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The phase diagram of ice: A quasi-harmonic study based on a flexible
water model
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The phase diagram of ice is studied by a quasi-harmonic approximation. The free energy of all exper-
imentally known ice phases has been calculated with the flexible q-TIP4P/F model of water. The only
exception is the high pressure ice X, in which the presence of symmetric O−H−O bonds prevents its
modeling with this empirical interatomic potential. The simplicity of our approach allows us to study
ice phases at state points of the T –P plane that have been omitted in previous simulations using free
energy methods based on thermodynamic integration. The effect in the phase diagram of averaging
the proton disorder that appears in several ice phases has been studied. It is found particularly rele-
vant for ice III, at least for cell sizes typically used in phase coexistence simulations. New insight into
the capability of the employed water model to describe the coexistence of ice phases is presented. We
find that the H-ordered ices IX and XIV, as well as the H-disordered ice XII, are particularly stable
for this water model. This fact disagrees with experimental data. The unexpected large stability of
ice IX is a property related to the TIP4P-character of the water model. Only after omission of these
three stable ice phases, the calculated phase diagram becomes in reasonable qualitative agreement to
the experimental one in the T –P region corresponding to ices Ih, II, III, V, and VI. The calculation of
the phase diagram in the quantum and classical limits shows that the most important quantum effect
is the stabilization of ice II due to its lower zero-point energy when compared to that one of ices Ih,
III, and V. © 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4818875]

I. INTRODUCTION

Sixteen different crystalline ice phases have been identi-
fied so far in the phase diagram of water.1 In all phases, ex-
cept ice X, the water molecules are part of a network con-
nected by H-bonds. In most ice lattices there appears a unique
H-bond network that fills the whole volume. However, four
phases (ices VII, VIII, VI, and XV) are made of two iden-
tical and independent networks that interpenetrate one into
another. Within a H-bond network, each oxygen atom is co-
ordinated to four oxygen neighbors in a more or less distorted
tetrahedral arrangement. The protons are distributed accord-
ing to the Bernal-Fowler ice rules. They state that in a network
there must be one and only one proton between two adjacent
oxygen atoms and that each oxygen is part of two OH cova-
lent bonds characteristic of the water molecule.2 These rules
are compatible with either ordered or disordered spatial dis-
tributions of H atoms. In fact, order-disorder transitions have
been observed for most pairs of ice phases (Ih-XI, III-IX,
V-XIII, VI-XV, VII-VIII, XII-XIV). Only for H-ordered ice
II and H-disordered ices Ic and IV, the other member of the
corresponding pair has not been yet experimentally found.3

A comprehensive review of the calculation of free ener-
gies of water phases with the thermodynamic integration (TI)
method can be found in Ref. 4. The classical phase diagram
of water, simulated with the rigid TIP4P/2005 model, shows
a reasonable qualitative agreement to the experimental one, in

a)Electronic mail: ramirez@icmm.csic.es

particular in the complex region of stability of ices Ih, II, III,
V, and VI.5 The coexistence of these ice phases has been also
studied by quantum path integral simulations with the rigid
TIP4PQ/2005 model.6 The phase diagram of ices Ih, II, and
III was additionally investigated using a flexible water model
(q-TIP4P/F) in the classical limit.7 Singer and Knight have
analyzed the order-disorder transition in ices Ih-XI, III-IX,
V-XIII, VI-XV, VII-VIII, and XII-XIV by the calculation of
the small energy differences between the innumerable H-bond
configurations possible in a large simulation cell.8 Since the
lattice energy is a scalar, it can be related to topological prop-
erties of the H-bond configurations that are invariant to the
symmetry operations of the lattice. This link between H-bond
topology and energetics is used to extrapolate from electronic
calculations on small unit cells to larger cells that approxi-
mate the thermodynamic limit. Thus accurate results for the
order-disorder transitions in ice are obtained just by focus-
ing on the dependence of the lattice energy with the H-bond
configurations. The vibrational energy was assumed to play
a secondary role in these transitions. H-bond order-disorder
transitions are understood as discontinuous changes in the
H-bond topologies sampled by the system, while the oxy-
gen lattice changes minimally. Note that for phase transitions
other than order-disorder ones, the change in the oxygen lat-
tice is drastic. Therefore, for such transitions the vibrational
free energy is expected to play a significant role.

The quasi-harmonic (QH) approximation (QHA) allows
us to compute the free energy of a solid as an analytic func-
tion of the volume and the temperature for a given interatomic
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potential.9 The prediction of the volume, enthalpy, kinetic en-
ergy, and heat capacity of ices Ih, II, and III by the QHA has
been compared to results of quantum path integral molecular
dynamics (PIMD) simulations using the q-TIP4P/F model. A
remarkable overall agreement was found in temperature (T)
and pressure (P) ranges up to 300 K and 1 GPa, respectively.10

Moreover, the QHA offers a simple alternative to TI methods
to study the phase diagram of solid phases.

The phase boundary between ices VII and VIII has been
studied by a QHA in a 16-molecule supercell with ab initio
density-functional theory (DFT) calculations of total ener-
gies and phonon frequencies.11 The calculation shows that
the coexistence line in the P –T diagram has negative Clapey-
ron slope and a noticeable isotope effect, both facts in good
agreement to experimental data. The phase diagram of ices
Ih, II, and III has been recently calculated by a QHA.12

The studied models were based on both flexible (q-TIP4P/F)
and rigid (TIP4P/2005 and TIP4PQ/2005) descriptions of the
water molecule. The QHA was able to reproduce, for each
of the studied models, the available coexistence lines Ih-II,
II-III, and Ih-III of the phase diagrams derived by TI meth-
ods. Moreover, the simplicity of the QHA allowed to uncover
new information by considering conditions that had not been
treated in previous TI simulations. In particular, for the typ-
ical cell sizes used in phase coexistence simulations, the av-
eraging over the proton disorder of ice III was an essential
step to obtain a converged phase diagram. Thus, the common
procedure of using only one randomly selected ice III struc-
ture makes the calculated phase diagram affected by an un-
controlled factor that can be highly significant for the final
result.12

The purpose of the present paper is to derive the phase
diagram of all experimentally known ice phases of ice
(except ice X) using the QHA in combination with the flexi-
ble q-TIP4P/F water model.13 The layout of the manuscript is
as follows. A summary of the employed computational con-
ditions is presented in Sec. II. The generation of the ice struc-
tures is introduced in Sec. III. The effect of H-disorder averag-
ing in the lattice energy is discussed in Sec. IV. The calculated
phase diagram of ice is compared to the experimental one in
Sec. V. The pressure dependence of the free energy of several
ice phases is presented in Sec. VI. A comparison of classical
and quantum phase diagrams is given in Sec. VII. The paper
closes with the conclusions.

II. COMPUTATIONAL CONDITIONS

The employed QHA has been introduced in Refs. 10
and 12. We present here a brief summary. The Helmholtz free
energy of an ice phase with N water molecules in a cell of
volume V and at temperature T is given by

F (V, T ) = US(V ) + Fv(V, T ) − T SH + �Uave, (1)

where US(V ) is the static zero-temperature classical energy,
i.e., the minimum of the potential energy when the volume of
the cell is V . Fv(V, T ) is the vibrational contribution to F. In

the quantum limit it is given by

Fv(V, T ) =
∑

k

(
¯ωk

2
+ 1

β
ln[1 − exp(−β¯ωk)]

)
. (2)

Here, β is the inverse temperature: 1/kBT. ωk are the
wavenumbers of the harmonic lattice vibrations for the vol-
ume V , with k combining the phonon branch index and the
wave vector within the Brillouin zone. The anharmonicity of
the interatomic potential enters in the QHA only through the
volume dependence of ωk. In the classical limit, the vibra-
tional contribution amounts to

Fv,cla(V, T ) =
∑

k

1

β
ln(β¯ωk). (3)

The entropy SH and the energy �Uave are related to the dis-
order of hydrogen and they vanish for the ordered ice phases
(i.e., ices XI, II, IX, XIII, XV, VIII, and XIV). SH was esti-
mated by Pauling for fully disordered phases as14

SH = NkB ln
3

2
. (4)

A comparison of the Pauling estimate to accurate numeri-
cal determinations has been recently presented for several ice
phases.15 �Uave is a constant energy that depends on the av-
erage of the lattice energy over the proton disorder of the ice
phase (see below). The Gibbs free energy, G(T, P), is obtained
by seeking for the volume, Vmin, that minimizes the function
F (V, T ) + PV , as

G(T , P ) = F (Vmin, T ) + PVmin. (5)

The implementation of the QHA for an ice phase follows
these steps:10, 12

(i) Find the reference cell that minimizes the static energy
US. This minimization implies optimization of both cell shape
and atomic positions. The resulting volume is Vref and the
corresponding static energy is US,ref.

(ii) Only for H-disordered phases: generate a random set
of structures with different H-configurations and calculate the
constant energy �Uave as

�Uave = US,ref − US,ref , (6)

where US,ref is the average of the static lattice energy for the
generated set of H-isomers, while US,ref is the lattice energy
of the reference cell considered in step (i). The number of
random H-isomers is set so large that the estimated error of
the mean value US,ref is lower than 0.02 kJ/mol. It is also
sensible to take as reference cell in step (i) the structure whose
lattice energy US,ref is closest to the average US,ref .

(iii) Select a grid of 50 volumes in a range of interest
[Vmin, Vmax]. The ice cell with volume Vi is set by isotropic
scaling of the reference cell. Subsequently, each ice cell is
held fixed while minimizing the static energy US(Vi) with re-
spect to the atomic positions. The crystal phonons, ωk(Vi), are
obtained after the minimization.

(iv) Calculate the function F (Vi, T ) by Eq. (1). The min-
imum of F (Vi, T ) as a function of V is determined by a fit to
a 5th degree polynomial in V .

The phase diagram of ice is derived by a brute force
method, i.e., given a state point (T, P) one calculates the Gibbs
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free energy of all ice phases. The stable phase is selected as
the one with the lowest value of G.

The crystal phonon calculation has been performed by
the small-displacement method.16, 17 For the flexible water
model the atomic displacement employed in this work is δx
= 10−6 Å along each Cartesian direction. We have used a �

sampling (k = 0) of the crystal phonons, which is a reason-
able approximation for the sizes of the employed supercells.
The Lennard-Jones interaction between oxygen centers was
truncated at a distance of rc = 8.5Å, and standard long-range
corrections for both potential energy and pressure were com-
puted assuming that the pair-correlation function is unity for
r > rc.18 Long-range electrostatic potential and forces were
calculated with the Ewald method.

The assumption of isotropic scaling of the reference cell
made in step (iii) was checked for ice II in Ref. 12. By re-
laxing this constraint the QHA free energy of ice II changes
slightly, by about 0.01 kJ/mol, having a small effect in the
phase diagram.12

III. ICE STRUCTURES

Supercells of similar size to those employed in recent
simulations6, 7 have been used in the QH derivation of the
phase diagram. In Table I we summarize the crystallographic
references used in the generation of the ice structures. Super-
cells are defined by translation vectors applied along the crys-
tallographic axes of the lattice. The total number N of water
molecules generated in the supercell is also given. The po-
tential energy (US,ref) and volume (Vref ) obtained in the mini-
mization of the supercell structures with the q-TIP4P/F model
are presented, together with the volume interval [Vmin, Vmax]
used in the QHA for each phase. The optimized reference

cells and the corresponding fractional coordinates of the wa-
ter molecules for each studied ice phase are made available in
the supplementary material.19

The algorithm proposed by Buch et al.20 was applied for
the random generation of full proton disordered structures
with vanishing cell dipole moment of ices Ih, Ic, III, IV, V,
VI, VII, and XII. The reason for choosing a vanishing cell
dipole moment is that the disordered ice phases are not fer-
roelectric. In the case of ice III and ice V the neutron diffrac-
tion experiments show the existence of partial H-disorder, i.e.,
fractional H-occupancies different from 0.5.21 The Buch’s al-
gorithm has been then slightly modified for the generation of
random structures with partial H-disorder.22 For these phases
the proton disorder entropy is somewhat lower than the Paul-
ing result, SH. We have employed the estimations of 0.9SH and
0.94SH for ices III and V, respectively.22

In the generation of the crystal structures the following
particularities were considered. For ice Ih the reference super-
cell was orthorhombic with parameters (4a, 3

√
3a, 3c), with

(a, c) being the standard hexagonal parameters of ice Ih.23

For ice XI, the H-ordered form of ice Ih, we have gener-
ated two different structures with crystal symmetry Cmc21

and Pna21. The former corresponds to the experimental phase
ice XI.24 The latter is associated with the global energy min-
imum predicted by TIP4P-like models that is not in accord
with experiment.20 For ice V the orthorhombic cell setting
(a, b, c) used in Ref. 21 corresponds to the space group sym-
bol A2/a, but was changed here to a more standard setting
(c,−b, a) with space group symbol C2/c.25 In the case of the
high pressure phases’ ices VII and VIII, the energy minimiza-
tion of a flexible supercell did not lead to a stable crystal lat-
tice at zero pressure. To overcome this difficulty the form of
the supercell was constrained to that one obtained by classical

TABLE I. The space group of the studied phases is shown with the reference used to generate the ice supercell. H-disordered phases (except ices IV and Ic)
are found in a row immediately above the H-ordered counterpart. The number of water molecules in each supercell is N. The static lattice energy (US,ref) and
volume (Vref ) of the optimized supercells were derived with the q-TIP4P/F model. [Vmin, Vmax ] is the volume interval studied by the QHA. The data for ices
III and V correspond to both full and partial H-disorder. Energy unit is kJ/mol, volumes in Å3/molecule.

Space symmetry Supercell H-disorder N US,ref Vref Vmin Vmax

Ic (Fd3m)31 (3, 3, 3) Yes 216 −62.00 31.00 20.44 35.02
Ih (P63/mmc)32 (4, 3

√
3, 3) Yes 288 −61.98 30.96 29.47 35.05

XI (Cmc21)24 (4, 3, 3) No 288 −61.95 31.03 29.48 35.05
XI (Pna21)33 (3, 3, 4) No 288 −62.02 30.90 29.30 34.96
II (R3)34 (3, 3, 3) No 324 −60.84 24.14 21.75 27.31
III (P41212) (3, 3, 3) Yes (full) 324 −60.96 24.90 23.58 28.14
III (P41212)21 (3, 3, 3) Yes (partial) 324 −60.72 25.05 24.07 28.31
IX (P41212)35 (3, 3, 3) No 324 −61.52 24.63 23.55 27.83
IV (R3c)36 (2, 2, 2) Yes 128 −59.77 22.10 18.49 24.31
V (C2/c) (2, 3, 3) Yes (full) 504 −60.28 22.84 20.55 25.81
V (C2/c)21 (2, 3, 3) Yes (partial) 504 −60.04 22.99 20.80 25.98
XIII (P21/a)37 (2, 3, 3) No 504 −60.15 23.15 20.83 26.16
VI (P42/nmc)38 (3, 3, 4) Yes 360 −59.58 21.44 18.14 22.51
XV (P 1)30 (3, 3, 4) Yo 360 −59.43 21.53 18.43 22.61
VII (Pn3m)38 (6, 6, 6) Yes 432 −53.08 19.57 14.02 20.98
VIII (I41/amd)39 (5, 5, 3) No 600 −53.19 19.47 13.92 20.83
XII (I42d)40 (2, 2, 4) Yes 288 −60.06 21.99 18.81 24.19
XIV (P212121)37 (2, 2, 4) No 192 −60.62 21.90 18.32 24.09
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NPT simulations of ices VII and VIII using a flexible cell at
P = 2 GPa and T = 50 K, i.e., at conditions where instability
problems are fully absent. Then subsequent energy minimiza-
tions of ices VII and VIII maintaining the rigid form of the ice
cell do always lead to stable crystal structures even at volumes
corresponding to small negative pressures.

The validity of the QHA in ice is restricted by the pres-
ence of anharmonic effects not included in the approxima-
tion. Such effects are expected to increase at high temperature.
A direct check of the QHA is the comparison to numeri-
cal simulations that fully consider the anharmonicity of the
interatomic interactions. PIMD results of the density of ice
phases for a number of state points are compared to the corre-
sponding QHA as well as to available experimental data in
Table II. The studied state points appear in a temperature
range between 77 and 300 K. We find a reasonable agreement
between PIMD and QHA densities even at high temperature.
Similar temperature behavior was reported for the volume,
enthalpy, and heat capacity of ices Ih, II, and III in Ref. 12
up to 300 K. Note that the thermal energy at 300 K corre-
sponds to a wavenumber (kBT/¯) of about 200 cm−1, so that
at 300 K most ice phonons remain in their vibrational ground
state. In particular, those related to the molecular stretching
and bending modes, as well as the H-bond librations.10 The
comparison between calculated and experimental ice densi-
ties in Table II displays a satisfactory overall agreement. The
largest deviation is found for the high-pressure ice VII, where
the calculated q-TIP4P/F density is about 5% lower than the
experimental one. Such error has been previously reported in
ice VII by classical and quantum Monte Carlo (MC) simula-
tions using TIP4P-like models.26, 27

IV. DISORDER AVERAGING

An interesting practical question is the importance of pro-
ton disorder in the stability of H-disordered cells. Two op-

TABLE II. Ice densities derived by PIMD simulations of ice phases using
the q-TIP4P/F model are compared to the corresponding QHA, as well as to
experimental data. Simulation results for ices III and V correspond to cells
with full H-disorder. Computational conditions for the PIMD simulations are
the same as in Ref. 10. The employed H-isomer of ice III had a static lattice
energy of −60.86 kJ/mol.12 Density unit is g cm−3.

Phase T (K) P (GPa) ρ (PIMD) ρ (QHA) ρ (Exp.) Ref.

Ih 250 0.0 0.925 0.917 0.920 41
II 123 0.0 1.190 1.191 1.190 42
III (full) 250 0.28 1.168 1.177 1.165 43
IV 110 0.0 1.290 1.296 1.272 36
V (full) 237.7 0.53 1.269 1.272 1.271 44
VI 225 1.1 1.397 1.382 1.373 38
VII 300 10 1.783 1.785 1.880 45
VIII 77 2.4 1.590 1.592 1.628 38
IX 165 0.28 1.187 1.191 1.194 43
XI(Cmc21) 77 0.0 0.931 0.930 0.934 46
XII 260 0.5 1.301 1.299 1.292 40
XIII 80 0.0 1.241 1.242 1.244 37
XIV 250 0.28 1.308 1.311 1.332 37
XV 80 0.0 1.329 1.336 1.326 30

posite strategies have been used to address this point. The
first one is to use a cell so small that an explicit calcu-
lation of the internal energy of all existing H-isomers is
possible. The lattice symmetry may be exploited by consid-
ering only symmetry inequivalent H-isomers with the corre-
sponding multiplicity.11 This approach leads to an exact av-
erage over proton disorder, but at the cost of introducing an
unspecified finite size effect as a consequence of the small
unit cell.

The second strategy is to define a large supercell and cal-
culate the internal energy of a single H-isomer of the dis-
ordered phase. The average over proton disorder is then in-
troduced ad hoc by adding the proton disorder entropy SH,
as in Eq. (1). An implicit assumption here is that the super-
cell is so large that both the lattice energy and the vibrational
free energy of the single H-isomer have already converged
with respect to any change in the proton configuration. Such a
change is understood to be compatible with the Bernal-Fowler
rules and with the corresponding (full or partial) proton dis-
order. This procedure has been adopted in most TI studies of
the phase diagram of ice.5–7, 28 In addition, we have already
commented in the Introduction the approach by Singer and
Knight, extrapolating the results of small unit cells to larger
ones to study order-disorder transitions.8

Note that the assumption of the convergence of the lat-
tice energy with the proton disorder in a large supercell is
only correct in the thermodynamic limit, as the relative fluc-
tuation of thermodynamic quantities is expected to decrease
as 1/

√
N . For finite N, the Buch’s algorithm will produce a

set of H-isomers with different lattice energies and therefore
also different statistical weights. Only in the thermodynamic
limit will the Buch’s algorithm produce proton configurations
with the same statistical weight, as it was assumed by Pauling
in his estimation of the residual entropy of ice in Eq. (4). In
this respect, Eq. (6) can be understood as a finite size correc-
tion for the estimation of the lattice energy associated with the
thermodynamic limit.12

The simplicity of the QHA renders possible to check the
convergence of the lattice energy, for a given cell size, with
respect to the proton disorder. In our previous QH study of
ices Ih and III, the convergence of the static lattice energy,
US,ref, was studied for a small set of six random H-isomers
in a cell with 324 molecules.12 In the following we present
a more accurate account of the convergence of US,ref for
ice III.

A. Ice III

In Fig. 1 we have represented the results of US,ref for a set
of 50 random H-isomers of ice III. The supercell contains 324
water molecules with full H-disorder. The static lattice energy
US,ref is plotted as a function of the corresponding cell volume,
Vref . For comparison, we also show the data obtained when
ice III has partial H-disorder, and the value for ice IX, the
H-ordered counterpart of ice III. The minimized lattice en-
ergy, US,ref, and volume, Vref , are related in a nearly linear
way. We note that all isomers having partial H-disorder dis-
play larger static energy than those with full H-disorder.
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FIG. 1. Lattice energy and volume of a set of H-isomers of ice III generated
randomly according to the Bernal-Fowler ice rules. The H-isomers display
either full (open circles) or partial (closed squares) H-disorder. The results
were derived with the q-TIP4P/F model for a supercell with 324 molecules.
The close triangle shows the result for ice IX, the H-ordered counterpart of
ice III. The line is a guide to the eye.

An important result of Fig. 1 is that for the employed su-
percell with 324 molecules the dispersion of US,ref is rather
large (∼0.4 kJ/mol). We have chosen a threshold of 0.05
kJ/mol as criterion to qualify if a given energetic difference
can be considered as significant in the calculation of the
phase diagram. Then, following this criterion, the spreading
of the lattice energy of ice III may appreciably affect the
phase diagram whenever it is calculated with a single random
H-isomer of ice III. As a remedy to this uncertainty, the av-
erage term �Uave was introduced in Eq. (1) to improve the
convergence of the internal energy of ice with respect to the
proton disorder.12

The effectiveness of this averaging procedure is illus-
trated in Fig. 2. It shows the phase diagram of ices Ih, II, and
III calculated for six random H-isomers of ice III with the q-
TIP4P/F model. The lattice energy US,ref of these H-isomers
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III
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FIG. 2. (a) QHA phase diagram of ices Ih, II, and III. The coexistence lines
were calculated for six random H-isomers of ice III with full H-disorder. The
free energy of ice III does not include the disorder averaging term �Uave of
Eq. (1). (b) Same diagram after including the disorder averaging term �Uave

in the free energy of ice III. Note the decrease in the dispersion of the coexis-
tence lines. All results are derived with the q-TIP4P/F model in the quantum
limit.

scatters in an interval of about 0.3 kJ/mol. In Fig. 2(a) the free
energy of ice III was calculated without the H-disorder aver-
aging term (�Uave) of Eq. (1). These results are identical to
those presented in Fig. 4 of Ref. 12. Coexistence lines of dif-
ferent ice III structures are clearly separated. The region of
stability of ices Ih, II, and III appears strongly dependent on
the H-disorder. The phase diagram obtained after considering
the term �Uave in Eq. (1) is shown in Fig. 2(b). The spread-
ing of the coexistence lines is now appreciably reduced. The
remaining dispersion is related to the vibrational free energy
that is also affected by the disorder of protons in the employed
supercell. However, this effect of H-disorder in the vibrational
energy is comparatively less important than in the lattice en-
ergy. A similar conclusion has been presented in the analysis
of order-disorder transitions in Ref. 8.

B. Other disordered phases

The mean static lattice energy, US,ref , and its standard
deviation, σ (US,ref), was calculated by sampling a set of ran-
dom H-isomers for all H-disordered phases (Ih, Ic, III, IV, V,
VI, VII, and XII). The results are summarized in Table III.
A large value of the standard deviation, σ , implies that H-
disorder strongly affects the value of the static energy, US,ref,
of the supercell and therefore also the stability of the ice
phase. The largest value of σ corresponds to ice III with full
H-disorder (σ = 0.1 kJ/mol). Accordingly the static energy,
US,ref, of a single random H-isomer of ice III can be found
in an energy window of about 4σ ∼ 0.4 kJ/mol, as shown in
Fig. 1.

The standard deviations σ (US,ref) given in Table III de-
crease along the series of ices: III (full disorder) > XII > V
(full disorder) > III (partial disorder) > IV > VI. For these
phases, the no consideration of H-disorder averaging may in-
troduce arbitrary shifts in the lattice energy larger than 0.05
kJ/mol, at least for the supercell sizes employed here. For ices
Ih, Ic, and VII the energetic effect of H-disorder is smaller
than this threshold so that it can be safely neglected for the
studied supercells.

TABLE III. Result of the averaging of the lattice energy, US,ref, of
H-disordered ices using the q-TIP4P/F model. For each phase we show the
number of molecules in the supercell (N), the number of random H-isomers
in the average (Nave), the mean value of the lattice energy, US,ref , and its
standard deviation, σ (US,ref). Results for ices III and V are shown for both
full and partial H-disorder. The last two columns are in units of kJ/mol.

Ice N Nave US,ref σ (US,ref)

Ih 288 6 −61.98 0.00
Ic 216 9 −62.00 0.00
III (full) 324 50 −60.98 0.10
III (partial) 324 6 −60.73 0.03
IV 128 9 −59.77 0.02
V (full) 504 10 −60.27 0.03
V (partial) 504 6 −60.03 0.01
VI 360 10 −59.57 0.02
VII 432 6 −53.08 0.01
XII 288 9 −60.07 0.04
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FIG. 3. Phase diagram of ice. (a) Experimental result from Ref. 1. The bro-
ken line is the boundary between ice and liquid (L) water. Full lines denote
coexistence conditions between ice phases. (b) QHA result derived in the
quantum limit with the q-TIP4P/F potential model.

For ices III and V, the mean lattice energy, US,ref , is sig-
nificantly larger (∼0.24 kJ/mol) in the case of partial than in
the case of full H-disorder. This behavior is in contradiction to
the experimental finding that ices III and V display both par-
tial H-disorder.21 This unphysical result is in line with the re-
ported limitations of the effective potentials to reproduce the
energetics of the H-bond rearrangement in the ice phases.8, 20

Our analysis on the disorder averaging of the lattice en-
ergy of ice has omitted several factors that might be relevant.
The consideration of reference cells with non-zero dipole mo-
ment should increase the standard deviation, σ (US,ref), and
also affect the mean static lattice energy of the cell. This be-
havior has been demonstrated in the classical MC simulation
of the dielectric constant of ice using several water models.29

Another factor is the fractional occupation of H-sites in the
ice structures with partial H-disorder (ices III and V) that
may depend on the employed water model. This was shown in
Ref. 29 where the fractional occupancies (Hα , Hβ) of ice III,
experimentally found as (0.35, 0.5),21 change to (0.5, 0.25)
by using the TIP4P/2005 model.29 In our treatment of partial
disorder in ices III and V we have considered only fractional
occupancies derived from the experimental data.

V. QUASI-HARMONIC PHASE DIAGRAM

The experimental phase diagram of ice at temperatures
in the range [150, 300] K and pressures below 10 GPa is pre-
sented in Fig. 3(a).1 The broken line shows the boundary be-
tween ice an liquid water. Full lines are the coexistence lines
measured for the ice phases. In the displayed region there
appear seven different stable ice phases: Ih, II, III, V, VI,
VII, and VIII. Note that ice XV, the H-ordered counterpart
of ice VI, appears at temperatures lower than 130 K and is not
shown in the figure.30

The QH result derived with the q-TIP4P/F model in the
quantum limit is presented in Fig. 3(b). The free energy
was calculated for the ice phases listed in Table I by using
Eqs. (1) and (5). There are striking differences between the
calculated phase diagram and the experimental data. The main
deviations of the model are as follows:

� the most stable phase at low pressures is ice Ic instead
of ices Ih or XI,

� the H-ordered ice IX is stable in the region where ex-
perimentally appears the H-ordered ice II,

� the H-ordered ice XIV occupies part of the stability
region of the H-disordered ice VI and H-ordered ice
XV,

� the H-disordered ice XII occupies the stability region
of ice V.

We stress that ices II and V are not stable phases in
the calculated phase diagram. Instead the ice polymorphs IX,
XIV, and XII occupy large regions of stability. Such behav-
ior has not been reported in any TI simulations of the phase
diagram of ice using models based on the TIP4P potential.4–7

One may wonder if these unexpected findings are a
pathology of the QHA. Against this point of view it can be ar-
gued that the QH phase diagram of ices Ih, II, and III studied
in Ref. 12 is in reasonable agreement with TI simulations. De-
viations found between QH and TI methods for several mod-
els (rigid TIP4P/2005 and TIP4PQ/2005, as well as flexible
q-TIP4P/F) were more likely due to structural differences in
the supercell employed for ice III than to limitations of the
QHA.12 For this reason, we consider plausible that the QHA
is providing valid information about the potential model for
(T, P) regions and ice phases that have not been previously
studied by TI methods. Thus, the understanding of these un-
expected findings is worth the effort.

In addition to the information displayed in the phase di-
agram of Fig. 3(b), it is interesting to know the free energy
differences between stable and metastable phases in several
regions of the phase diagram. Free energy differences lower
than the threshold of 0.05 kJ/mol are considered within the
numerical error of the method and therefore will not be given
a large physical significance. In Sec. VI we present a closer
look into the calculated free energies at state points where the
most stable phase is either ice Ic, IX, XIV, or XII.

VI. QUASI-HARMONIC FREE ENERGIES

A. T=0 K and P=0

The QH Gibbs free energy, G0, of an ice phase at T = 0
K and P = 0 is the sum of two energy contributions:

G0 = US,0 + UZ,0. (7)

US,0 is the static lattice energy for the equilibrium volume, V0,
that includes the averaging term for the proton disorder,

US,0 = US(V0) + �Uave. (8)

UZ,0 is the zero-point energy calculated as

UZ,0 =
∑

k

¯ωk(V0)

2
. (9)

In Table IV we collect the values of US,0, UZ,0, and V0 of the
ice phases studied with the q-TIP4P/F model.

The most stable (i.e., lowest G0) phases are ices Ic, XI,
and Ih. Although the predicted order of increasing stabil-
ity is Ic > XI(Pna21) > XI(Cmc21) > Ih, the free energy
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differences between them are lower than the threshold of
0.05 kJ/mol. Such small differences are also conserved at
higher pressures and temperatures. Therefore, the stability of
ices Ih, Ic, and XI is nearly identical for the employed model.
For the rest of the paper, we refer to ice Ih as representative
for these ice phases with almost equal free energy.

Then, when compared with other ice polymorphs, ice Ih
displays several distinct properties at T = 0 K and P = 0. It
has the largest volume (V0) per water molecule, the lowest
lattice energy (US,0), and the highest zero-point energy (UZ,0)
of all ice phases. The leading factor for the stability of ice Ih
at T = 0 K and P = 0 is its lowest lattice energy.

It is interesting to note that the nuclear quantum effect
causes an expansion of the equilibrium volume of ice at low
temperatures. This anharmonic effect in the structure of ice is
predicted by the QHA due to zero-point contribution to the
free energy in Eq. (7). This energy term is absent in the clas-
sical limit, where the free energy is equal to the static lattice
energy at T = 0 K. Therefore, the equilibrium volume, asso-
ciated with the minimum of the Gibbs free energy, is different
in the quantum and classical limits. We find that the quantum
volume, V0, of the ice phases at T = 0 K (see Table IV) is typ-
ically 4% larger than those ones derived in the classical limit
(see Vref values in Table I).

B. Increasing pressure at T=0 K

The values of G0 and V0 in Table IV allow us to ratio-
nalize the changes in the stability of the ice phases upon an
increase of the pressure at T = 0 K. A positive pressure will
add a PV term to the free energy G0. Obviously, the larger the
ice volume the larger the increase in the free energy. Then ice
Ih (with the largest volume) will be destabilized with respect
to all other ice phases upon an increase of pressure. Ice IX is
the best candidate to become stable. It has the lowest value

TABLE IV. QH Gibbs free energy (G0) calculated at T = 0 K and
P = 0 with the q-TIP4P/F model in the quantum limit. The partition of G0

into lattice (US,0) and zero-point (UZ,0) energy is given. V0 is the equilib-
rium volume in Å3/molecule. The data for ices III and V correspond to full
H-disorder. Energy units are in kJ/mol.

q-TIP4P/F G0 US, 0 UZ, 0 V0

Ic 6.97 −61.77 68.74 32.35
XI(Pna21) 6.99 −61.77 68.76 32.19
XI(Cmc21) 7.01 −61.73 68.73 32.26
Ih 7.01 −61.74 68.75 32.23
IX 7.22 −61.40 68.62 25.60
II 7.47 −60.60 68.08 25.11
III (full) 7.82 −60.89 68.71 25.90
XIV 7.90 −60.39 68.29 22.78
XIII 8.18 −59.97 68.15 24.01
V (full) 8.28 −60.07 68.35 23.72
XII 8.35 −59.84 68.20 22.85
IV 8.60 −59.56 68.17 22.93
VI 8.71 −59.35 68.06 22.25
XV 8.74 −59.21 67.95 22.34
VIII 14.05 −52.81 66.86 20.55
VII 14.15 −52.80 66.95 20.43
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FIG. 4. Gibbs free energy, G, of the ice phases with lowest G at T = 0 K
and pressures below 0.14 GPa. The results correspond to the QHA using the
q-TIP4P/F model. The curves for ices Ih, XI, and Ic are nearly identical at the
displayed energy scale. A phase transition from ice Ih to ice IX is predicted
at P ∼ 0.06 GPa.

of G0 after that one of ice Ih, and its equilibrium volume is
significantly lower (20%) than that of ice Ih.

In Fig. 4 we have represented the pressure dependence up
to 0.14 GPa of the Gibbs free energy of the ice phases with
lowest G at T = 0 K. We have plotted the free energies of ices
Ic, Ih, and XI to show that their small free energy differences
at P = 0 are conserved as pressures increase. We observe that
at low pressures the phase having the minimum free energy
is ice Ih. However, as the pressure increases above 0.06 GPa,
ice IX becomes more stable than ice Ih.

A further increase of the pressure will stabilize another
ice phase with even lower volume than ice IX. In Fig. 5 we
show the Gibbs free energy, G, of several ice phases in the
range 0.42 < P < 0.48 GPa. The crossing of the free energy
lines of ices IX and XIV at 0.45 GPa is the fingerprint for a
phase transition from ice IX to ice XIV.

Given a pressure P, for thermodynamic consistency in
the low-temperature limit (T → 0 K) one expects the sta-
ble ice polymorph to be an H-ordered phase. This does not
appear to be always the case in our calculations. Thus, at
P < 60 MPa we find cubic ice Ic to be the low T stable phase.
However, as indicated above, free-energy differences between
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FIG. 5. Gibbs free energy, G, of the ice phase with lowest G at T = 0 K
and pressures in the interval [0.4,0.52] GPa. The results are derived by the
QHA using the q-TIP4P/F model. A phase transition from ice IX to ice XIV
is predicted at P ∼ 0.45 GPa.
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ice Ic and the H-ordered ice XI are smaller than our sensitiv-
ity limit (∼0.05 kJ/mol). Also, ice VI appears to be the stable
phase at low temperatures in the region between 3 and 5 GPa.
In this case one would expect the corresponding H-ordered
phase (ice XV) to be the stable polymorph, but its free energy
for T → 0 K is higher than that of ice VI. This problem may
be related to the possibility that the q-TIP4P/F potential could
favor an H-ordered pattern different from that corresponding
to ice XV, as those discussed earlier in the literature.30

C. Stability of ice IX versus ice II

A consequence of the stability of ice IX is that ice II does
not appear (i.e., it is metastable) in the QH phase diagram
of Fig. 3(b). This metastability of ice II disagrees obviously
with the experimental phase diagram. In Figs. 4 and 5 the free
energy G of ice II is larger than that of ice IX. The difference
is nearly independent of the pressure, as the G(P) curves of
ices IX and II are approximately parallel. If we measure the
free energy difference between these phases at T = 0 by the
ordinates in the origin of Fig. 4 (i.e., the G0 values of ices IX
and II in Table IV), one gets

	G0(II-IX) = 0.25 kJ/mol. (10)

The positive value implies that ice IX is more stable than ice
II. The energy partitioning of G0 in Table IV shows that the
leading term for the larger stability of ice IX is its lower lattice
energy.

Note that if the G(P) curve of ice IX was omitted from
Fig. 4, then the first transition as a function of pressure would
correspond to the crossing of the Ih and II free energy curves
at 0.11 GPa. This Ih-II transition was shown in the study of
the coexistence of ices Ih, II, and III in Fig. 2.

Given the large stability of ice IX predicted by the
q-TIP4P/F model, we want to address the following question:
Is this stability a consequence of the flexibility of the model
or it has its origin in the TIP4P-character of the potential?

To this aim we have calculated the QH free energies of
several ice phases by using the rigid TIP4P/2005 model. This
model was parameterized for water simulations in the classi-
cal limit. In this limit, at T = 0 K and P = 0, the Gibbs free
energy and equilibrium volume of an ice phase are simply
given by

G0,cla ≡ US,ref , (11)

V0,cla ≡ Vref . (12)

For reference, the values of G0,cla and V0,cla calculated with
the TIP4P/2005 model for ices Ih, XI, II, and XIV are shown
in Table V. Note that in this case

	G0,cla(II-IX) = 0.58 kJ/mol. (13)

This free energy difference between ices IX and II is even
larger than that found for the flexible q-TIP4P/F model.

The classical QH phase diagram of ices Ih, II, and IX was
calculated with the rigid TIP4P/2005 model at temperatures
up to 300 K and pressures below 0.6 GPa. We find that ice IX
is more stable than ice II in the whole studied (T, P) region.

TABLE V. Gibbs free energy (G0,cla in kJ/mol) calculated with the rigid
TIP4P/2005 model for several ice phases at T = 0 K and P = 0 in the classical
limit. V0,cla is the equilibrium volume in Å3/molecule.

TIP4P/2005 G0,cla V0,cla

Ih −62.99 31.34
IX −62.71 24.87
II −62.13 24.30
XIV −61.72 22.10

Therefore, ice II is metastable in the classical phase diagram
of the TIP4P/2005 model. This result is identical to that found
for the flexible q-TIP4P/F model. Our conclusion is that the
large stability of ice IX is a property of the TIP4P-character
of the model, and not a consequence of the added molecular
flexibility.

We believe that limitations inherent to the exploration of
the phase diagram by TI methods are the reason why the sta-
bility of ice IX and the metastability of ice II have not been
detected in previous studies using TIP4P-like models.4, 6 An
advantage of the QHA is that the brute force calculation of
free energies allows a thorough exploration of state points for
all ice phases.

D. Increasing pressure at T=250 K

An unexpected result of the calculated phase diagram at
temperatures around 250 K is that ice XII, the H-disordered
counterpart of ice XIV, occupies the stability region where
one would expect to find ice V as stable phase (see Fig. 3).
The pressure dependence of the free energy of the ice phases
with lowest G is presented in Fig. 6 at 250 K. The crossing of
the G(P) curves of ices III and XII at P = 0.45 GPa indicates
that ice XII becomes the stable phase at 250 K for pressures
higher than 0.45 GPa.

It is interesting to note that at the pressures shown in
Fig. 6 the free energy of ice V (with full H-disorder) is
only slightly higher (∼0.06 kJ/mol) than that of ice XII. Be-
sides, ice XII displays lower volume than ice V. Therefore,
an increase in the pressure will always stabilize ice XII with
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FIG. 6. Gibbs free energy, G, of the ice phase with lowest G at T = 250 K
and pressures in the interval [0.44,0.46] GPa. The results correspond to the
q-TIP4P/F model and the QHA. A phase transition from ice III to ice XII
appears at P ∼ 0.45 GPa.
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respect to ice V. At T = 250 K the QHA predicts that the coex-
istence pressure for ices V-XII is 0.33 GPa. The equilibrium
volumes at this state point (T = 250 K, P = 0.33 GPa) are
23.1 Å3/molecule and 23.8 Å3/molecule, for ices XII and V,
respectively.

Note that at 250 K the pressure interval where ice V ap-
pears as stable phase in the experimental phase diagram is
about [0.35,0.6] GPa (see Fig. 3(a)). In this pressure range the
q-TIP4P/F model predicts that the free energy difference be-
tween ices V and XII increases from a vanishingly small value
(at 0.35 GPa) to a maximum value of 0.1 kJ/mol (at 0.6 GPa).
Therefore, free energy differences between ices XII and V are
relatively small. Similar values for the free energy of ices V
and XII have been already reported for the TIP4P/2005 model
at P = 0.5 GPa by TI simulations in the classical limit.4

VII. QUANTUM VS. CLASSICAL PHASE DIAGRAM

The QH phase diagram of ice shown in Fig. 3(b) for the
q-TIP4P/F model is characterized by the stability of ices IX,
XII, and XIV over large regions of the (T, P) plane. However,
these phases have not been reported as stable ones in pre-
vious studies. For this reason, our calculated phase diagram
has little resemblance to previous ones derived by using rigid
TIP4P-like potentials in combination with TI methods.4, 6, 28

Then, it is interesting to recalculate our phase diagram of
ice under omission of the phases IX, XII, and XIV. In addi-
tion, we will consider ice Ih as unique representative of the
phases Ih, Ic, and XI.

The quantum limit of the new phase diagram of the q-
TIP4P/F model is presented in Fig. 7. Now we find the fol-
lowing stable phases: Ih, II, III, V, VI, VII, and VIII. Both ices
III and V correspond to full H-disordered lattices. This phase
diagram is in reasonable qualitative agreement to the exper-
imental one. Moreover, it is also in reasonable agreement to
those phase diagrams derived for TIP4P-like potentials.4, 6, 28

Concerning the thermodynamic consistency of these re-
sults for T → 0 K, we emphasize that the H-disordered ices
Ih and VI cannot strictly be the low-temperature stable phases
for any pressure P. For this question, the arguments are the
same as those given above in Sec. VI B and are not repeated
here.
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FIG. 7. QHA of the phase diagram of ice using the q-TIP4P/F model in the
quantum limit. Ices III and V are full H-disordered. The following ice phases
were omitted from the QH calculation: ices IX, XIV, and XII.
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FIG. 8. The phase diagram of Fig. 7 is calculated with the q-TIP4P/F model
in the classical limit.

Our results in Fig. 7 include the averaging of the lattice
energy over H-disorder for ices III, V, and VI. None of the
previously published phase diagrams calculated with TIP4P-
like potentials include any kind of disorder averaging. In fact,
different single H-isomers of ice III seem to have been em-
ployed for the calculations with several TIP4P-like potentials
(i.e., TIP4P,28 TIP4P/2005,4 and TIP4PQ/20056). If the ice
III structure employed for each potential model has a differ-
ent H-configuration, then the lattice energy of ice III may be
affected by an uncontrolled factor. This situation makes it dif-
ficult to draw definitive conclusions about differences found
in calculated phase diagrams with different H-isomers of ice
III. This uncertainty should affect not only ice III, but also the
stability region of other phases (Ih, II, V) having a boundary
with ice III.

It is interesting to compare the quantum phase diagram
in Fig. 7 with that one calculated within the classical limit
(Fig. 8). The main difference between both limits is related to
the stability region of ice II. It is much larger in the quantum
case. The origin of this quantum effect is related to the lower
zero-point energy of ice II, in comparison to ices Ih, III, and
V (see the UZ,0 values given in Table IV). The quantum stabi-
lization of ice II has been already discussed in Ref. 12.

An additional difference between quantum and classical
phase diagrams is that the coexistence lines that are nearly
horizontal (i.e., Ih-III, III-V, V-VI) appear shifted to higher
pressures in the classical limit. This effect has been also re-
ported in TI simulations with the rigid TIP4PQ/2005 model.6

The rising of the pressure occurs at all studied temperatures.
This quantum effect is most easily explained at T = 0 K. Let
us consider ices VI and V as an example. In the quantum limit,
the free energy difference between ices VI and V at T = 0 K
and P = 0 is (see the G0 data in Table IV)

�G0(VI − V) = 0.4 kJ/mol. (14)

However, in the classical limit one gets using Eq. (11) and the
values of Table I,

�G0,cla(VI − V) = 0.7 kJ/mol. (15)

In both cases 	G0 > 0, i.e., ice VI is less stable than ice V.
However, in the quantum case 	G0 is lower. The reason is that
the zero-point energy (see the UZ,0 data in Table IV) tends to
stabilize ice VI with respect to ice V by ∼−0.3 kJ/mol.
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On the other side, although the volume of ice VI is lower
than that of ice V (see V0 data in Table IV), the volume
differences are found to be nearly the same in the quantum
(	V0 = −1.5 Å3/molecule) and classical cases (	V0,cla

= −1.4 Å3/molecule, see the Vref data in Table I).
By increasing the pressure, the phase with lower volume

(ice VI) will become more stable. The pressure needed to sta-
bilize ice VI with respect to ice V is roughly given by

P ∼ −	G0

	V0
. (16)

Note that while the denominator is similar in both quantum
and classical limits, the numerator is lower in the quantum
case. Therefore, the coexistence pressure for ices V-VI at T
= 0 K is reduced in the quantum limit with respect to the
classical one.

A similar argument explains why the transitions Ih-III
and III-V are displaced to higher pressures in the classical
case.6

VIII. CONCLUSIONS

The phase diagram of ice has been studied by a quasi-
harmonic approximation using the flexible q-TIP4P/F model
of water. The simplicity of this approach allows us to include
all known ice polymorphs (except ice X) and all state points
for T < 400 K and P < 10 GPa.

Surprisingly the simple QHA seems to be accurate
enough to reproduce free energy differences between ice
phases, in spite of the large complexity and variety in their
crystal structures. This conclusion about the success of the
QHA is derived using a simple model potential, but its valid-
ity is expected to be largely independent of the model. There-
fore, it opens a route for the study of the whole phase diagram
of ice by ab initio electronic structure methods.

The H-disorder of many ice phases is an additional com-
plication in the calculation of their phase diagram. The QHA
has allowed us to quantify the influence of this effect. The dis-
order averaging of the lattice energy of ice III has been proven
to be important to obtain a converged phase diagram, at
least using TIP4P-like models and ice III supercells with full
H-disorder. Disorder averaging of vibrational free energies
has been shown to be comparatively less important. In ad-
dition to ice III, the disorder averaging of the lattice energy of
ices XII and V has been shown to be also significant for the
ice stability.

We stress that phase diagrams calculated using a single
random H-isomer of ice III may be affected by an uncon-
trolled energetic factor that can be highly significant in the
final result. An immediate consequence of this is that com-
parison of phase diagrams calculated using a single, but dif-
ferent, H-isomer of ice III might not be physically sound. The
reason is that the stability of the disordered phase may depend
strongly on the employed H-isomer.

The QH phase diagram of ice with the flexible q-TIP4P/F
model has been calculated by performing a disorder aver-
aging of the lattice energy of the H-disordered ice phases.
We have found an unexpected large stability of several ice
phases, especially the H-ordered ices IX and XIV, and also

the H-disordered ice XII. The presence of these phases in
the calculated phase diagram implies that both ices II and V
are metastable phases with the q-TIP4P/F model. This find-
ing disagrees with the experimental phase diagram. We have
checked that ice IX remains more stable than ice II if the phase
diagram is calculated using the rigid TIP4P/2005 model in the
classical limit. Our conclusion is that the larger stability of ice
IX with respect to ice II is a property related to the TIP4P-
character of the model and not to the explicit treatment of the
molecular flexibility.

The QH free energy and volume of several ice phases
have been analyzed at T = 0 K and P = 0. The free energy has
been partitioned into lattice and zero-point energies. These
contributions are important magnitudes in the analysis of the
stability of the ice phases as a function of pressure.

By excluding ices IX, XIV, and XII from the calcula-
tion, we find that the phase diagram of the q-TIP4P/F model
shows qualitative agreement to both experimental and pre-
viously simulated ones by using TIP4P-like models. The
comparison of the quantum and classical limits shows several
differences. The most important ones are the increase in the
stability of ice II and the shift of the coexistence lines III-V
and V-VI to lower pressures in the quantum case. Similar con-
clusions were reached previously in Ref. 6. Differences in the
zero-point energies of the ice phases provide an explanation
for these effects.
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