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Abstract

Background: Metagenomics is the genomic study of uncultured environmental samples, which has been greatly
facilitated by the advent of shotgun-sequencing technologies. One of the main focuses of metagenomics is the
discovery of previously uncultured microorganisms, which makes the assignment of sequences to a particular
taxon a challenge and a crucial step. Recently, several methods have been developed to perform this task, based
on different methodologies such as sequence composition or sequence similarity. The sequence composition
methods have the ability to completely assign the whole dataset. However, their use in metagenomics and the
study of their performance with real data is limited. In this work, we assess the consistency of three different
methods (BLAST + Lowest Common Ancestor, Phymm, and Naïve Bayesian Classifier) in assigning real and
simulated sequence reads.

Results: Both in real and in simulated data, BLAST + Lowest Common Ancestor (BLAST + LCA), Phymm, and Naïve
Bayesian Classifier consistently assign a larger number of reads in higher taxonomic levels than in lower levels.
However, discrepancies increase at lower taxonomic levels. In simulated data, consistent assignments between all
three methods showed greater precision than assignments based on Phymm or Bayesian Classifier alone, since the
BLAST + LCA algorithm performed best. In addition, assignment consistency in real data increased with sequence
read length, in agreement with previously published simulation results.

Conclusions: The use and combination of different approaches is advisable to assign metagenomic reads.
Although the sensitivity could be reduced, the reliability can be increased by using the reads consistently assigned
to the same taxa by, at least, two methods, and by training the programs using all available information.
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Background
Metagenomics is an emerging field that enables the gen-
omic study of environmental samples, allowing the identifi-
cation and characterization of bacterial and viral genomes
previously unknown given the difficulty or impossibility
to culture most species. The capacity of studying envi-
ronments from a genomic point of view afforded by
metagenomics is unprecedented [1]. A crucial step in
metagenomics is sequence assignment, both taxonomic
and functional: sequence reads need to be allocated to a
genomic unit, or, at least, to a particular taxonomic
level, and, in a further step, they may be mapped to a
gene or set of genes with known functions. Different algo-
rithms have been devised to assign sequences to taxonomic
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levels; they are based on sequence similarity, composition,
phylogeny, or a combination of them [2]. However, at least
two issues make taxonomic assignment difficult. First, the
read length obtained by next generation sequencing tech-
nologies is not long enough to allow the original methods
to properly assign the reads to low taxonomic levels (such
as genus or species) due to the low sequence divergence
between closely related taxonomic groups [3]. And sec-
ond, since reference genomes are not available for many
uncultured organisms, an incorrect assignment (or even
no assignment at all) may be produced when no closely
related species have been previously identified. The main
approaches for assignment are based on sequence similar-
ity and sequence composition. Packages using the former
approach include MG-RAST [4] and MEGAN [5], while
the Naïve Bayesian Classifier (such as implemented in Frag-
ment Classification Package, FCP) [6] and the interpolated
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Markov model classification (IMM-based), used by Phymm
[7] are based on composition similarity. The performance
of assignment programs has been assessed using simulated
and well-known experimental data [2,3,6-8]. In the case of
composition-based programs, these methods can classify
all the reads [2], and report the associated likelihood of
the read to be assigned to the different categories. How-
ever, there are few metagenomic studies where these
methods were used, e.g. [9-11].
To assess the relative performance of composition- vs.

sequence-similarity methods, here we compare the Markov
Model based (implemented in Phymm) and Bayesian-based
(implemented in FCP) approaches against the classical
pair wise sequence alignment (BLAST) in simulated meta-
genomic data and in data newly generated in our group.
Our aim is to clarify which strategy could be the best to
deal with taxonomic read assignment in metagenomic
data.

Results & discussion
Once metagenomic reads are obtained, taxonomic as-
signment is a crucial step that may determine subse-
quent analyses. Similarity-based approaches are the most
commonly used but, due to the lack of reference se-
quences in the publicly available databases, a huge per-
centage of sequences are not assigned correctly or not
assigned at all. For instance, between 23.5% and 29.6% of
the reads were not assigned in the intestinal microbiome
of the dog [12]. In our simulated data, using the BLAST
+ LCA (Lowest Common Ancestor) method imple-
mented in FCP, between 0% and 3.65% of reads were not
assigned at a domain level. Since all the sequences used
are present in databases, it is not surprising that almost
all reads were assigned. However, in two mouse skin
metagenome real datasets (see Methods), 31.7% and
37.1% of the reads could not be assigned to a taxonomic
domain. Thus, around one third of reads were of un-
known origin in real data, although they are likely to be
bacterial or viral, since the host genome is well character-
ized. As the reference databases grow, it is expected that
the proportion of unassigned fragments will decrease.
The new, composition-based algorithms such in Phymm

or FCP routinely classify all the reads [2]. However, they
carry the risk of incorrectly assigning reads coming from
unknown taxonomic units that may be closely related to
some of the references. In order to deal with those pos-
sible incorrect assignments, a similarity assignment from
BLAST is added to FCP and Phymm to provide some de-
gree of reliability to the results obtained by their core
composition-based algorithms [6,7]. And still, since all the
methods rely on previously trained databases or on com-
paring their classifiers against known data, the biases
should not be ignored, and wrong assignments could
occur. Indeed, the performance of each method, in terms
such as sensitivity and precision, has been investigated
both with simulated data and with well-known data-sets
separately [2,3,6,7], but, as far as we know, the analysis of
the consistency of assignments by different methods with
simulated and new data is limited.

Consistency, sensitivity and precision in simulated data
We simulated different metagenomic datasets with dif-
ferent features (Additional file 1: Table S1) to assess the
performance of the programs in diverse scenarios. Given
that different simulation algorithms may mimic different
environment scenarios, three different methods were
used. We constructed four metagenomic environments
with Metasim and two with iMESS, which are the most
popular metagenomic simulation algorithms. Four add-
itional datasets were simulated with a custom script de-
veloped in our lab to facilitate the use of the homemade
databases and the creation of different scenarios. Ac-
cordingly, both Metasim and iMESS simulations were
compared with our constructed datasets to test the ro-
bustness of our algorithm. Finally a set called “Synthetic”
was constructed using 3 genomes of hypothetical bacteria
constructed through a phylogenetic-based approach. Bac-
terial genomes were constructed with a script developed
in our laboratory (Garcia-Garcerà, M. Manuscript in prep-
aration). To deal with different complexity scenarios, two
different levels of complexity (regarding the number of
initial species) were used in our algorithm. In the first one,
only bacteria were used, limiting the number of variants
to the number of already sequenced bacteria. In the sec-
ond situation, we included plasmids and other viral
genomes (independently of their environmental association),
constructing genomic sets with a much higher complexity.
In the four simulated scenarios, a similar trend was

observed (Figure 1). At domain level, the three assign-
ment algorithms matched most of the reads to the same
taxa (77.7% of reads were assigned to the same taxa for
the “All genomes” set and 68.7% for the “Bacterial
genomes” set). However, this consistency of assignment
dropped dramatically in shallower taxonomic levels: no
reads were assigned to the same species in the “All
genomes” dataset and only 0.8% in the “Bacterial genomes”.
The major difference between the “All genomes” and
“Bacterial genomes” sets was the number of “no rank” as-
signments (at phylum level, 52.4% of reads were assigned
as “no rank” in the “All genomes” dataset and 8.4% in the
“Bacterial” dataset, respectively). These differences in the
unranked assignments and the inconsistencies between
the assignments by different methods may probably be
due to the presence of viruses, which tend to be more
variable and, then, more difficult to assign. Consistency on
the assignments of dominant species datasets compared
to their no-dominant counterparts was quite similar, e.g.
at phylum level, reads assigned by all three methods to the
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Figure 1 Number of reads assigned in each taxonomic level in simulated and real data. Sim, simulated data; Real, real data. NBC, Naïve
Bayesian Classifier; LCA, Lowest Common Ancestor of BLAST results; Confused, genera that are known to be systematically confused between
Phymm and Naïve Bayesian Classifier [6]. In the case of the Synthetic set, genus and species levels are not applicable since the “evolved”
genomes were based on these or higher levels.
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same taxa was 19.2% in “All genomes” and 19.8% in “All
genomes - Dominant”. Since these are simulated datasets,
the consistency results could be separated between true
and false positives (Additional file 2: Figure S1). The reads
assigned to the same taxa by the three approaches used
were defined as correctly assigned. In shallower taxonomic
levels, the number of correctly assigned reads decreased,
and the assignments were more discordant, especially
in those that were wrongly assigned (Additional file 2:
Figure S1). In the “Synthetic” set, the agreement between
the three programs was higher at domain and phylum
levels and in shallower levels, such as class or order,
Bayesian Classifier and BLAST + LCA agreed in the taxo-
nomic assignment of reads (Figure 1).
True-positive measures (sensitivity and precision) are

shown in Table 1. Broadly, Phymm and NBC were less
sensitive and precise than BLAST + LCA or than a
combined strategy (where a read was assigned to a
taxon if at least two methods converged). In addition,
sensitivity and precision at genus level by Phymm and
NBC were within the range previously described [2].
Thus, the use of a combined strategy improved the per-
formance of assignments. However, this improvement
was due to the effect of BLAST + LCA. In a more realis-
tic scenario, where a high number of reads was not
assigned by BLAST + LCA (that is, in a scenario where
we find taxonomic units not previously described or
without representatives in the reference database), the
improvement would not be so remarkable. The results
were very different between methods (Table 1) in the
“Synthetic” dataset, that is, a metagenome simulation of
three synthetic genomes (see Methods). The ability to
assign correctly “evolved” genomes of a given taxo-
nomic group was better in the case of BLAST + LCA
(sensitivity 45.7% and precision 61.43% at class level)
and poorer for PhymmBL (both sensitivity and preci-
sion 5.0% at class level). This lack of sensitivity in the
artificially constructed genomes could be a result of the
lack of reference sequences on the original databases
used to train the programs. This result points out the
importance of training to correctly assign metagenomic
reads [2].



Table 1 Percentage sensitivity and precision in simulated datasets

Sensitivity Precision

Phymm Bayesian BLAST + LCA Combined Phymm Bayesian BLAST + LCA Combined

Domain

All genomes 79.45 98.41 98.97 99.16 79.46 98.41 98.97 99.90

All genomes (dominant) 87.36 100 100 100 87.36 100 100 100

Bact genomes 73.05 87.98 96.31 91.28 73.05 87.98 96.32 92.80

Bact genomes (dominant) 74.08 100 100 100 74.08 100 100 100

Synthetic 89.46 99.99 97.99 99.99 89.46 100 100 100

Phylum

All genomes 22.37 39.65 47.60 41.18 39.65 78.99 93.76 95.46

All genomes (dominant) 19.20 31.16 31.16 31.16 85.31 100 100 100

Bact genomes 44.67 64.59 92.83 75.11 53.75 68.03 92.84 94.66

Bact genomes (dominant) 25.22 49.81 100 53.40 34.04 49.81 100 84.10

Synthetic 23.13 40.12 49.73 40.31 23.13 40.12 66.87 40.31

Class

All genomes 21.45 39.30 47.51 40.46 30.40 78.31 93.58 94.91

All genomes (dominant) 15.12 31.16 31.16 31.16 68.66 100 100 100

Bact genomes 34.24 60.43 95.22 71.72 42.65 63.65 95.23 94.79

Bact genomes (dominant) 25.22 25.82 100 43.78 34.04 25.82 100 91.41

Synthetic 5.03 30.56 45.69 30.56 5.03 30.56 61.43 30.56

Order

All genomes 26.55 38.23 47.60 40.45 39.40 78.32 93.58 94.91

All genomes (dominant) 15.12 31.16 31.16 31.16 67.41 31.16 31.16 31.16

Bact genomes 22.24 56.07 95.22 71.72 42.64 63.64 95.22 94.79

Bact genomes (dominant) 0 41.40 100 41.40 0 41.40 100 78.45

Synthetic 4.7 30.56 45.69 30.56 4.7 30.56 61.43 30.56

Family

All genomes 25.31 38.15 47.60 39.37 32.86 39.15 48.84 45.67

All genomes (dominant) 15.12 31.16 31.16 31.16 51.82 31.16 31.16 31.16

Bact genomes 20.18 50.89 95.22 66.06 26.69 56.87 95.22 92.83

Bact genomes (dominant) 0 41.40 100 41.40 0 41.40 100 78.45

Synthetic 0 30.56 45.69 30.56 0 30.56 61.43 30.56

Genus

All genomes 25.30 37.97 47.60 39.17 32.37 38.95 48.84 45.56

All genomes (dominant) 15.12 31.16 31.16 31.16 50.41 31.16 31.16 31.16

Bact genomes 15.56 45.56 95.22 54.23 17.44 46.18 95.23 91.36

Bact genomes (dominant) 0 8.22 100 8.22 0 8.22 100 41.97

Synthetic NA NA NA NA NA NA NA NA

Species

All genomes 17.94 36.44 24.46 23.03 17.94 36.44 24.46 32.89

All genomes (dominant) 0 31.16 10.86 10.86 0 31.16 10.86 13.62

Bact genomes 13.12 39.75 73.71 32.96 13.12 39.75 73.72 92.45

Bact genomes (dominant) 0 8.22 100 8.22 0 8.22 100 90.18

Synthetic NA NA NA NA NA NA NA NA

NA, not applicable. In the case of the Synthetic set, genus and species levels are not applicable since the “evolved” genomes were based on these or higher
levels. The features of each dataset is explained in Methods and their descriptive and diversity parameters in Additional file 1: Table S1.
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To assess the robustness of the results obtained with
our script to generate simulated metagenomic data and
the use of different scenarios, MetaSim [13] and iMESS
were used to simulate metagenomic datasets. However,
the results obtained in those simulations were very simi-
lar between them and more consistent than the results
obtained in the “Bacterial genomes” dataset (Additional
file 3: Figure S2). For example, at phylum level, the three
programs assigned to the same taxa 51.33% of reads in
“Metasim 1” set, 51.25% in “Metasim 2” set, 49.86% in
“Metasim 3” set and 51.56% in “Metasim 4”, compared
to the 33.68% of convergent assignments obtained in the
“Bacterial” dataset. In the case of sensitivity and preci-
sion a similar trend was observed (Additional file 1:
Table S1).

Consistency in real data
The number of consistent assignments in both samples
was quite similar and it depended on the depth of taxo-
nomic level (Figure 1). At domain level around half of
the reads were consistently assigned to the same taxa by
the three approaches used, at phylum it decreased to
around a quarter, and at species level there were only
few agreements. The main difference compared to simu-
lated data is that BLAST + LCA does not improve the
assignment, perhaps because the misassignments are
due to the lack of representatives in the reference data-
bases, since previously uncharacterized taxonomic units
may be present in the environment sampled.
In real data, ~12%-15% “no rank” assignments were

consistently assigned by all three methods. This percent-
age may reflect truly uncharacterized individuals, since
skin is the least studied ecosystem on the body, given its
extension and the difficulty to reach the commensal
community. Moreover, 11 genera are consistently con-
fused between Phymm and NBC [6], and we have labeled
them separately as “confused”; these genera comprised
4.2% of sample A and 4.1% of sample B in our real
datasets.
Regarding the “contaminant” dataset (Figure 1), with

the exception of the domain level, most reads were
assigned to different taxonomic group or to the “no
rank” group. Only 11.5% of the read were consistently
assigned by Phymm and NBC to the same bacterial or
viral taxa. Those reads consistently assigned kept some
degree of uncertainty since they are differently assigned
by the third method, and, more importantly, were assigned
as “contaminants” while they would be considered as part
of the commensal community.
In general, it is a good approach to take into account

the reads consistently assigned to the same taxa by, at
least, two programs but being careful with those
assigned by Phymm and NBC but not by BLAST + LCA.
One may consider that BLAST + LCA unassignment or
missassignment indicates the lack of a representative
taxonomic unit in the reference databases, but still it
should be taken carefully. Given the low consistency, a
large fraction of the reads were assigned to different taxa
by each program. The proportion of differently assigned
reads correlated negatively with phylogenetic depth,
from 11-13% at domain level to 57-79% at species level
in real data (Figure 1). At domain level, Phymm tended
to assign as viruses the reads that NBC assigns as bac-
teria (Table 2), at phylum the most repeated confusions
were observed in Cyanobacteria (Phymm) with Firmi-
cutes (NBC), Firmicutes with Proteobacteria and Proteo-
bacteria with Firmicutes (Table 2). The proportion of
reads that are assigned to different taxa could be used as
guiding information at phylum level but it should be
taken carefully.

Effect of read length in consistency in real data
Although 88.7% and 86.1% of reads (in samples A and B,
respectively) were assigned consistently at domain level
and 76.9% and 71.9% at phylum, we observed a correl-
ation between the consistency of the assignment and the
read length (Figure 2). Combining both datasets and
classifying them by size, we observe a tendency of im-
proving consistency at lower taxonomic levels: to reach
a 75% agreement by at least two approaches, a 83 bp
length was needed at domain level, 254 bp at phylum,
355 bp at class, 430 bp at order, 440 bp at family and
448 bp at genus. Like in composition-based methods, in
BLAST searches the limitation of assignment by read
length has been previously suggested [14]. We extend
this suggestion to all methodologies. Thus, in the design
of metagenomic projects where proper assignment is
crucial, these limitations should be taken into account to
choose the sequencing platform in order to achieve the
objectives of the study.

Performance of scores and cut-off values of each program
in real data
PhymmBL provides a confidence score for assignments
that, although it is not associated with a statistical sig-
nificance, it is informative, and ranges from 0 (worst) to
1 (best) [7]. Since in one of the samples we kept the con-
taminant reads (a sort of false positives), the average
value given by PhymmBL of each category of reads at
phylum level could be compared (Figure 3): the average
for contaminant reads was 0.8413 (±0.0211), for reads
assigned to different taxa by PhymmBL and NBC it was
0.8380 (±0.02712), for reads with no rank assignment at
phylum it was 0.8316 (±0.0366) and for reads assigned
to the same taxa it was 0.8375 (±0.0225). Surprisingly,
the highest confidence value was associated to the con-
taminant dataset. Differences between categories were
statistically significant (ANOVA, p < 2 × 10−16).



Table 2 Summary of assignments of reads that were not assigned to the same taxa by phymm and NBC

A sample B sample

Assigned by Phymm as Assigned by NBC as % Assigned by Phymm as Assigned by NBC as %

Domain Virus Bacteria 89.92 Virus Bacteria 87.5

Archaea Bacteria 3.57 Virus Archaea 4.6

Virus Archaea 2.69 Bacteria Virus 3.72

Bacteria Archaea 2.08 Archaea Bacteria 2.46

Bacteria Virus 1.74 Bacteria Archaea 1.65

Archaea Virus 0.06

Phylum Cyanobacteria Firmicutes 15.36 Proteobacteria Firmicutes 15.75

Firmicutes Proteobacteria 15.34 Firmicutes Proteobacteria 14.62

Proteobacteria Firmicutes 13.55 Cyanobacteria Proteobacteria 9.51

Cyanobacteria Proteobacteria 8.47 Proteobacteria Bacteroidetes 5.26

Firmicutes Super Bacteroidetes/Chlorobi group 3.91 Proteobacteria Cyanobacteria 4.85

Proteobacteria Super Bacteroidetes/Chlorobi group 3.56 Firmicutes Cyanobacteria 4.76

Proteobacteria Cyanobacteria 3.05 Cyanobacteria Firmicutes 4.26

Firmicutes Cyanobacteria 2.74 Proteobacteria Super Bacteroidetes/Chlorobi group 3.14

Firmicutes Fusobacteria 2.56 Firmicutes Super Bacteroidetes/Chlorobi group 2.93

Proteobacteria Bacteroidetes 2.16 Proteobacteria Actinobacteria 2.27

Class Bacilli Gammaproteobacteria 10.75 Alphaproteobacteria Gammaproteobacteria 6.43

Bacilli Clostridia 6.54 Gammaproteobacteria Bacilli 5.59

Gammaproteobacteria Bacilli 6.36 Bacilli Gammaproteobacteria 5.46

Bacilli Εproteobacteria 5.94 Gammaproteobacteria Betaproteobacteria 4.97

Gammaproteobacteria Betaproteobacteria 4.73 Gammaproteobacteria Alphaproteobacteria 4.38

Gammaproteobacteria Clostridia 4.33 Gammaproteobacteria Actinobacteria (class) 4.37

Negativicutes Bacilli 2.73 Alphaproteobacteria Betaproteobacteria 4.2

Bacilli Flavobacteria 2.65 Bacilli Εproteobacteria 3.71

Alphaproteobacteria Clostridia 2.5 Gammaproteobacteria Εproteobacteria 2.56

Bacilli Fusobacteria (class) 2.35 Gammaproteobacteria Clostridia 2.51

Percent of reads differently assigned at this taxonomic level.
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On the other hand, one may use the “ε value” as a cut-
off value of consistency with BLAST + LCA. The com-
bination of the Bayesian algorithm with the BLAST +
LCA is performed in order to obtain more significant re-
sults [6]. When an ε value of 0 is used, without BLAST +
LCA combination, almost all the reads are assigned in
both samples at phylum level (Figure 4) and the number
of assigned reads decreased similarly in both samples
with higher ε values. In the combined BLAST + LCA +
Bayesian methods, when the ε value is 0, only a third of
the reads are assigned. Besides, regarding contaminants,
the number of contaminant reads assigned decreases
with the ε value in the Bayesian classification. In the case
of BLAST + LCA + Bayesian, contaminant reads were not
classified at all. Then, it seems that the use of BLAST +
LCA reduces the false-positive assignments as well as the
overall assignments, and the use of ε value could be
omitted. In the case of only Bayesian assignment, the ε
value is necessary. Based on previous studies, the recom-
mended ε value is 10−5 [6], at which point false positives
match true positives. Therefore, a higher value of ε should
be used to increase sensitivity without increasing the false
positive rate. For a conservative approach, an ε value of
10−10 [6] is recommended, but it could be lower without
raising the number of false positives at phylum level. In
any case, the number of reads assigned to the same taxa
by Phymm and NBC was almost similar regardless the ε
value in the purely Bayesian approach and in the combined
BLAST+ LCA +Bayesian approach (Figure 4).

Conclusions
After analyzing the metagenomic assignment with three
different approaches, since each one has its biases and
uncertainties, the use and combination of different
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Figure 2 Proportion of reads assigned to the same taxa by, at least, two methods according to length of reads at different taxonomic
levels. The red line shows the polynomial regression.
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approaches is advisable, as it was advised in the use of
gene prediction methods in metagenomic samples
[15]. We recommend to use the reads consistently
assigned to the same taxa by, at least, two methods,
whereas the reads that are assigned to different taxa
should be used with caution and taking into account
the lack of consistency. New approaches performing a
combination of methods, including Markov models,
Bayesian and similarity-based algorithms may improve
the confidence in taxonomic assignment, while the
expansion of the reference databases will reduce the
level of uncertainty.
Methods
Sampling
Two mouse skin samples were collected and processed
according to the protocol we previously developed [16].
Mice belonged to the C57BL/6J strain, they were unre-
lated and were euthanized according to a protocol ap-
proved by a local IRB board (Parc de Recerca Biomèdica
de Barcelona, Animal Research committee). DNA col-
lected was then sheared by sonication using Bioruptor™
(Diagenode). 454™ libraries were prepared according to
Zheng et al [17]. Sequencing was performed using an
FLX Titanium platform. These samples were collected
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as part of a larger project to analyze the skin microbiota
in health and disease [16]. These two samples were used
as validation for a new methodology produced in our la-
boratory. Real data has been deposited to MG-RAST
database (accession numbers 4496968.3 and 4496969.3).
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Figure 4 Performance of two programs implemented in
fragment classification package in different combinations and
conditions at phylum level. NBC, Naïve Bayesian Classifier; LCA +
NBC, combination of results from LCA based on BLAST search and
Naïve Bayesian Classifier. The optimal ε value suggested by the
authors is 10−5 [6].
Simulations
Three methods were chosen to simulate the metagenomic
environments: first a customized perl script was con-
structed to perform simulations based on expected rar-
efaction curve slopes, maximum diversity H’ index, and
maximum number of reads. This script generates metage-
nomic datasets using the existing databases of reference
genomes [18] and uses the H’ index and the expected
slope of the rarefaction curve to design the metagenome.
The script uses the following pipeline: according to the
user-selected variables, the algorithm assigns the probabil-
ities for each taxon to exist on the environment according
to the H’ index. With the expected number of reads and
the maximum expected number of taxa on the environ-
ment, the script constructs the line between point zero
(0,0 co-ordinates in the diversity space) and the maximum
sampling point (number of expected reads, number of ex-
pected taxa). With the number of reads and the probabil-
ity for each taxon to exist on the ecosystem, the algorithm
calculates the maximum linear point of the rarefaction
curve (the last point where the logarithm of species dis-
covery per read is linear), and with those three points
(point zero, maximum linear point, and maximum sam-
pling point), the method fits the curve to the expected
logarithmic equation. The script then randomly fragments
the selected genomes with a fragment size range from
350-600bp and randomly samples the expected number of
reads for each genome, according to the expected number
of taxa on each point of the rarefaction curve and applies
to each read the sequencing platform error rate (separat-
ing both homopolymeric region modification and point
mismatch). The script allows also to simulate environ-
ments according to the maximum threshold of sequences
for one species. In this case, four diversity scenarios were
simulated, each one with 60,000 reads, since in real data
the average number of reads was around 60,000: “All
genomes” set, where bacterial and viral genomes were
used and the maximum relative amount for species was
5%; “All genomes (dominant)” set, where bacterial and
viral genomes were used and the maximum relative
amount for a species was 80%; “Bacterial genomes” set,
where only bacterial genomes were used and a maximum
relative amount of 5%; and “Bacterial genomes (dominant)”,
where only bacterial genomes were used with a maximum
relative amount of 80%.
To test the consistency of results obtained by our script,

four simulations were constructed using Metasim [13]
using the default 454 generation option (Lognormal
Distribution Mean: 0.23; Lognormal Distribution Std.
Deviation: 0.15; Proportionality Constant for Std. Deviation:
0.15) and two simulations with iMESS using the following
conditions: Method A (Species Selection) including all
bacterial phyla to the selection without selection of gen-
ome size of GC content. We limited the most abundant
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species to 100 individuals. Given that our script used a
logarithmic distribution, the same model was used for
iMESS, with base e. We selected the 454 platform as se-
quencing method, with the Titanium read size (150-650
with mean at 350 and normal distribution) and an ex-
pected read count of 50K (equivalent to 1/16th of a plate).
The features and genomes and number of reads of the

six simulated datasets are shown in Additional file 1:
Tables S2, S3 and S4. The synthetic and simulated
datasets are provided in Additional files 4 and 5.
Finally, a set with synthetic genomes was built and

analyzed. Three synthetic genomes were built based on
Burkholderiales, Desulfovibrio and Thermacea known
genomes, and coding regions were simulated through
a hidden-Markov model-based sequence generation,
using a custom script (Garcia-Garcerà, M, manuscript
in preparation).

Informatic analyses
To assess the specificity and consistency of the different
programs, simulated data were used. In real data, reads
from the host were removed from the two metagenomic
samples of mouse (NBCI37/mm9 genome version) skin
using Deconseq [19] with the default options and
retaining bacterial/viral reads. For the latter, Deconseq
uses the genomes of bacteria and viruses described in
Additional file 1: Table S4, to calculate the read coverage
and alignment identity that is used to classify a specific
read as contaminant. Moreover, to measure the effect of
contaminants in metagenomic sequence assignment, the
reads assigned as contaminants were used to construct
an additional dataset. In total, 60,488 reads in Sample
A, 65,647 in Sample B and 39,114 in the Contaminant
dataset were analyzed. Overall, average read length was
374 bp.
BLAST [20], Phymm [7] and Naïve Bayesian Classifier

implemented in FCP [6] were used to assign the metage-
nomic reads in simulated and real data. BLAST searches
were carried out against a custom database constructed
using the following method: reference bacterial and viral
genomes and draft genomes were downloaded from the
NCBI FTP repository and concatenated in a single file.
The Fasta file including all genomes was formatted using
the formatdb software included in BLAST. This database
was used for all BLAST queries (Additional file 1: Table S4).
Results from BLAST were parsed with a Lowest Common
Ancestor (LCA) script implemented in FCP, using a cutoff
e-value of 10−5. In addition, Phymm and NBC were trained
with the same bacterial and viral data (Additional file 1:
Table S4). The results of both programs were improved
using BLAST results (PhymmBL and NB+BLAST pro-
grams, respectively). In addition, BLAST+LCA and Bayesian
Classifiers were parsed with FCP using different ε-values
(from 0 to 10−12).
The assignment of each read by the different programs
was compared to calculate the consistency of metage-
nomic assignments. The read were classified according to
the number of programs that produced the same taxo-
nomic assignment. In some cases, such as phyla in viruses,
a particular taxonomic level may not exist. Such situations
were labeled as “no rank”. Homemade scripts written in
PHP and Python were used to perform these comparisons.
The sensitivity (number of correct assignments/number of
sequences in the data set) and precision (number of cor-
rect assignments/number of assignments made) were cal-
culated as in [2]. These two parameters were applied to
each method used and to the combined assignment.
These scripts are available at https://github.com/koldogar-
cia/metagenomics.
The graphical representation of results and statistical

analyses were performed with the R language [21].
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