase (Nu), at

higher densities. In the Nu phase the continuous rotational symmetry of the I phase is broken

and a definite average orientation appears in the fluid. The I-Nu transition is believed to be

3
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FIG. 2: Typical particle configurations in (a) the uniaxial nematic phase Nu, and (b) the tetratic

Nt phase.

continuous and of the Kosterlitz-Thouless type [3].

The HR model contains sharp corners and is close to being non-convex. This shape favours

a new, exotic type of nematic, called the tetratic phase (Nt) [4]. In the tetratic phase four

equivalent directions, specified by two equivalent directors, arise. Fig. 2 is a schematic of

a typical particle configuration in the two nematic phases. Also, the I-N transition in the

HR fluid is highly non-trivial since its nature depends in a complicated way on the particle

aspect ratio κ = L/σ (L being the rectangle length and σ the width). Hints of the phase

behaviour found for these fluids might also be observed in granular quasi-two-dimensional

fluids made of anisotropic particles and subject to vertical motion [5].

A. One-component HR and HDR fluids

A deep understanding of the I-N transition in fluids of hard particles is obtained by

focusing on the excluded volume vexc: the presence of one particle creates a surrounding

region from which a second particle is excluded. The available volume for the latter, V ′ =

V − vexc, where V is the system volume, depends on the relative orientation of the two

particles, and is maximised when parallel. In this two-particle view of the problem the

excluded volume (area in two dimensions) becomes a central quantity.

The excluded area as a function of relative angle φ of the HR model differs in a crucial

way from that of the HDR model. These functions can be obtained analytically:

vHDR

exc
(φ) = 4Lσ + πσ2 + L2 |sin φ| ,
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FIG. 3: Phase diagram of HR in the η–κ plane as obtained from SPT, showing regions of stability

of isotropic (I), uniaxial nematic (Nu) and tetratic (Nt) phases. Dashed curves: continuous phase

transitions. Shaded region: first-order phase transition. Points where the continuous transition

changes to first order are tricritical points.

vHR

exc
(φ) =

(

L2 + σ2
)

|sinφ|+ 2Lσ (1 + |cosφ|) . (2)

These functions exhibit a minimum at φ = 0 and π but, in addition, vHR

exc
(φ) presents a

secondary minimum at φ = π/2 which, when the aspect ratio κ is sufficiently small, the

fluid uses to stabilise the tetratic phase.

A fruitful theory to explore the thermodynamics and structure of the isotropic and ne-

matic phases is the Scaled-Particle Theory (SPT) [4, 6, 7]. It is a density-functional theory:

a free-energy density Φ[h] is written in terms of the orientational distribution function h(φ).

The latter gives the probability density that a particle is oriented with angle φ. Note that
∫ π

0
dφh(φ) = 1. The free energy density Φ[h] = −Ts[h], where T is temperature and s

entropy density, is split in ideal

βΦid[h] = ρ

(

log η − 1 +

∫ π

0

dφh(φ) log [πh(φ)]

)

(3)

and excess

βΦex[h] = ρ

[

− log (1− η) +
η

1− η
S0

]

(4)

parts, where η is the packing fraction, defined as η = ρLσ = NLσ/A with A the system
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area, and β = 1/kT . Here

S0 =
1

2v

∫ π

0

dφ

∫ π

0

dφ′h(φ)vexc(φ− φ′)h(φ′)− 1, (5)

where v is the particle area. By numerically minimising Φ[h] with respect to h(φ) (which

is most easily done in Fourier space) [8], one obtains the thermodynamic functions and the

equilibrium orientational structure. Order parameters can then be defined,

q1 =

∫ π

0

dφh(φ) cos 2φ, q2 =

∫ π

0

dφh(φ) cos 4φ (6)

which measure respectively the usual nematic order and the tetratic order. The three fluid

phases involved have the following order parameters: q1 = q2 = 0 (I); q1 6= 0 and q2 6= 0

(Nu); and q1 = 0, q2 6= 0 (Nt).

The SPT phase diagram of the HR model in the η vs. aspect ratio κ plane is shown

in Fig. 3. At high aspect ratios there is a continuous I-Nu transition that becomes of first

order as particles become less elongated. The tetratic phase is stable for κ < 2.21, and is

stabilised from the I phase at η ≃ 0.85 via a continuous phase transition. Note that this

value of η is expected to be well above the transition to phases with spatial order (either

smectic, columnar or crystal). This point is discussed in Sec. IIC.

Finally, the fluid phase diagrams of the HE and HDR models, not shown, are much

simpler, since only the I and Nu phases are stable, with a continuous transition in the whole

range of κ (note that the phase diagrams of all models, HE, HDR and HR, tend to be similar

for large κ, and in fact identical in the limit κ → ∞). This result agrees with simulations

[3, 9, 10]. The only non-uniform phase present at high density is the crystal phase [3, 10].

B. Beyond two-particle correlations

SPT only takes account of two-particle correlations. But higher-order correlations must

be important in the stabilisation of the Nt phase. This is because, in typical Nt-like ar-

rangements and in order to obtain more optimised packings, particles tend to order in small

clusters that involve a few particles pointing in perpendicular directions. Because of this ef-

fect, higher-order correlations should extend the island of Nt stability to aspect ratios higher

than 2.62 and packing fractions lower than 0.85.

In [11] we made an attempt to include three-particle correlations in a way that (i) incor-

porates three-body effects, and (ii) reduces to the SPT model when three-body correlations
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are switched off. The latter are included by means of the third virial coefficient, which is

computed numerically as a function of the two order parameters q1 and q2. In effect, the

new theory predicts a larger island of tetratic stability, with the aspect ratio where the

tetratic phase ceases to be stable shifting to 3.23, and the line defining the I-Nt transition

moving down to the range η = 0.70–0.75. Further inclusion of higher-order correlations will

no doubt refine these results, although the formulation of new theories is difficult for lack

of approximations for the higher-order virial coefficients and the intrinsic difficulties to deal

with these coefficients.

An alternative approach was followed in [12], where emphasis was focused on the strong

clustering observed in the HR fluid. Monte Carlo simulations show that, because of parti-

cle shape and low dimensionality, particles tend to align parallel to their neighbours thus

inducing the formation of large and persistent clusters that dominate the structure of the

fluid. The clusters consist of parallel hard rectangles, side by side, say n in number, which

form a “super-rectangle” of length nσ and width L. With this fact in mind, the fluid can be

viewed as a polydispersed mixture of super-rectangles of different lengths nσ [12], and the

extension of SPT to mixtures can be applied. The only unknown quantity in the problem

is the distribution of cluster sizes, given by f(n). Assuming this function to be exponential,

e−λn (which follows from a chemical mass-action law, an assumption which is supported by

simulation), we obtain λ from MC simulation and predict the phase behaviour. The tetratic

phase boundary can be shown to shift quite substantially as a result of clustering effects,

thus increasing the stability range of the Nt phase.

C. Spatially-ordered phases

A more convenient framework than SPT to study phases with spatial order in hard-

particle models is fundamental-measure theory (FMT). This theory, originally proposed by

Rosenfeld [13] for hard spheres, has been extended to other particle shapes; in particular,

there is a version for rectangles in 2D. By formulating a theory for two species, each associ-

ated to one of two mutually perpendicular directions, one can treat fluids with (restricted)

orientational order. This is the Zwanzig approximation, where one deals with two densities,
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FIG. 4: Phase diagram of the FMT model in the η–κ plane using the Zwanzig approximation.

Dotted curve: isotropic-nematic transition. Dashed and continuous curves: bifurcation lines to

spatially-ordered phases. Dashed-dotted line: nematic order parameter q1 at the bifurcation line

to the spatially-ordered phases. See text for details.

ρx(r) and ρy(r), with r = (x, y) and expresses the local excess free energy density Φexc(r) as

βΦexc(r) = −n0(r) log [1− n2(r)] +
n1x(r)n1y(r)

1− n2(r)
, (7)

in terms of averaged densities

nα(r) =
∑

ν=x,y

[

ρν ⋆ ω
(α)
ν

]

(r), α = {0, 1x, 1y, 2}, (8)

which are obtained from convolutions of the densities with one-particle geometrical measures

ω
(α)
ν (r) (see [14] for details). To Φexc(r) we add the local mixing entropy density Φid(r),

βΦid(r) =
∑

ν=x,y

ρν(r) [log ρν(r)− 1] , (9)

(which is directly related to an orientational entropy) and minimise the total free energy per

unit volume F/V = V −1
∫

V
dr [Φid(r) + Φexc(r)] with respect to both local densities. The lo-

cal density ρ(r) and the uniaxial order parameter q1(r) can be defined as ρ(r) = ρx(r)+ρy(r)

and q1(r) = [ρx(r)−ρy(r)]/ρ(r), respectively. In Fig. 4 the phase diagram of the FMT model

in the η–κ plane is presented. This diagram extends the calculations presented in [14], where
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only the case κ = 3 was studied, although here we only calculate the spinodal instabilities

(not coexistence calculations) to non-uniform phases. In this model, the I-N transition (dot-

ted line) is always continuous (note that transition densities are considerably lower in this

model than in SPT, due to the restricted-orientation approximation). The continuous line

corresponds to the spinodal (bifurcation) of the nematic-smectic transition. The dashed line

represents either the nematic-columnar (when q1, also represented in dashed–dotted line,

is non-zero), isotropic-columnar or isotropic-plastic solid (these two cases cannot be distin-

guished from each other and correspond to the case q1 = 0). Note that the transition from

uniform to non-uniform phases is at about η ∼ 0.5 in the whole range of aspect ratios κ;

therefore, assuming that a freely-rotating model showed instabilites in the same range as in

the present model, it is unlikely that a tetratic phase can truly be stabilised if it only exists,

even in metastable state, beyond this value.

D. Mixtures of two-dimensional particles

We have just seen that 2D particles possessing anisometric shape can form nematic phases.

Depending on the particle geometry the nematic phase can occur in two varieties, the uniaxial

and the tetratic nematic phases, but the latter exists only for low aspect ratios. The isotropic-

nematic transitions are generally continuous, except for the HR model in a small range of

aspect ratios. An interesting question is how this scenario may change when particles with

different geometries and elongations are mixed.

This problem can be tackled using the same theoretical scheme as before, i.e. SPT, but

extended to include a mixture of two components [15–17], specifically HR and another com-

ponent, such as hard discs, HE, HDR or HR with different aspect ratio. Here orientational

ordering and demixing effects compete to give a complex phase diagram. As expected, when

rectangles are mixed, in increasing concentration, with other particles not possessing stable

tetratic order by themselves (e.g. discs, HDR or HR of high aspect ratio), the tetratic phase

is destabilized, via a continuous or discontinuous phase transition, to uniaxial nematic or

isotropic phases. Strong demixing behaviour is observed when particle geometries of the two

components are very different, or simply aspect ratios are very different. As an example,

Fig. 5 shows the phase diagram of a mixture of HR with aspect ratio κ1 = L1/σ1 = 1.5 and

σ1 = 1, and HDR of aspect ratio κ2 = (L2 + σ2)/σ2 = 2 in the reduced pressure pv1/kT

9



FIG. 5: Phase diagram for a HR/HDR mixture in the scaled- pressure pv1/kT vs composition x

plane, where x is the number fraction of the rectangles. Values of the parameters are: for the

rectangles, κ1 = L1/σ1 = 1.5 and σ1 = 1; for the discorectangles, κ2 = (L2 + σ2)/σ2 = 2 and same

particle area as a rectangle of aspect ratio equal to 2 and unit breadth. Open circle indicates the

critical point, and shaded circle denotes an azeotropic point. Gray areas are two-phase regions,

while dashed lines are continuous phase transitions.

versus composition x plane (σ2 is chosen as explained in the caption of Fig. 5). The nature

of the isotropic-nematic transition gets quite complex depending on the mixture composi-

tion, with intervals where the transition is continuous or of first-order. At higher pressure

a region of strong demixing appears in the uniaxial nematic region, bounded by a lower

critical point.

E. Elastic constants

A two-dimensional nematic exhibits two independent elastic modes: splay and bend,

controlled respectively by the elastic constants k1 and k3. For a general deformation of the

director field n̂(x, y), the macroscopic elastic free energy can be written as in Eqn. (1), and

the constants appear as curvatures of the free energy. General expressions for the elastic

constants exist in terms of the correlation function of the model fluid [18, 19]. In the case of

SPT, the correlation function is proportional to the Mayer function (basically the excluded

10



area), and these integrals can be calculated numerically without much effort [19]. Fig. 6

shows the values of the elastic constants for the HDR model with κ = 16. Obviously the

elastic constants are zero at the bulk transition. Note that k3 is always larger than k1 (so

that bend deformations are more costly energetically than splay deformations), with their

difference increasing with density. At the highest nematic densities their ratio is about

10; this is an important point since most analyses based on elastic theory assume the one-

constant approximation k1 = k3, an approximation which may introduce significant errors.

FIG. 6: Elastic constants of a nematic fluid of HDR particles with aspect ratio κ = 16, as obtained

from DFT. (a) Splay elastic constant k1 as a function of packing fraction η; (b) Bend elastic constant

k3 as a function of η; (c) The two elastic constants as a function of uniaxial order parameter q1;

(d) Ratio of k1 to k3 as a function of η.
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FIG. 7: Phase diagram of HR under confinement in a slit pore in the chemical potential µ vs.

pore width H for aspect ratio κ = 3. Lines indicate first-order transitions (circles are actual

calculations). I: isotropic phase. C: columnar phase. The subscripts for the C labels correspond to

the number of columns in the confined phase. The horizontal line is the value of chemical potential

µ for the bulk I-C transition.

F. Adsorption and confinement in a slit pore

Since the HR model exhibits a rich bulk phase diagram, one anticipates fascinating surface

and adsorption properties. In [14] a semiinfinite system consisting of an isotropic fluid in

contact with a single (hard line) wall was studied. The favoured particle configuration next

to the wall was observed to be parallel; this orientation propagates into the bulk material.

As density is increased, complete wetting of the wall-isotropic interface by the columnar

phase was found. The theoretical model used was a density-functional theory based on the

fundamental-measure functional in the Zwanzig approximation where, as mentioned before,

particles are restricted to lie only along one of the two Cartesian axes.

In the same work, the case of confinement by two such walls was studied [14]. In line

with the phenomenology observed in studies of the same problem but in three dimensions

[20, 21], a complex behaviour was found involving capillary columnar ordering and layering
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FIG. 8: Hard discorectangle inside a hard circular wall of radius R. The wall acts on the centre of

mass of the particle, as indicated by the particle with dashed boundary which is right at contact

with the wall.

transitions (Fig. 7). The latter occur as a result of competition between the natural peri-

odicity of the columnar phase and the separation between the two walls. A strong coupling

between this phenomenon and that of capillary ordering was also observed, and the complete

surface phase diagram was obtained. Fig. 7 shows a region of such phase diagram, centred

at the layering transitions involving 23 to 25 columns. The isotropic-columnar transition

in the pore is not monotonic, and oscillates depending on the commensuration between the

columnar period and the pore width.

G. Confinement in a circular cavity

The circular geometry creates an additional geometric constraint that gives rise to new

phenomenology, specifically, to the formation of defects. There are two aspects of this

problem. One is the thermodynamical aspect, which is important in assessing the different

stable phases that arise in the cavity. The other is the structural aspect. The two are of

course intimately connected.

The wall imposes severe restrictions as to the favoured particle alignment next to it but,

by construction, the circular geometry creates a deformation of the director field and a

corresponding elastic free-energy cost. In turn, because of topological constraints, the defor-

mation into a closed region generates a defect. Again, competition arises between surface,

elastic and defect free energies which gives a rich phase behaviour as density (or chemi-
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FIG. 9: Phase diagram of a fluid of hard discorectangles with aspect ratio κ = (L + σ)/σ = 15

inside a hard circular wall in the ∆µ vs. R plane. ∆µ is the chemical potential with respect to that

of the bulk fluid, and R the cavity radius. U: uniform phase. P: polar phase. I: isotropic phase.

Icons on the right represent the director configuration in each phase. Lines are phase transitions;

solid curve: first-order U-P transition, ending in a terminal point (open circle); dashed curve:

continuous I-P transition (crosses correspond to actual calculations).

cal potential) and cavity radius are varied. On top of this, there is a modified (capillary)

isotropic-nematic transition that is strongly affected by the confinement.

In [22] we used a modified Onsager theory, based on excluded-volume interactions, to

analyse the thermodynamics of the HDR fluid confined by a hard circular wall, Fig. 8, using

particles with aspect ratio κ = (L + σ)/σ = 15 (note that, for such a large value of aspect

ratio, the results for the corresponding HR fluid will be very similar, so our particular choice

of particle geometry is not crucial). As mentioned before, it turns out that the combination

HDR fluid/hard wall brings about parallel alignment of the nematic director. We forced the

alignment to be perpendicular by making the wall act on the particle centres of mass; the

so-called ‘homeotropic anchoring’ results, but the associated surface free energy is not too

large compared with kT (weak anchoring conditions).

Under these circumstances, it is found that, for small cavity radii R, the cavity is free of

defects at the expense of surface free energy not being optimized, and a more or less uniform

14



director field results, the so-called ‘uniform’, U phase. However, for larger cavity radius, a

defect with total topological charge k = +1 stabilises inside the cavity. This defect adopts

one of two possible configurations: (i) either a single, central ‘hole’ of charge k = +1 with a

size that depends on R and the chemical potential ∆µ = µ−µ∞ (µ∞ being the bulk chemical

potential), the so-called ‘isotropic’ phase, I; (ii) or one consisting of two defects of charge

k = +1/2, of more or less constant size, located along a diameter symmetrically with respect

to the cavity centre, but with a separation that depends on R and ∆µ, the ‘polar’ phase, P.

See Fig. 9, where the phase diagram for κ = 15 in the ∆µ-R plane, with the different phase

boundaries, is shown. The U and P phases are separated by a line (continuous curve in the

figure) where the structure of the fluid changes discontinuously. The line ends in a terminal

point below which the two structures cannot be distinguished.

Computer simulations on HDR fluids confined into circular cavities [23] and on hard

ellipsoids in cilindrical containers [24] indicate that a single, k = +1 point defect never

stabilizes and that the configuration with two k = +1/2 defects is always more stable. A

careful interpretation of our results supports this finding, since the I phase is in fact related

to the bulk isotropic phase (R → ∞) and is stable below a line (dashed curve in the figure)

which we can refer to as capillary isotropic-nematic transition. We can then say that a

nematic confined in a circular cavity always exhibits two k = +1/2-point defects instead of

a single k = 1-point defect, presumably because of the largest free energy of formation of

the latter.

The location of the capillary I-N transition on the phase diagram deserves some comments.

In bulk (R → ∞) the transition is continuous in our mean-field model (as commented

above, simulations point to a fluctuation-driven phase transition which cannot be correctly

described by a mean-field theory). As soon as the fluid is confined into a circular cavity,

long-wavelength fluctuations are supressed and, even worse, there can be no phase transition

in the strict sense due to the finite size of the system (this is in contrast with other types

of confinement where at least one direction is infinite). The mean-field model, however,

continues to exhibit features that can be interpreted as remnants of the bulk transition. For

example, the integrated order parameter exhibits a kink which we associate with a ‘ghost’

capillary I-N transition; this is the dashed curve plotted in Fig. 9. In our calculations the

curve could not be continued to smaller cavities due to numerical inaccuracies, and therefore

we are uncertain as to whether the curve continues and touches the structural transition

15



packing fraction order parameter tilt angle

FIG. 10: Panels from left to right: particle configurations and packing fraction, uniaxial order

parameter and director tilt angle local fields. Top panels correspond to a number of particles

N = 800, while the bottom panels pertain to the case N = 1970. In all cases the cavity radius is

R = 7.5L, and the particle aspect ratio is κ = 40.

(continuous curve) or else terminates in some kind of end-point.

H. Monte Carlo simulation of confinement in a circular cavity

Recently we have been looking at the problem of confined nematics in 2D from the point

of view of Monte Carlo (MC) simulation. To this effect, we have used a HR model inside

a circular cavity but, this time, the hard wall acts upon the whole particle and not just on

its centre of mass, so that the favoured particle alignment at the wall is parallel. Instead of

focusing on the thermodynamics and phase changes in the cavity, we are interested in the

structure and type of defects that occur inside the cavity. This work is still in a preliminary

stage, and we only report some representative behaviour in the régime of cavity radius

R/L < 15. Larger cavity sizes will be considered in future studies.

We consider HR with aspect ratio κ = 40; we chose this value to match the value used by

Galanis et al. [25] in their experiments of vibrated granular rods. We set the radius of the

cavity to R = 7.5L, and start from a very dilute cavity with only a few particles. When this

state is equilibrated, particles are added one by one at random positions and with random

orientations, and the system is equilibrated between consecutive additions. All simulations

use the standard NVT Monte Carlo algorithm for constant number of particles and area.
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Fig. 10 corresponds to the case N = 800 (top) and N = 1970 (bottom). In each case

the following is shown, from left to right: particle configurations in a representative state,

and equilibrium (ensemble averaged) local fields for, respectively, packing fraction, uniaxial

nematic order parameter and director tilt angle with respect to the (fixed) x axis (note that

averages do not contain a sufficiently large number of configurations so that the fields are a

bit coarse). The case N = 800 corresponds to an isotropic phase (note that the tilt angle is

not significant wherever the order parameter is too low), while the other contains a nematic

phase, with an overall high value of order parameter.

In the nematic case a remarkable structure forms inside the cavity. It consists of one

large region with two other, smaller regions separated from the first by wavy defect lines on

which the order parameter is suppressed. The distortion of the director in each of the three

regions is kept to a minimum (i.e. particles are close to being parallel) while, at the same

time, particles mostly satisfy the orientation favoured at the wall. The director field rotates

by 90◦ across the defect lines. This is the preferred particle configuration of the sample, and

not one containing a central k = +1 defect or two k = +1/2 defects at opposite sides of the

circular wall. We have checked that this structure obtained by MC is robust with respect

to the initial configuration used to start the dynamics; for instance, one can start from a

structure with two k = +1/2 defects, and the MC dynamics invariably leads to the same

final structure with two defect lines.

In their study of elastic and anchoring constants in quasimonolayers of vibrated steel

rods, Galanis et al. [25] presented results for the case R = 4.7L which resemble very much

the defected structure observed by us in our MC thermal simulations. We suspect that this

type of structure may be favoured for low values of the ratio R/L, and that the typical

‘polar’ nematic phase with two defects inside the cavity will be obtained for larger cavities.

A study of this problem is now being investigated in our group.

III. CONCLUSIONS

Despite their apparent simplicity, 2D nematics continue to present new challenges in their

bulk and surface properties. In bulk, a new type of 2D nematic, the tetratic phase, was re-

cently discovered using a simple SPT approach. This exotic phase, akin to the cubatic phase

found in three-dimensional nematic fluids, could be stable for hard rectangular particles of
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low aspect ratio; this is still to be seen, but strong tetratic correlations are actually observed

in normal, uniaxial phases, as shown in computer simulations [26], experiments on colloidal

rectangles [27], and in vibrated experiments on quasimonolayers of granular rods [5], even

for aspect ratios of at least κ ∼ 6. The absence of strict long-range orientational order in

2D nematics, their strong fluctuations and non-standard transition to the isotropic phase

add difficulties in the effort to reach a deeper understanding of this problem; clearly, more

sophisticated theories and additional computer simulations are needed.

On the other hand, 2D nematic are a useful testbed to understand the formation of

defects in confined geometries and also the subtle commensuration effects, combining

surface, bulk, elastic and defect energies, that operate in confined systems.
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