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The problem of two-dimensional, independent electrons subject to a periodic potential and a uniform
perpendicular magnetic field unveils surprisingly rich physics, as epitomized by the fractal energy spectrum
known as Hofstadter’s butterfly. It has hitherto been addressed using various approximations rooted in either
the strong potential or the strong field limiting cases. Here, we report calculations of the full spectrum of
the single-particle Schrödinger equation without further approximations. Our method is exact, up to numerical
precision, for any combination of potential and uniform field strength. We first study a situation that corresponds
to the strong potential limit, and compare the exact results to the predictions of a Hofstadter-like model. We
then go on to analyze the evolution of the fractal spectrum from a Landau-like nearly free electron system to the
Hofstadter tight-binding limit by tuning the amplitude of the modulation potential.
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I. INTRODUCTION

The motion of electrons in a crystalline solid subject to an
external magnetic field has been considered since the early
days of quantum mechanics.1 The field splits the crystal’s
electronic bands into subbands and internal minigaps; when
plotted as a function of the field, the energetic arrangement
of these subbands forms a fractal structure that has come to
be known as Hofstadter’s butterfly.2 Its underlying principle
is the frustration of two competing symmetries, namely, the
periodicity of the lattice and the symmetry of the Landau orbits,
which are characterized by their associated length scales, the
lattice constant a and the magnetic length lB = √

h̄/(eB). To
reach the interesting regime lB ≈ a at laboratory fields, exper-
imentalists have resorted to superlattices patterned on top of
two-dimensional electron gases (2DEGs),3,4 as originally sug-
gested by Hofstadter.2 Such experiments are quite formidable
tasks due to conflicting requirements on the sample.3 It was
recently suggested5 that moiré patterns in a twisted bilayer
graphene could be tailored to obtain superlattices with period-
icities in the range of a few tens of nanometers, with which
magnetic fields of only a few tesla would be required to observe
the butterfly spectrum. Very recently, this suggestion has lead
to the experimental realization of devices based on hexagonal-
BN and graphene bilayer moiré superlattices that enable
unprecedented experimental access to the fractal spectrum.6,7

Patterns similar to the Hofstadter butterfly have been
observed or predicted to occur in a variety of very different
systems with frustrated symmetries, such as microwaves trans-
mitted through a waveguide with a periodic arrangement of
scatterers,8 the electronic9 and vibrational10 spectra of incom-
mensurate crystals, ultracold atoms in optical lattices,11 and
photonic crystals.12,13 The topological protection of the quan-
tum Hall phase in a photonic crystal has been shown to improve
the performance of optical delay lines and to overcome
limitations related to disorder in photonic technologies.13

From a theoretical perspective, this problem has been
chiefly approached by approximations starting from two
complementary limits, considering either the influence of a
weak magnetic field on the band structure resulting from a
strongly varying lattice potential,14,15 or the influence of a
small modulation potential on the Landau-quantized electrons
in a strong field.15,16 In the strong potential limit, one
typically starts with a tight-binding (TB) approximation for
a single band of the zero-field problem, E(k), where k is the
crystal momentum. Then, an effective Hamiltonian for the
magnetic field problem is generated from E(k) through the
Peierls substitution k → (p + eA) /h̄,1,17 where (p + eA) is
the dynamical momentum operator in a magnetic field, p the
canonical momentum operator, and A the vector potential.
This procedure was used, among others, by Hofstadter in
his seminal article for a nearest-neighbor (NN) TB model of
the 2D square lattice.2 There are a number of simplifications
inherent to this approach: (i) the TB approximation of the
zero-field band structure, (ii) the restriction to electrons in a
single band, and (iii) the neglect of the diamagnetic energy of
the TB orbitals and the field dependence of the TB hopping
integrals. This has been shown to lead to quantitative as
well as qualitative errors for both nearly free and tightly
bound two-dimensional electrons.18–21 Generalization of the
effective Hamiltonian approach has turned out to be difficult,
see, e.g., Ref. 22. Surprisingly, the strong field approach is
closely related to the strong potential one: if potential-induced
coupling between different Landau levels is neglected, the
same secular equation is obtained, but with the magnetic
field replaced by its inverse.15 Including such coupling has
a profound effect on the calculated energy spectrum,23,24

even for weak coupling strength. The resulting rearrangement
of the Hofstadter butterfly has recently been confirmed by
experiments.4 We take these results as a strong indication
that in order to understand the experimental data,3,4,6,7 it is
necessary to go beyond the approximations described above.
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In this article, we describe a computational methodology that
allows to obtain the single-electron spectrum of this system for
any combination of periodic potential and uniform magnetic
field strength, without relying on any of the approximations
incurred in previous methodologies. Our results are thus exact,
up to numerical precision. We use this methodology to study
first a situation that corresponds to the strong potential limit,
and compare our results to the predictions obtained with the
Hofstadter approach. We then go on to analyze the evolution of
the fractal energy spectrum as the periodic potential is changed
from a nearly flat case, corresponding to the Landau-like nearly
free electron situation, to the Hofstadter TB limit of a strongly
corrugated potential. The intermediate stages of this evolution
are not accessible to the above approximations.

The structure of this paper is as follows: in Sec. II, we
outline the necessary theoretical background; we discuss
how in the case of rational field values a generalized Bloch
condition holds on a suitably chosen magnetic cell. Some of the
necessary steps in the derivation are spelled out in more detail
in an appendix. Section III discusses how this generalized
Bloch condition can be exploited to construct a practical nu-
merical scheme, and details of our particular implementation
are provided; brief descriptions of the calculation of the Hall
conductance and of the Hofstadter low-field approximation
are also given. Our main results are presented in Sec. IV,
where we first apply our method to a situation that is amenable
to treatment with the Hofstadter strong potential/weak field
approach, and compare the results of both methods. Secondly,
we present results for a series of different potential strengths,
ranging from the weakly modulated potential, closely corre-
sponding to the Landau limit of free electrons in a magnetic
field, to the strongly corrugated potential limit, and discuss
the changing nature of the spectrum as the potential is varied.
Finally, our conclusions are presented in Sec. V.

II. THEORETICAL BACKGROUND

The motion of independent electrons is described by the
single-particle Schrödinger equation,

Hψ(r) ≡
[

1

2m
�2 + V (r)

]
ψ(r) = Eψ(r), (1)

where H is the Hamiltonian, ψ(r) is an eigenstate with energy
E, � = p + eA(r) is the dynamical momentum operator and
A(r) is the vector potential corresponding to the magnetic field,
B = ∇ × A. We take the field to be uniform and oriented along
the z direction, B = B ez. The electrons are restricted to the
two-dimensional (2D) xy plane, and the external potential V (r)
is periodic on a Bravais lattice defined by vectors

Rn = ja + kb, n = (j,k) ∈ Z2, (2)

where Z represents the Zahl set of positive and negative
integers. In the absence of an external magnetic field, Bloch’s
theorem, which results from the commutation of the lattice
translations with the Hamiltonian, allows to restrict the
calculation of the eigenfunctions ψ(r) to one primitive cell
of the lattice in Eq. (2). As these translations do not leave
the vector potential A(r) invariant, they no longer commute
with H when a magnetic field is present; consequently, the
eigenfunctions ψ(r) are not Bloch waves. By combining a

lattice translation with a suitable gauge transformation to
counteract its effect upon the vector potential, one can define
magnetic translation operators, TA(Rn), that do commute with
H .25–27 We give one possible definition of such operators in
Eq. (A1) in the Appendix. The operators TA(Rn), however, do
not form a group and can thus not be directly used to construct
the eigenstates of H . For a “rational field”, where the number
of magnetic flux quanta per unit cell, α = 1

2π
e
h̄

(a × b) B, is
a rational number, α = p/q with p and q relative prime, one
can choose a larger magnetic lattice that has an integer number
of p flux quanta passing through each cell, e.g.,

Sn = ja + k(qb), n = (j,k) ∈ Z2. (3)

On this lattice, a generalized version of the Bloch theorem
holds;27 for an orthorhombic lattice and Landau gauge, A(r) =
Bxey , the solutions of Eq. (1) can be chosen of the form

ψ(r) ≡ eiθruθ (r), (4)

where uθ (r) obeys

uθ (r + S) = exp

(
− i

e

h̄
BSxy

)
uθ (r), (5)

and the magnetic crystal momentum θ is restricted to the first
magnetic Brillouin zone, i.e., the first Brillouin zone of Eq. (3).
This condition allows to restrict the calculation of uθ (r) to one
primitive cell of the magnetic lattice. We have spelled out the
steps leading to Eq. (5) in more detail in the Appendix.

III. CALCULATION METHOD

A. Numerical solution of the Schrödinger equation

Substituting ψ(r) from Eq. (4) into Eq. (1) yields a
differential equation for the unknown functions uθ (r),

H (θ)uθ
j (r) ≡ [T (θ ) + V (r)]uθ

j (r) = Ej (θ)uθ
j (r), (6)

where the kinetic energy operator T (θ ) = 1
2m

(�2
x + �2

y) in the
Landau gauge chosen above has the form

�2
x = −h̄2(∂x + iθx)2; �2

y = −h̄2

(
∂y + iθy + ie

h̄
Bx

)2

. (7)

The symmetry property (5) can be exploited in a very elegant
way:28 the periodicity of the functions uθ (r) in the y-direction
allows to expand them as a Fourier series,

uθ (x,y) =
∞∑

n=−∞
ũθ (x,n) exp

(
i2π

n

bq
y

)
. (8)

The Bloch condition (5) for the Fourier coefficients ũθ then
reads

ũθ (x + a,n) = ũθ (x,n + p), (9)

which reveals that every pth coefficient function ũθ (x,n) is
identical up to a shift of a in the x-direction. For large x, the
term proportional to B2x2 in �2

y dominates over the periodic
potential; the functions ũθ (x,n) thus decrease exponentially in
this limit and only need to be considered on a finite interval.

To calculate the n lowest eigensolutions of the eigenvalue
problem (6), we have used the diffusion method: the evolution
operator in imaginary time, T (ε) = exp(−εH ), is repeatedly
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applied to a set of trial states uj (r),j = 1, . . . ,n, which
are orthogonalized after every step. To efficiently calculate
the action of the operator exponential, we have used a
recently developed high-order factorization scheme to split
exp[−ε(T + V )] into terms that contain the exponentials of
T and V alone.29 The exponential of T = 1

2m
(�2

x + �2
y) can

be split further using an exact factorization scheme based
on the harmonic-oscillator-like commutator relations of �2

x

and �2
y .30 Using these two methods together, the resulting

factorization of the evolution operator is

T [−εH (θ )]

=
n∑

	=1

c	

[
e− ε

2	
V e− ε

2m	
Ce(ξ )�2

y e− ε
2m	

Cc(ξ )�2
x

× e− ε
2m	

Ce(ξ )�2
y e− ε

2	
V
]	

+ O(ε2n+1), (10)

where the coefficients c	, Ce(ξ ), and Cc(ξ ), with ξ = εh̄eB/m,
are known analytically.29,30 We represent the wave functions
uθ

j (r) and the potential V (r) by their values on an equidistantly
spaced real-space grid. In Landau gauge, with the operators
�2

x and �2
y defined as in Eq. (7), the product of operators

in Eq. (10) is applied to a function uθ (r) by performing the
following steps (note that each step takes as input the result of
the previous one):

(1) Calculate e− ε
2	

V (r)uθ (r); since the operator V is diagonal
in real space, this is simply a point-wise multiplication on the
real-space grid.

(2) Calculate ũθ (x,n) by a fast Fourier transform (FFT) of
uθ (x,y) with respect to the y-component.

(3) In (x,n) space, e− ε
2m	

Ce(ξ )�2
y ũθ (x,n) is again a point-

wise multiplication, see Eq. (7).
(4) Now regard ũθ (x,n) as a set of p one-dimensional

functions gθ
s (x),s = 1, . . . ,p, in the sense of Eq. (9). Fourier-

transforming these functions yields p functions g̃θ
s (kx).

(5) Again, e− ε
2m	

Cc(ξ )�2
x g̃θ

s (kx) is a simple point-wise multi-
plication.

(6) The remaining factors in the product can be applied by
carrying out the above steps in reverse order.

Let us note here that the strategy we have followed to solve
Eq. (6) is, of course, not unique, and that alternatives are
possible.31,32

B. Quantized Hall conductance

At a fixed rational field, α = p/q, we obtain the bands
Ej (θ ) by numerically solving Eq. (6) for a grid of θ values
spanning the magnetic Brillouin zone (MBZ) corresponding
to this field. The density of states (DOS) as a function of the
field, ρ(B,E), can then be calculated by integrating the bands
over the MBZ and repeating the process for different fields. The
rational field can only be tuned in discrete steps, αP = P/Q,
where P,Q ∈ Z. The size of the magnetic unit cell depends on
the reduction of P/Q to a quotient of relatively prime integers
p/q, and is q times as large as the zero-field (“geometric”)
unit cell. At the field αP , one zero-field band is thus expected
to split into q magnetic bands, which are known to cluster in
groups of p bands.2 The pattern of distinct prime factors of P

and Q as αP is swept across a range of fields gives rise to the

self-similar, fractal pattern of gaps in the DOS that has become
known as the Hofstadter butterfly.

When the Fermi energy of the system lies in a gap,
i.e., a region where ρ(B,EF ) is zero, the Hall conductance
σxy assumes a quantized value, σ

gap
xy = ne2/h,n ∈ Z. The

fundamental topological reason for this quantization was
revealed by Thouless et al.,33 who showed that both in the
strong field and strong potential limits the Kubo-Greenwood
formula for σxy is related to the Chern number of the U(1)
bundle over the magnetic Brillouin zone. This was later
argued34 to be a direct consequence of the magnetic translation
symmetry, Eq. (5). Sweeping either the magnetic field or
the Fermi energy through the fractal pattern of minigaps
inside a broadened band or Landau level results in a peculiar,
nonmonotonous Hall effect.33 Indications of this behavior have
been found in experiments.3 In this work, we have used an
alternative approach, introduced by Středa,35 to obtain σ

gap
xy

from the numerically calculated DOS,

σ gap
xy (B,EF ) = e

∂ρ(B,E′)
∂B

∣∣∣
E′=EF

. (11)

C. Low-field Hofstadter approximation

In order to compare the results of the numerical solution
of the Schrödinger equation to the well-established low-field
approximation, we start with a TB model for the zero-field
band structure of the square lattice,

E(k) = γnn(eı̇kxa + e+ı̇kya + c.c.)

+ γ2nn(eı̇kxaeı̇kya + eı̇kxae−ı̇kya + c.c.)

+ γ3nn(e2ı̇kxa + e2ı̇kya + c.c.), (12)

where “c.c.” stands for the complex conjugate of the previous
terms. Here, γnn, γ2nn, and γ3nn are the first, second, and
third nearest-neighbor hopping integrals, which are used as
fitting parameters to reproduce a low zero-field band of
the numerical calculation. Hopping integrals between more
distant neighbors are neglected. One can then perform the
Peierls substitution1,17 k → (p + eA) /h̄ in Eq. (12), where p
is the momentum operator, using the Landau gauge A(r) =
Bxey for the vector potential. This transforms E(k) into an
effective Hamiltonian, which can be diagonalized by standard
diagonalization methods, to obtain the magnetic dispersion
relation, DOS and the Hall conductance in the mobility gaps
σ

gap
xy through Středa’s formula.

IV. RESULTS AND DISCUSSION

In our numerical calculations, we have studied a simple
system consisting of a two-dimensional square lattice of
potential wells with the symmetrized Fermi function form,36

V (r) = U coth

(
r0

2d

)
sinh

(
r0
d

)
cosh

(
r
d

) + cosh
(

r0
d

) , (13)

with parameters

r0 = 39.7 nm, d = 1.59 nm, a = 100 nm, (14)

where a is the lattice spacing. The potential is illustrated
in Fig. 1(a); the parameters are set to loosely reproduce the
conditions of earlier experimental studies.3,4
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FIG. 1. (Color online) Zero-field band structure and TB approx-
imation. (a) Schematic plot of the periodic Fermi well potential.
(b) First Brillouin zone of the reciprocal lattice. (c) (Left) Zero-field
band structure of the potential with parameters (14) and U = −V0.
Solid red lines show bands obtained by numerically solving the
Schrödinger equation, dashed black lines are TB bands fitted to these
exact bands (see text). (Right) DOS ρ(E) obtained from the full
Schrödinger equation. (d) Hofstadter butterflies for the two lowest
bands obtained by Peierls substitution (see text). Areas with nonzero
DOS are printed in black, and the gaps are colored according to
the corresponding quantized Hall conductance σ

gap
xy in units of e2/h.

White indicates zero Hall conductance, warm (cold) colors indicate
positive (negative) Hall conductance. A number of larger gaps are
labeled with the corresponding Hall conductance for reference. The
butterflies are periodic in the flux, one period being shown in each
case.

A. Strong-potential regime

We first compare the spectrum generated by the full
Schrödinger equation (1) to the results of a TB approximation
similar to the one used by Hofstadter. We thus choose a fairly
deep modulation potential,

U = −V0 ≡ −8.4 meV. (15)

We obtained the band structure and DOS at zero magnetic
field [see Fig. 1(c)] by numerically solving the corresponding
single-particle Schrödinger equation. We then fitted the TB
model Eq. (12) to each of the lowest three bands [black dashed
lines in Fig. 1(c)], and employed the Peierls substitution to
obtain the fractal energy spectra shown in Fig. 1(d). The fitting
procedure was carried out over a regular grid of k points
spanning the first Brillouin zone shown in Fig. 1(b). It was
found that the lowest band [n = 1 in Fig. 1(c)] required only
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FIG. 2. (Color online) Full numerical calculation. Magnetic
energy spectrum (DOS and Hall conductance σ

gap
xy ) for the lowest

six bands of the of the square Fermi well lattice with parameters (14)
and U = −V0, calculated by numerically solving Eq. (6). The color
coding and labeling is as in Fig. (1). (b) Magnified portion of the
lowest band indicated by the dashed box in (a). (c) Energy spectrum
of an isolated Fermi well potential, Eq. (13). It strongly resembles
the spectrum of a parabolic potential (the Fock-Darwin spectrum38).

nearest-neighbor hopping integrals in the TB band model for
an adequate fit, and thus yields a spectrum corresponding to
that obtained by Hofstadter2 [left panel of Fig. 1(d)]. The
second and third bands required up to third-nearest-neighbor
hoppings, which lead to significantly distorted versions of
Hofstadter’s butterfly, shown for the second band on the right
panel of Fig. 1(d). The spectrum of the third band is similar to
the second and is not shown. Our findings qualitatively agree
with the results of Ref. 37.

In Fig. 2(a), we show the energy spectrum of the six lowest
bands, as obtained by numerically solving the full magnetic
eigenvalue problem, Eq. (6), using the scheme outlined in
Sec. III A.

A maximum magnetic unit cell size of Q = 32 was
employed in the calculation, and 48 × 48 grid points for the
functions uθ

j (r) were used per geometric unit cell (i.e., 6q states
uj on a q × 48 × 48 grid had to be calculated at the field αP =
P/Q = p/q, where p and q are relative prime, see Sec. III B).
For comparison, the spectrum of an isolated potential well
is plotted in Fig. 2(c). It bears a strong resemblance to the
Fock-Darwin (FD) spectrum38 of a parabolic well; we will thus
refer to these states as “FD states” in the following. It can be
seen in Fig. 2(a) that in the periodic system the FD states of the
isolated well are broadened into bands with a fractal internal
structure that is qualitatively well described by the Hofstadter
butterfly. In the exact result, the periodicity of the Hofstadter
spectrum is superimposed onto the field dependence of the
corresponding FD state; this field-dependence is not taken into

235429-4



TWO-DIMENSIONAL BLOCH ELECTRONS IN . . . PHYSICAL REVIEW B 87, 235429 (2013)

0 1 2 3 4
0.0

0.1

0.2

0.3

0.4

E
ne

rg
y

E
−

U
[V

0
]

(a) U = −0.06 V0

0 1 2 3 4
0.1

0.2

0.2

0.4

0.5
(b) U = −0.13 V0

0 1 2 3 4
0.1

0.2

0.3

0.4

0.6
(c) U = −0.26 V0

0 1 2 3 4
0.1

0.2

0.4

0.5

0.7
(d) U = −0.49 V0

Flux quanta per unit cell (α)

L0

123

L1

L2

123

0 0

-1

L0

L1

L2

L0

0

L1

-1

F0 L0

0 F0

F1

F2

T

T

123 1

FIG. 3. (Color online) Energy spectra for different strengths of the modulation potential, ranging from a “Landau-like” system of nearly
free electrons [U = −0.06 V0, (a)] to a moderately deep potential [U = −0.49 V0, (d)] already resulting in a “Fock-Darwin”-like spectrum.
Energies and modulation potentials U are given in units of V0, the depth of the modulation potential used to generate Fig. 2. Gaps are color
coded and labeled with their corresponding Hall conductance as in Fig. 1. Landau levels are denoted by L1,L2, . . . , Fock-Darwin-like states
F0,F1, . . . . The dotted line encloses the broadened lowest Landau level. The label “T” indicates the triangular cluster of states referenced in
the text.

account in the TB model with constant (i.e., field-independent)
hopping integrals. In general, higher energy levels, having
more extended wave functions, undergo larger broadening
at a given flux value. Conversely, bands become narrower
with increasing field, as their wave functions become more
spatially localized, tending to Landau levels in the limit of
high field intensities. In the TB model, the main effect of
increasing the second and third nearest-neighbor hoppings is
a distortion of the butterfly that opens a gap at flux strengths
of αj = j + 1/2, with j ∈ Z, indicated by the vertical (red)
dotted lines in the butterflies in Fig. 1(d). This behavior is
also present in the exact results, compare regions (4)–(5) or
(7)–(8) in Fig. 2(a). The gap widens for higher-energy bands,
consistent with the TB approximation, where such bands need
to be modeled by larger hopping integrals to more distant
neighbors. The gap decreases again with increasing field due
to the stronger localization of the wave functions, an effect
that is not included in the TB description with B-independent
hopping. Band crossings, which are not described within the
single-band Peierls approximation, are an interesting subject
for future studies: the narrow third FD band seems to disrupt
the butterfly pattern of the broader bands it crosses in regions
(3) and (6), but does not seem to exert any noticeable effect in
region (9). At higher energies [see region (10)], where multiple
bands cross, the resulting fractal spectrum can assume a form
that is very different from the original Hofstadter butterfly.

B. Intermediate-potential regime

We now explore the evolution of the spectrum as the
potential is changed from nearly flat (strong field limit) to
highly modulated (strong potential limit). The intermediate
stages of this evolution are not accessible to the approximate
methodologies hitherto employed. We use the square lattice
potential with the parameters given in Eq. (14), but change
the well depth U . We start with a very shallow potential
(U = −0.06 V0), which corresponds to a Landau-like system
with nearly-free electrons in a magnetic field. The resulting
spectrum is illustrated in Fig. 3(a); it exhibits the typical

“Landau fan” form, with slightly broadened Landau levels
(LLs) that display an internal fractal structure of minigaps
(most evident in the lowest level, L0). The Hall conductance
between LLs increases monotonically in steps of e2/h,
consistently with the integer quantum Hall effect. Furthermore,
an emerging white gap (σ gap

xy = 0) can be observed at low field
(α = 0 − 1, E ≈ 0.11 V0). When the potential modulation is
increased to U = −0.13 V0 [see Fig. 3(b)] this gap is seen to
widen further, practically cutting off a low-energy triangular
section (marked “T” in the figure) from all LLs Ln with n > 0.
At α = 1, the upper-right tip of this triangular cluster of states
retains a tenuous link to the broadened L1 Landau band, at
the position indicated by the blue arrow. At the same time,
the minigaps at α � 1 in the lowest Landau band L0 have
broadened further, to the point where the band is only held
together by a narrow subband at α = 1, indicated by the red
arrow. The Hall conductance in the gap between L0 and L1

at α = 1 is still σ
gap
xy = 1. However, upon further increasing

the modulation strength, the gap first closes and then reopens
with the above links reversed: at U = −0.26 V0 [see Fig. 3(c)],
the tip of the triangular cluster is now connected to the lowest
miniband of L0 (blue arrow), while the rest of the L0 miniband
is connected to L1 (red arrow). At the same time, the gap has
changed its character to σ

gap
xy = 0, resulting in the first clearly

discernible FD-like band F0, separated from all higher energy
states by an unbroken white gap. Most of F0 is formed from the
lowest miniband of the LL L0, except for the triangular cluster
of states in α < 1, which originates from higher LLs. The
process of formation of the first FD band (F0) that is incipient
at α = 1 in Fig. 3(b) can be seen to repeat itself at α = 2 for the
second FD band (F1) [Fig. 3(c), green and purple arrows] and
at α = 3 for the third FD band (F2) [see Fig. 3(d)]. The gradual
transformation from LLs to FD-like bands thus proceeds by
the reconnection of minibands from one broadened LL to those
of neighboring LLs. This rearrangement process fragments the
large triangular gaps between LLs in the weak potential limit
into minigaps encapsulated by the emerging FD-like bands. As
a result, the FD states F0, F1, F2 in Fig. 3(d) are composed of a
low-field section that originates from higher LLs (triangle T in

235429-5



S. JANECEK, M. AICHINGER, AND E. R. HERNÁNDEZ PHYSICAL REVIEW B 87, 235429 (2013)

case of F0, one Hofstadter butterfly segment plus a triangular
cluster in case of F1, etc.), and a high-field section that is one
miniband of the lowest LL L0.

V. CONCLUSIONS

The above results show that with the method presented here
it is possible to perform exact calculations of the spectrum
of independent electrons in a 2D periodic potential and
constant perpendicular magnetic field. The same technique
is readily applicable to solve the Kohn-Sham equations of
density functional theory (DFT), which are expected to provide
a reasonable description at least for weakly correlated elec-
tron systems. Experimental techniques have recently become
available to directly probe the local DOS in 2DEGs on
surfaces in a perpendicular magnetic field using scanning
tunneling spectroscopy, making possible the detection of
spatial features of some LLs,39 and even measuring their
response to a 1D periodic potential due to surface buckling.40

Moiré superlattices5 constructed from layers of hexagonal BN
and graphene have very recently been shown6,7 to hold promise
as systems in which the spectral properties of the 2DEG
subject to a periodic potential and a perpendicular magnetic
field can be probed with experimentally accessible magnetic
field intensities. Such developments may presently bring
about additional possibilities of experimentally determining
the spectral features of the 2DEG subject simultaneously
to a periodic potential and a perpendicular magnetic field,
contrasting them with the predictions reported herein. We
anticipate that the computational procedure described here
will be a valuable tool in the analysis and interpretation of
such experiments.
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APPENDIX: MAGNETIC TRANSLATION GROUP
AND GENERALIZED BLOCH THEOREM

To find symmetry operations that commute with the
Hamiltonian H in Eq. (1), we start by defining the conjugate
momentum operator, �̄ = p + eĀ(r), where Ā(r) is the conju-
gate vector potential. For linearly gauged vector potentials, i.e.,
A(r) = J r with a constant JacobianJ , the conjugate potential
is Ā(r) ≡ J T r. A more general definition can be found in the
review article.27 With the conjugate momentum operator, we

define a family of magnetic translation operators,25–27

TA(Rn) ≡ exp (−iπjk α) exp

(
i

h̄
�̄ · Rn

)
, (A1)

where α = 1
2π

e
h̄

(a × b) B is the magnetic flux through one unit
cell in units of the flux quantum φ0 = h/e, and Rn is given
by Eq. (2). These operators can be interpreted as translations
with an additional gauge transform to reverse the effect of the
translation on the vector potential. It is fairly straightforward
to show that they commute with the Hamiltonian (1), and have
the property

TA(R2)TA(R1) = exp (i2πj1k2 α) TA(R1 + R2), (A2)

where R1 = j1a + k1b and R2 = j2a + k2b.27 The operators
TA(Rn) thus do not form a proper group, but a “group up to a
phase factor”. The situation is considerably simplified in the
case of a rational field, α = p/q, where p and q are relatively
prime integers. In this case, the phase factor in Eq. (A2) is a
qth root of unity for any lattice translation, and the product of
the cyclic group of qth roots of unity and the set of operators
TA(Rn) form a group, the so-called magnetic translation group
G.27 The limit of irrational flux has also been studied by several
authors, see, e.g., Ref. 41.

We now choose a subset of the lattice Rn, Eq. (2), such that
its (larger) primitive cell encloses a number p of flux quanta,
e.g.,

Sn = ja + k(qb), n = (j,k) ∈ Z2. (A3)

The phase factor in Eq. (A2) is then equal to one on this
magnetic lattice, and the operators TA(Sn) form a normal
Abelian subgroup of G, from which its irreducible standard
representations can be calculated.27 The zero-field Bloch
situation is now almost restored: the unitary operators TA(Sn)
fulfill TA(S2)TA(S1) = TA(S1 + S2). Their eigenvalues thus
must be of the form

TA(Sn)φ(r) = eiθSnφ(r) (A4)

with a constant vector θ , and we use the Bloch ansatz φ(r) ≡
eiθruθ (r) for their eigenfunctions. For the subsequent calcula-
tions, we use an orthorhombic lattice formed by vectors a =
a ex,b = b ey and Landau gauge, A(r) = Bxey . Substituting
the definition of the magnetic translation operators, Eq. (A1),
into Eq. (A4) yields the generalized Bloch condition27 for the
functions uθ (r),

uθ (r + S) = exp

(
− i

e

h̄
BSxy

)
uθ (r), (A5)

where the magnetic crystal momentum θ can be restricted
to the first magnetic Brillouin zone−π/a � θx � +π/a,
−π/(qb) � θy � +π/(qb). As H commutes with the mag-
netic translations TA(Sn), we can seek its eigenstates among
the family of functions φ(r) = eiθruθ (r), see Eq. (A4). The
calculation of the eigenstates of H is thus reduced to a finite
domain, namely the first magnetic Brillouin zone.
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