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Melanocortin 4 Receptor Becomes an ACTH Receptor
by Coexpression of Melanocortin Receptor Accessory
Protein 2

Maria Josep Agulleiro, Raul Cortés, Begofa Fernandez-Duran, Sandra Navarro,
Raul Guillot, Eirini Meimaridou, Adrian J.L. Clark, and José Miguel Cerda-Reverter

Department of Fish Physiology and Biotechnology (M.J.A., R.C., B.F.-D., S.N., R.G., J.M.C.-R.), Instituto
de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Cientificas, Ribera de Cabanes,
Castellon, Spain (IATS-CSIC); and Centre for Endocrinology (E.M., A.J.L.C.), Queen Mary University of
London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry,
London, United Kingdom

Melanocortin 2 receptor (MC2R) is the only canonical ACTH receptor. Its functional expression requires
the presence of an accessory protein, known as melanocortin receptor 2 accessory protein 1 (MRAP1).
The vertebrate genome exhibits a paralogue gene called MRAP2, which is duplicated in zebrafish
(MRAP2a and MRAP2b), although its function remains unknown. In this paper, we demonstrate that
MRAP2a enables MC4R, a canonical MSH receptor, to be activated by ACTH with a similar sensitivity to
that exhibited by MC2R. Both proteins physically interact and are coexpressed in the neurons of the
preoptic area, a key region in the control of the energy balance and hypophyseal secretion in fish.
ACTH injections inhibit food intake in wild-type zebrafish but not in fish lacking functional MC4R. Both
MRAP1 and MRAP2a are hormonally regulated, suggesting that these proteins are substrates for
feed-back regulatory pathways of melanocortin signaling. Fasting has no effect on the central expres-
sion of MRAP2a but stimulates MRAP2b expression. This protein interacts and is colocalized with
MC4R in the tuberal hypothalamic neurons but has no effect on the pharmacologic profile of MC4R.
However, MRPA2b is able to decrease basal reporter activity in cell lines expressing MCA4R. It is plausible
that MRAP2b decreases the constitutive activity of the MC4R during fasting periods, driving the animal
toward a positive energy balance. Our data indicate that MRAP2s control the activity of MC4R,
opening up new pathways for the regulation of melanocortin signaling and, by extension, for the
regulation of the energy balance and obesity. (Molecular Endocrinology 27: 1934-1945, 2013)

elanocortins, which are the posttranscriptional
Mproducts of a complex precursor named proopio-
melanocortin (POMC), are mainly composed of ACTH
and MSH (a-, B- y-, and 8-MSH) (1). POMC is mainly
produced in the pituitary, and its posttranslational process-
ing occurs in a tissue-specific manner. The proteolytic cleav-
age of POMC generates ACTH in the corticotrophs of the
anterior pituitary, whereas POMC cleavage produces
a-MSH and B-endorphin in the melanotrophs of the pars
intermedia. POMC is also centrally produced in the arcuate
nucleus and the nucleus of the tractus solitarius, where it is
mainly processed to a-MSH and B-endorphin (2).
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Melanocortin exerts its physiologic role by binding to
a family of specific G protein-coupled receptors that pos-
itively couple to adenylyl cyclase. Tetrapod species have 5
melanocortin receptors (MC1R-MC5R). MC2R is spe-
cific for ACTH, whereas the MSHs bind to the other 4
MCRs, with MC1R and MC3R exhibiting the highest
affinity for -MSH and y-MSH, respectively (3). Atypi-
cally, melanocortin signaling is not exclusively regulated
by the binding of endogenous agonists, because naturally
occurring antagonists, agouti-signaling protein (ASIP)
and agouti-related protein (AGRP), compete with mela-
nocortin peptides by binding to MCRs.
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Abbreviations: AGRP, agouti-related protein; CRE-GAL, cCAMP responsive element-galac-
tosidase; HEK, human embryonic kidney; MCR, melanocortin receptor; MRAP, melano-
cortin receptor accessory protein; NTE buffer, 500 mM NaCl, 10 mM Tris-HCI, 5mM EDTA,
pH 7.5; PAF, paraformaldehyde; PB, phosphate buffer; POMC, proopiomelanocortin; RT,
room temperature; SDS, sodium dodecyl sulfate; SSC, standard saline citrate.

doi: 10.1210/me.2013-1099

The Endocrine Society. Downloaded from press.endocrine.org by [${individual User.displayName}] on 16 April 2014. at 01:58 For personal use only. No other uses without permission. . All rights reserved.



doi: 10.1210/me.2013-1099

Melanocortin signaling participates in the regulation
of multiple physiologic functions (3), but its involvement
in the control of corticosteroid synthesis, via MC2R (4),
and in the control of energy balance, via MC3R and
MCA4R (5), are the most studied facets of such signaling.
Central activation of MC3R and MC4R is thought to
mediate the effects of melanocortin on the energy balance
(5) because both MC3R-knockout rat (6) and MC4R-
knockout mice (7) display severe alterations in energy
homeostasis. Interruption of a-MSH central signaling by
the ubiquitous constitutive expression of agouti gene in
obese yellow mice (Ay) results in hyperphagia, hyperin-
sulinemia, increased linear growth, maturity-onset obe-
sity, and yellow fur (8). A similar metabolic syndrome is
also observed in transgenic mice ubiquitously overex-
pressing AGRP (9), and in MC4R-knockout mice (7). The
central administration of the C-terminal fragment of
AGRP (10) or chemical antagonists for MC3R and
MCHA4R increase food intake in rodents (11), and intrace-
rebroventricular injections of the MCR agonist, MTII,
produces a dose-dependent reduction in food intake in mice
(11). However, MC4R-deficient mice do not respond to the
anorectic effects of MTII, suggesting that a-MSH inhibits
feeding primarily by activating MC4R (12).

Of the 5 MCRs, only the activation MC2R fails when
expressed in the conventional heterologous cell lines. In
nonadrenal cells, the receptor is retarded in the endoplas-
mic reticulum, and its functional expression requires the
presence of an accessory protein, known as melanocortin
receptor 2 accessory protein (MRAP), which works as an
MC2R-specific transport system to the plasma membrane
(13). MRAP is a small protein exhibiting a hydrophobic
transmembrane domain mainly expressed in the adrenal
cortex. The knockdown of endogenous MRAP in Y1 ad-
renocortical cells leads to insensitivity to ACTH, demon-
strating that MRAP is essential for producing an ACTH-
responsive MC2R (14). MRAP interacts with the MC2R
to facilitate correct folding, and subsequent glycosylation
and receptor cell surface expression (13), but it is also
essential for ACTH binding and ACTH-induced cAMP
production (15, 16).

Vertebrate genome has an MRAP paralogue that also
encodes a small single transmembrane-domain protein
(17), now named MRAP2 (13, 16, 18). Most authors
continue to call the first characterized protein MRAP
rather than MRAP1, but hereinafter we shall use the nu-
merical nomenclature. The function of MRAP2 is contro-
versial (19). Coimmunoprecipitation studies demonstrate
that MRAP2 interacts with the MC2R and fully rescues
the functional expression of the receptor (18). However,
Sebag and Hinkle (16) have reported that MC2R reaches
the cell membrane in the presence of MRAP2 but that the
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increase in ACTH-induced cAMP was much lower (8-
fold) than that exhibited in cells expressing both MC2R
and MRAP1. Subsequent studies have demonstrated that
MRAP2 is an endogenous inhibitor of MC2R activation
and competes with MRAP1 to bind to the receptor, thus
decreasing the ability of ACTH to stimulate cAMP pro-
duction (20).

Very recent studies suggest that MRAPs can also mod-
ulate the function of other MCRs. Immunoprecipitation
studies have demonstrated that both MRAP1 and
MRAP2 interact physically with all 5§ MCRs (16, 18).
Both MRAP1 and MRAP2 reduce the functional expres-
sion of MC4R and MC5R but not of MC1R and MC3R
in the plasma membrane. Accordingly, both MRAP1 and
MRAP2 decrease [Nle4,D-Phe7]-a-MSH-stimulated cAMP
production in cells expressing MC3R, MC4R, and MCSR,
but only MRAP2 was able to induce a similar effect on
MCI1R (18). However, the physiologic involvement of these
interactions in unknown.

The aim of this study was to investigate the interaction
of MRAPs with the MCR system as well as the physio-
logic involvement of these interactions using zebrafish (zf)
as model. We studied the hormonal and physiologic reg-
ulation of MRAP expression as a potential pathway for
the regulation of melanocortin signaling. Zebrafish ge-
nome has 6 MCRs because MC5R is duplicated (MC5Ra
and MCS5Rb) and 3 different MRAPs. One MRAP se-
quence groups with tetrapod MRAP1s, and the 2 other
MRAP sequences are classified as MRAP2 paralogues
(MRAP2a and MRAP2b) (21,22). We demonstrated that
MCA4R can be activated by ACTH when the receptor is
coexpressed with MRAP2a, exhibiting similar sensitivity
to that shown by MC2R. This pharmacologic finding has
a clear physiologic significance because both proteins, ie,
MC4R and MRAP2a, physically interact and are coex-
pressed in the same neurons of the preoptic area. ACTH
injection inhibits short-term food intake in wild-type ze-
brafish, as MSH does in other closely related species (23),
but not in zebrafish lacking functional MC4R (Sa122). It
demonstrates that MC4R is required for the anorexic ef-
fects of ACTH. The expression of MRAP2b also colocal-
izes with MC4R in the tuberal hypothalamus, but it has
no effect on agonist binding. Central MRAP2b expres-
sion increases during fasting, suggesting that this protein
can depress constitutive MC4R signaling during starva-
tion. Finally, we also demonstrate that MRAPs are hor-
monally regulated, suggesting a new pathway for the fine
tuning of melanocortin signaling.

Materials and Methods

Animals, reagents, and primers
Wild-type TU strain zebrafish were raised at 24-28°C, with
14-hour light/12-hour dark cycle. MC4R—/— mutant strain
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sal22 were obtained from the Sanger Institute Zebrafish Muta-
tion Project and genotyped as previously described (24). Before
any manipulation, animals were netted and anesthetized for 1
minute in 2-phenoxy-ethanol (0.05%) in the sampling tank.
When required, animals were humanely destroyed by rapid
decapitation after anesthesia. All experiments were carried
out in accordance with the principles published in the Euro-
pean animal directive (86/609/EEC) for the protection of ex-
perimental animals and approved by the Consejo Superior de
Investigaciones Cientificas (CSIC) ethics committee (project
numbers AGL2010-22247-C03-01 and CSD 2007-00002 [to
J-M. and C.-R.]). Unless otherwise indicated, all reagents
were purchased from Sigma. Primers used in the experiments
are summarized in supplemental Table 1.

Cloning procedure

The full coding regions of the zebrafish MCR genes were ob-
tained from public databases (http://www.ensembl.org/index.
html), subcloned in pGEM-T easy vector (Promega), and subse-
quently subcloned directionally into HindIIl/Xhol restricted
pcDNAS/FRT (Invitrogen). Primers sequences are shown in Sup-
plemental Table 1 published on The Endocrine Society’s Journals
Online web site at http://mend.endojournals.org. MRAP con-
structs were obtained as previously described (21). Briefly different
N- or C-terminal epitope tagged proteins (MRAPs and MCR) were
made by PCR using Taq DNA Polymerase (Invitrogen) and
pcDNAS5/ZEMRAP1, pcDNA3/zfMRAP2a, pcDNA3/zfMRAP2b,
pcDNAS5/ZfMCRs constructs as templates. Proteins were N- or
C-terminally tagged with Flag (DYKDDDDKC) or c¢-Myc
(EQKLISEEDL) epitopes. The expected size products were cloned
directionally into HindIll and Xhol restricted pcDNAS/FRT vector
and sequenced.

Tissue expression experiments

Total RNA was purified from fresh tissues (testis, ovary,
intestine, liver, muscle, spleen, head kidney and post kidney,
gills, skin, eyes, heart, brain, and whole fish) with Tri-Reagent
(Sigma), and 1 pug was used for cDNA synthesis with Superscript
III reverse transcriptase (Invitrogen) primed with random hex-
amers and oligo(dT)12-18 (Invitrogen). The cDNA of 35 tissues
from different animals (n = S/tissue) was subsequently used as
template for quantitative real-time PCR. For MRAP expression
quantifications, 1 pL of cDNA was added to 10 uL of 2X
Tagman PCR master mix (ABgene, Thermo Scientific), and
primers and probes concentrations were 300 nM and 200 nM,
respectively. As internal controls, a fragment of B-actin, elon-
gation factor 1 and 18S were amplified. One microliter cDNA
(1/100) and 250 nM primers were added to 7.5 uL of 2X Syb-
rgreen PCR master mix (ABgene, Thermo Scientific). Reactions
were carried out in duplicate in a Realplex Mastercycler
(Eppendorf). Primer sequences are shown in Supplemental Table 1.

Double in situ hybridization

Animals were anesthetized and humanely destroyed, and tis-
sues carefully dissected. Brains were fixed with paraformalde-
hyde (PAF, 4%) in phosphate buffer (PB, 0.1 M pH 7.4) over-
night, dehydrated, and embedded in Paraplast (Sherwood).
Serial 6-um cross-sections were cut using a rotary microtome.
Sections were mounted on 3-aminopropyltriethoxylane-treated
slides and then air-dried at room temperature (RT) overnight.
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Sections were stored at 4°C under dry conditions and used for
hybridization within 1 month. The double in situ hybridization
procedure was according to (25).

Before hybridization, sections were deparaffinized, rehy-
drated, and postfixed in 4% PAF for 20 minutes. Slides were
then rinsed twice in PB for 7 minutes and treated with a Protei-
nase-K solution (20 ug/mL in 50 mM Tris-HCI, 5 mM EDTA,
pH 8) for 5 minutes at RT. Slides were then washed in PB and
postfixed again in PAF for 5 minutes and subsequently rinsed in
sterile water and acetylated in a triethanolamine (0.1 M, pH
8)/acetic anhydride solution. Sections were then dehydrated and
dried at RT. Nonisotopic riboprobes for full-length zEMC4R
and zfMRAP2a were synthesized using a digoxigenin and fluo-
rescein-RNA labeling mix (Roche Diagnostics), respectively, ac-
cording to the manufacturer’s instructions. After 7 minutes in-
cubation at 75°C, riboprobes were diluted simultaneously in
hybridization buffer containing 50% formamide, 300 mM
NaCl, 20 mM Tris-HCI (pH 8), 5 mM EDTA (pH 8), 10%
Dextran sulfate, 1X Denhardt’s solution, and 0.5 ug/uL yeast
RNA type III. Subsequently, 100 L of hybridization solution
was added to each pretreated slide (see above), which were
coverslipped and incubated in a humidified chamber at 55°C
overnight. The following day coverslips were removed by incu-
bating slides in a solution containing 5X standard saline citrate
(SSC) buffer (1Xx SSC containing 150 mM NaCl, 15 mM sodium
citrate, pH 7), for 30 minutes at 55°C. The slides were then
rinsed in 2X SSC, 50% formamide for 30 minutes at 65°C and
3 times immersed in NTE buffer (500 mM NaCl, 10 mM Tris-
HCI, 5 mM EDTA, pH 7.5) for 10 minutes at 37°C. After
RNAse treatment 2 ug/mL RNAse in NTE) for 30 minutes at
37°C, slides were rinsed once in NTE buffer for 10 minutes at
37°C, once in 2X SSC, 50% formamide, for 30 minutes at 65°C,
once in 2X SSC for 10 minutes at RT, and twice in 0.1X SSC for
15 minutes at RT. Then slides were washed twice for 10 minutes
at room temperature in buffer A (100 mM Tris-HCI, pH 7.5;
150 mM NaCl) and incubated in blocking solution (2% block-
ing reagent, Roche Diagnostics in buffer A) for 30 minutes at
room temperature. Subsequently, the slides were incubated with
anti-digoxigenin alkaline phosphatase-conjugated sheep Fab
fragments and anti fluorescein horseradish peroxidase sheep
Fab fragments (Roche Diagnostics) diluted in blocking solution.
On the next day, sections were washed twice for 10 minutes in
buffer B (100 mM Tris, pH 9.5, 100 mM NaCl), incubated for
fluorescent detection of horse-radish peroxidase activity with
tyramide-biotine amplification diluent (PerkinElmer) for 20
minutes, and subsequently washed in buffer B with 0.1% Triton
for 15 minutes and exposed overnight at room temperature to
streptavin Alexa 488 diluted 1:300 in blocking buffer. Next day,
slides were incubated with HNPP (2-hydroxy-3-naphtoic acid-
2’-phenylanilide phosphate) in 2-hydroxy-3-naphtoic acid-2’-
phenylanilide phosphate/FastRED solution (Roche Diagnostic)
during 3 hours for fluorescence detection of alkaline phospha-
tase activity. Finally, slides were coverslipped with Vectashield
Hard Set mounting medium containing 4’,6-diamidino-2-phe-
nylindole (Invitrogen). Anatomic locations were confirmed by
reference to a brain atlas of zebrafish (26).

Cell culture and transfection

Human embryonic kidney (HEK) cells were maintained in
DMEM (Gibco) supplemented with 10% fetal bovine serum
(Gibco) and 1% penicillin/streptomycin mixture (Gibco) in a
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humidified atmosphere of 5% CO, at 37°C. Transient transfec-
tions were carried out using Lipofectamine LTX (Invitrogen)
according to the manufacturer’s instructions with 100 ng of
each construct, and total amounts of DNA were kept constant in
2 ug with pBSSK plasmid.

Pharmacologic experiments

A HEK-293 cell clone (clone Q), stably expressing B-galac-
tosidase under the control of a vasoactive intestinal peptide
promoter placed downstream of tandem repetitions of cAMP
responsive elements (CREs) was used to evaluate receptor acti-
vation (CRE-galactosidase [GAL]) (27).

ZfMRAP constructs alone or in combination were tran-
siently transfected together with zfMC4R and zfMCS5aR con-
structs in the clon Q. A construct carrying luciferase gene under
the control of a constitutive promoter was also transfected to
standardize transfection levels. The following day, cells were
split up into 96-well plates and stimulated with human a-MSH
(Bachem) and ACTH 1-24 (Bachem) ranging from 10~ to
107'° M or forskolin 107° in assay medium at 48 hours after
transfection. After 6 hours, the medium was removed, cells were
lysed, and galactosidase activity was measured as previously
described (27). The effect of zebrafish AGRP (zfAGRP, kindly
donated by Dr. Millhauser from Department of Chemistry, Uni-
versity of California), 1077 M on ACTH-stimulated MC4R/
MRAP2a activity was studied also. Measurements were normal-
ized for the protein content, the luciferase activity, and
forskolin-induced galactosidase activity. Protein content was
determined using the BCA protein assay kit (Pierce). Luciferase
activity was determined using the luciferase assay kit (Promega)
following provider instructions.

In order to corroborate the effect of MRAP2b on MC4R
basal activity, a cell clone Flp recombinase-mediated homolo-
gous recombination system (Flp-InTM) was used to produce
cells lines stably expressing MC4R in HEK-293/FRT cells, a cell
line with single genome-integrated FRT (21). The development
of isogenic cell lines was carried out according to the manufac-
turer recommendations. Subsequently, cells were transiently
transfected with 500 ng CRE-GAL alone or together with 20 ng
of MRAP2D construct. Basal galactosidase levels in unstimu-
lated cells transfected with MC4R or MC4R+MRAP2b were
determined as above. Transfection levels were standarized as
before.
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Western blotting and coimmunoprecipitation

Whole-cell lysates were prepared 24 hours after transfection.
Cells were washed once with cold PBS and lysates were gener-
ated using lysis buffer, briefly: 50 mM Tris-HCl, 500 mM NaCl,
0,5% TritonX-100, and 1 mM EDTA with protease and phos-
phatase inhibitors and incubated for 30 minutes on ice. Samples
were then spun for 20 minutes at 16 000 X g at 4°C. The su-
pernatant was mixed with Laemmli Sample buffer 2X before
use for Western blotting or incubated overnight at 4°C with
anti-FLAG magnetic beads (Sigma), or anti-MYC agarose beads
(Sigma) for coimmunoprecipitation. After incubation, agarose
was washed 4 times in lysis buffer, supernatant was removed,
and sodium dodecyl sulfate (SDS) loading buffer was added.
Magnetic beads were treated as manufacturer instructions and
also resuspended in SDS loading buffer. After boiling for 3 min-
utes, samples were run in SDS-polyacrylamide gel. Western
blotting was performed with anti-FLAG (Sigma), or anti-MYC
(Abcam) antibodies used at dilutions of 1:1000 and 1:5000,
respectively, and detected by horseradish peroxidase chemilu-
miniscence reaction of secondary antibody (SuperSignal West
Femto, Pierce).

Immunofluorescence microscopy

HEK cells grown onto poly-L-lysine-coated coverslips were
transiently transfected with 0.2 ug/well of Myc-MC4R and 0.2
wug/well Flag-MRAP2a, or Flag-MRAP2b constructs. Twenty
four hours later, cells were fixed and permeabilized by incuba-
tion in methanol for 5 minutes and subsequently in acetone for
1 minute. Then, cells were rehydrated, washed in PBS, blocked,
and incubated with mouse anti-c-Myc and rabbit anti-Flag an-
tibodies. Primary antibodies were detected with goat antimouse
or antirabbit secondary antibodies coupled to Alexa-Fluor 488
or Alexa-Fluor 594 (Invitrogen) as required. 4’,6-diamidino-2-
phenylindole (2 uM) was used to stain nuclei. Coverslips were
mounted in Prolong mounting medium for fluorescence (Invit-
rogen). Cells were also examined with a laser-scanning confocal
microscope (Olympus FV1000).

Cell surface ELISA

To measure cell surface receptor expression, 293/FRT/Myc-
2fMCA4R cells were seeded in poly-L-lysine-coated 24-well plate
(1 X 10° per well) and transfected independently with pcDNA3/

Table 1.

MCA4R or MC5R Were Expressed Alone or in Combination With One of the Different MRAPs in HEK-293
Cells Expressing a Reporter Gene Under the Control of CREs

MC4R MC4R MC4R MC5R MC5R MC5R

MC4R MRAP1 MRAP2a MRAP2b MC5R MRAP1 MRAP2a MRAP2b
a-MSH 1.30 X 1078 8.49 X 107° 2.14 X 1078 1.70 X 1078 1.16 X 107° 1.09 x 107° 1.37 x 107° 8.78 x 10710

[£2.49 X 1078] [+3.37 X 107°] [+3.92 x 107®] [+2.43 X 1078 [+3.19x 107° [£1.07 X 10" [*£1.78 X 107°] [%£9.61 X 1079
ACTH(1-24) 1.77 x 1077 6.15x 1077 8.49 x 10792 49x 1078 9.73 x 1071° 9.01 x 107'° 1.41 x 107° 6.80 x 10710

[£6.26 X 1077] [+3.84 X 1077] [+3.37 x 107°] [+5.1 X 1078 [£3.02 X 107'°] [£1.47 X 107'°] [+£6.68 X 107°] [£2.08 X 10719
ACTH(1-24) + 357 x10°7°

AGRP [+6.77 X 1077]

The mean of the reporter activation, expressed as percentage of the basal level, for each concentration of melanocortin agonist (NHACTH1-24 or
a-MSH), was calculated from 3 independent experiments and the resultant data were fitted to logistic curves using Qtiplot free software. For
statistical comparisons, data from each independent experiment (n = 3) were fitted to dose-response curves and EDs, average values (M)
compared by one-way ANOVA and significant differences were indicated. Numbers in brackets are with the 95% confidence intervals of nonlinear
fittings. EDsq values from gene reporter activation for melanocortin analogues on zebrafish MC4R expressed in HEK 293 cells.

@ Significant differences (P < .05) from MC4R transfected cells.

b Significant differences between cells transfected with MC4R and MRAP2a treated with ACTH or ACTH + AGRP after t test (P < .05).
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Table 2. MC4R Was Expressed Alone or in Combination With One or Several MRAPs in HEK-293 Cells Expressing a
Reporter Gene Under The Control of CREs
MC4R
MC4R MC4R MRAP2a MC4R MC2R
MC4R MRAP2a MRAP2a MRAP2b MRAP2b MC2R MRAP2a MC2R

MC4R MRAP2a MRAP1 MRAP2b MRAP1 MRAP1 MC2R MRAP1 MRAP1 MRAP2a
ACTH (1-24) 86 x 107/ 9.59 x 10792 9.87 x 10792 4.97 x 10792 9.64 x 10782 — — 137 x107° 1.05 x 1072 —

[£0.36 X 107%]  [£6.56 X 107°]  [£3.39%x 107°]  [+0.97 X 107°] [+1.88 % 1077 [£021 x 1079 [£1.13X 1077

Data were treated as in Table 1. EDg, values from gene reporter activation for ACTH(1-24) on zebrafish MC4R or MC2R and MRAPs expressed in

HEK 293 cells. Dashes indicates non-significant fitting.

zfMRAP2a or pcDNAS/zZfMRAP2b. Twenty four hours after
transfection, cells were washed with PBS, fixed on ice for 15
minutes with 1.85% formaldehyde to evaluate the presence of
the receptor in the plasma membrane, or for 5 minutes with
methanol for total receptor measurements. Cells were then pro-
cessed for ELISA as previously described (21). Nonspecific
OD,q, values were determined by transfecting the untagged
versions of each construct when possible or with enhanced green
fluorescent protein. Experiments were repeated 3 independent
times in triplicate.

In silico analysis of the MRAP1 5’-flanking region

As a first approach to understand the hormonal regulation of
the MRAPs, the first 5§ kb of the 5'-flanking region of the
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Figure 1. Distribution of MC4R and MRAPs mRNA expression in
different zebrafish tissues, as revealed by quantitative real-time PCR
(gPCR). Amplifications of B-actin and 18S and EF1a mRNAs were used
as internal control of the reverse transcription.

zfMRAP1 were obtained from Ensembl database (http://www.
ensembl.org/index.html) and analyzed for the presence of puta-
tive cis-acting elements using MathInspector (Genomatix,
http://www.genomatix.de/) and Transcription Element Search Sys-
tem (Tess, http://www.cbil.upenn.edu/cgi-bin/tess/tess) software.

Hormonal and physiologic regulation of
MRAP expression

Twenty fish per treatment were reared in individual aquariums and
fed twice a day during 1 week at 4% of body weight with control food
or the same diet containing 500 ug/g of T; (Sigma), cortisol (hydro-
cortisone, Sigma), or bezafibrate (Sigma), an agonist of the peroxi-
some proliferator-activated receptor a. After 7 days, fish were hu-
manely destroyed and whole body was quickly frozen in dry ice. Total
RNA of the whole fish was purified with Maxwell 16LEV Simply
RNA Tissue Kit (Promega) as described by the manufacturer. Quan-
titative PCRs and data analysis were as before but 3 ug of RNA were
used as template for cDNA synthesis. For fasting experiments, 30
animals were reared in 2 tanks (n = 15/tank) and fed for 14 days at4%
of the body weight. Thirty additional animals, split up into 2 individ-
ual aquaria, were fasted and sampled at 7 and 14 days. For stress
experiments 30 animals were maintained during 7 and 14 days in 1/20
of water volume when compared with the control group. After the

MC4R+

DAPI MC4R MRAP2a MRAP2a

MC4R+
MRAP2b

MC4R MRAP2b

Figure 2. Double in situ hybridization of MC4R (red) and MRAP2a
(green) at the level of preoptic area (upper panels) or MC4R (red) and
MRAP2b (green) at the level of tuberal hypothalamus (lower panels).
Samples were aslo stained with 4'6-diamidino-2-phenylindole (DAPI)
for morphologic studies. Ill, third ventricle; HV, ventral hypothalamus;
Ppa, anterior preoptic area. Insets in the right panels show
magnification of MC4R and MRAP colocalization. Scale bar, 200 pwm.
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Figure 3. MRAP2s and MC4R interactions. HEK cells were transfected with Flag-tagged MRAPs and/or Myc-tagged MC4R. Whole-cell lysates
were prepared 24 hours after transfection and used for Western blot or incubated with anti-FLAG magnetic beads or anti-MYC agarose beads for
coimmunoprecipitation. Both Flag-MRAP2a and Flag-MRAP2b, but not Flag-MRAP1, interact with Myc-MC4R as seen by immunoblotting (IB) with
anti-Flag and anti-Myc, respectively after immunoprecipitation (IP) with anti-Myc. Asterisks indicate positive bands in crude lysates and
immunoprecipitated samples whereas white arrowheads show unspecific bands.

experimental period, brains were removed carefully, and total RNA
was extracted using Tri-Reagent. cDNA synthesis, PCR quantifica-
tion of MRAP expression, and data analysis were done as before.

Food intake experiments

Adult female and male zebrafish were placed individually in 2-L
tanks for 4 consecutive days and food intake level was daily re-
corded. An excess of quantified food pellets (Supervit granulat,
Tropical) were added to the tank at 10 AM and the number of pellets
was quantified after 2 and 4 hours. These measurements provided
a baseline of food intake levels for each individual fish. The fifth
day animals were injected ip with saline, 0.1, 2, or 10 ug of
hACTH(1-24). A minimal of 10 fish was injected for each treat-

MRAP?2a

MRAP2b

Figure 4. Immunofluorescence assays in live cells showing the expression of MRAPs (green)
and/or zfMCA4R (red). N-terminally Flag-tagged MRAPs and N-terminally Myc-tagged MC4R
were transiently expressed in HEK-293 cells. Photomicrographs are taken with a X60
objective and are from a single optical section obtained within an acquisition of z stacks
(0.10 wm/slice). Arrows indicate regions of the plasma membrane where MRAPs and MC4R

are potentially colocalized.

MC4R+MRAP2a

MC4R+MRAP2b

ment. After 15 minutes, food intake levels were recorded in the
same manner. Food intake levels of each treated fish were ex-
pressed as the percentage of the base line (average of the food intake
levels during the previous 4 days). The same protocol was used
with the zebrafish strain Sa122, obtained from the Zebrafish Mu-
tation Project (Welcome Trust Sanger Institute), which lacks a
functional MC4R. This zebrafish mutant has a different genetic
background; therefore we injected both wild-type and mutant fish
with saline or 10 ug hACTH(1-24)/fish (the effective doses ob-
tained in the previous experiments). Total food intake was re-
corded after 4 hours.

Data analysis and statistics

Receptor activation data were fitted to
logistic curves using QtiPlot free-software
for LINUX (http:/soft.proindependent.
com/qtiplot.html). For graphic represen-
tation the response average for each dose
from 3 independent experiments was
calculated and data were fitted to lo-
gistic and ED 5, values were resumed in
Tables 1 and 2. For statistical compar-
isons, data from each independent ex-
periment (n = 3) were fitted to dose-
response curves, EDg, average values
were compared, and significant differ-
ences were indicated by asterisk in Ta-
bles 1 and 2. Quantitative real-time
PCR data were analyzed with the AACt
(cycle threshold) method. Statistical
analysis was conducted by one-way
ANOVA followed by Tukey’s multiple
range test (P < .05).
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Results

MC4R and MRAP expression

All 4 mRNAs, ie, MC4R, MRAP1, MRAP2a, and
MRAP2b, were expressed in the head kidney, but only
transcripts of MC4R and MRAP2s were found abun-
dantly in the brain. All 3 MRAPs, but no MC4R, were
expressed in the zebrafish testis. In addition, MRAP1 was
expressed also in the muscle and spleen whereas MRAP2b
was expressed in the eye. Residual levels were also found
in some peripheral tissues (Figure 1).

In order to corroborate the expression of MC4R and
MRAP2a in the brain but also to demonstrate the coex-
pression of these genes in the same neurons, double in situ

500 500
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B
400 400
300~ 300~

200 200

Gal activity (% of the basal)

S

100 100
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hybridization with nonisotopic probes was done (Figure
2). MC4R and MRAP2a colocalized in the preoptic area,
at the level of anterior part of the parvicellular preoptic
nucleus and also in the dorsal hypothalamus, particularly
in the lateral extension of the third ventricle (data not
shown) and the periventricular gray zone of the optic
tectum (data not shown). On the contrary, MC4R and
MRAP2b colocalized mainly in cells that coat the third
ventricle within the medial area of the tuberal hypothala-
mus (Figure 2).

MC4R and MRAP2s physically interact as
demonstrated by immunoprecipitation and
immunofluorescence studies

To determine whether MC4R and
accessory proteins directly or closely in-
teract, we tested whether receptor coim-
munoprecipitated with each MRAP.
Both zfMC4 and MCS5aR coimmu-
noprecipitated with MRAP2a and
MRAP2b but receptors did not interact
with MRAP1 (Figure 3 and Supplemen-
tal Figure 1). When coexpressed in
vitro, all 3 MC4R, MRAP2a, and
MRAP2bD proteins were detected by im-
munocytochemical techniques. High
levels of MC4R MRAP2a (Figure 4, up-
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per panels) and MRAP2b (data not
shown) were detected in the surround-
ing area of the cellular nucleus match-
ing the position of the endoplasmic re-
ticulum/Golgi complex. All 3 proteins
were detected also in the nuclear mem-
brane (Figure 4; data not shown for
MRAP2b). MC4R was targeted par-
tially to the plasma membrane where it
was found to colocalize partially with
MRAP2a and/or in close apposition/co-
localization with MRAP2b (Figure 4).

LA
10°¢ 10

Pharmacologic implication of
MC4R/MRAPs interaction
To determine whether the inter-
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Figure 5. Pharmacologic properties of melanocortin agonist, a-MSH and hACTH (1-24) at HEK-
293 transiently expressing both MC4R (upper panels) or MC5Ra (lower panels) and different
MRAPs (B, MC4R; ¢, MC4R+MRAP1; ®, MCAR+MRAP2a; A, MCAR+MRAP2b) but stably
expressing a CAMP-responsive 3-galactosidase reporter gene. Data were normalized to protein
levels and expressed as percentage of the basal levels. A construct carrying luciferase gene under
the control of a constitutive promoter was also transfected to standardize the transfection levels.
Experiments were performed using quadruplicate data points and repeated at least 3 times

action zfMC4R-MRAP has some
pharmacologic implication, we co-
expressed both the receptor and the
accessory proteins in HEK cells and
stimulated the cells with increasing
a-MSH or ACTH concentrations.
Coexpression of MC4R and MRAP1
or MRAP2b, but no MRAP2a,
slightly increased the sensitivity of the

— T 1
10 10
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receptor by a-MSH. However, coexpression of MC4R and
MRAP2a significantly increased the sensitivity of the recep-
tor to hACTH(1-24). This effect was not evident when the
receptor was expressed together with MRAP1 or MRAP2b
(Figure 5 and Table 1). When MC4R was expressed with a
combination of MRAPs (MRAP2a+MRAP1, MRAP2a+
MRAP2b, MRAP1+MRAP2b, or MRAP2a+MRAP1+
MRAP2b) the receptor only showed sensitivity to ACTH
when MRAP2a was present in the combination (Figure 6
and Table 2). AGRP worked as a competitive antagonist of
ACTH at MC4R when coexpressed with MRAP2a because
its presence in the media decreased the ACTH-induced ga-
lactosidase activity (Figure 7). MRAPs had no effect on the
a-MSH- or ACTH-induced activation of MC5aR, thus sup-
porting previous results on MC4R. When MRAP2b was
transfected into HEK-293 FRT cells stably expressing
MCA4R, basal activity levels decreased about 20%, showing
that MRAP2b is able to reduce light but significantly the
constitutive activity of the receptor. MRAP2a had no effect
on the basal activity of the receptor (Figure 8A).

ZfMC4R surface expression
zfMRAP2a expression had no effect on zfMC4R sur-
face or total expression (Figure 8B).
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Figure 6. Effects of different MRAP combination on MC4R-induced
galactosidase activity. A, Pharmacologic properties of hACTH(1-24) at
HEK-293 transiently expressing both MC4Rs with different
combinations of MRAPs (O, MC4R; [J, MC4R+MRAP2a; ¢,
MC4R+MRAP2a+MRAPT; A, MC4R+MRAP2a+MRAP2b; V,
MC4R+MRAP2a+MRAP2b +MRAP1; ®, MC4R+MRAP2b+MRAP1,
and stably expressing a CAMP-responsive 3-galactosidase reporter
gene. Only when MRAP2a was present in the combination, the MC4R
was able to respond to ACTH stimulation. B, Pharmacologic properties
of hACTH(1-24) at HEK-293 transiently expressing both MC2R with
different MRAPs (O, MC2R; B, MC2R+MRAP1; [, MC2R+MRAP23;
¢, MC2R+MRAP1+MRAP2a). Data were normalized to protein levels
and expressed as percentage of the basal levels. Error bars were
omitted to facilitate the graph vision. A construct carrying luciferase
gene under the control of a constitutive promoter was also transfected
to standardize transfection levels. Experiments were performed using
quadruplicate data points and repeated 2 times independently.
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Figure 7. Effects of AGRP on hACTH(1-24)-stimulated galactosidase
activity in HEK-293 cells transiently expressing both MC4R and
MRAP2a but stably expressing a cAMP-responsive B-galactosidase
reporter gene (CJ, MC4R+MRAP2a; B, MC4AR+MRAP2a+AGRP). Data
were normalized to protein levels and expressed as percentage of the
basal levels. A construct carrying luciferase gene under the control of a
constitutive promoter was also transfected to standardize transfection
levels. Experiments were performed using quadruplicate data points
and repeated at least 2 independent times.

MRAP1 5’-flanking region

In order to obtain information on putative hormonal
systems regulating MRAP system, we analyzed the 5’-
flanking region of the MRAP1. The proposed promoter
sequence contained a number of sites that corresponded
to homologs of the consensus sequences of various hor-
mone-responsive elements, in particular, 10 putative glu-
cocorticoid response elements, and 6 potential estrogen
response elements. We also highlighted the presence of 9
putative peroxisome proliferative activated receptor ho-
modimers (see Supplemental Figure 2).

Hormonal and physiologic regulation of zFMRAPs

In order to evaluate whether the MRAP system can be
a regulatory node of the melanocortin system activity, we
studied the expression response of all 3 MRAPs to differ-
ent hormonal systems. We took advantage of the previous
promoter analysis of MRAP1 (see above). Both orally
administrated cortisol and bezafibrate for 1 week signif-
icantly inhibited the expression of MRAP1 and MRAP2a.
A similar effect was also observed on MRAP2b expres-
sion but levels did not reach statistical significance. T
had no effect on MRAP system expression but its oral
administration tends to decrease the expression levels of
MRAP1 and MRAP2a (Figure 9A).
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Figure 8. A, Effects of MRAP2a and MRAP2b on MC4R-induced galactosidase basal activity in
HEK-293 cells stably expressing MC4R but transiently expressing galactosidase gene under the
control of a constitutive promoter carrying several CRE sites (see Material and Methods for more
details). A construct carrying luciferase gene under the control of a constitutive promoter was
also transfected to standardize transfection levels. Experiments were performed using
quadruplicate data points and repeated 4 independent times. Asterisks show significant
differences after Student'’s t test (P < .05). B, Total and cell surface detection of Myc-zfMC4R
using anti-Myc antibodies. Control corresponds to nontransfected HEK-293 cells. Cells were
transiently transfected with MC4R or MC4R+MRAP2a and assayed for total and extracellular
c-Myc detection by whole-cell ELISA. The results represent the mean + SEM of 3 independent

experiments, each performed in triplicate.

We also explore the effect of fasting and stress on cen-
tral expression of the MRAP2s and MC4R. Long-term
fasting significantly increased MC4R expression at 1
week but such an increase was abolished at 2 weeks. On
the contrary, MRAP2b expression was increased signifi-
cantly during the whole experimental period. Stress by
density had no effects on central MRAP2 expression after
1 or 2 weeks (Figure 9B).

ACTH effects on zebrafish food intake

In order to evaluate the effects of ACTH on food intake
levels, we injected ip adult zebrafish (mean body weight,
0.421 = 0.0013 g) with saline or increasing doses of
hACTH(1-24). Animals injected with saline at about
80% of the previous food intake after 2 or 4 hours. How-
ever, animals injected with 10 ug of hRACTH(1-24) ate
only about 30 and 40% after 2 or 4 hours, respectively.
No significant differences were observed when fish were
injected with lower doses (0.1 or 2 ug) (Figure 9C). When
zebrafish lacking a functional MC4R were injected with the
effective doses of hACTH(1-24), no effects on food intake
were recorded at 4 hours after injection. However, the same
doses of hACTH(1-24) injection induced a significant re-
duction of food intake levels in wild-type animals of the
same genetic background (Figure 9D).

MCH4R, a canonical MSH receptor, the
capability to be activated by ACTH
with a similar sensitivity to that exhib-
ited by MC2R (21). However, the coex-
pression of MRAP2a has no effect on
a-MSH-induced MC4R activation. It
means that MRAP2a is able to trans-
form a MSH receptor into an ACTH
receptor. This capability is specific for
the tandem MRAP2a/MC4R because
coexpression of the receptor with
MRAP1 or MRAP2b had no effect on ACTH- or a-MSH-
induced cAMP production. When several MRAPs were ex-
pressed in combination, MC4R was able to respond to ACTH
only when MRAP2a was present in the combination, further
corroborating this specificity. From the evolutionary point of
view, the results reported here provide a new aspects of the
functional evolution of the G protein-coupled receptors. There-
fore, the coexpression of an accessory protein can supply a new
function to the receptor by widening the binding spectrum.
These new binding properties allow the receptor to signal new
physiologic conditions. The expression of an accessory protein
could also expand the tissue response to new hormonal systems
or new molecules.

This ability of MRAP2a is restricted to the MC4R
because the coexpression of the different MRAPs with the
MCS5Ra had no effect on the pharmacologic profile of the
receptor. We have tested also the interaction of the differ-
ent MRAPs with the other MCRs, and no effects on
ACTH sensitivity were recorded (R. Cortes, M.J. Agul-
leiro, and J.M. Cerda-Reverter, unpublished results). In a
recent paper, Sebag and Hinkle (20) reported that
hMRAP2 competes with hMRAP1 for binding to
hMC2R, thereby decreasing the potency of ACTH. Sim-
ilar to our results, AMRAP1 and hMRAP2 had no effects
on NDP-a-MSH-induced activation of hMC4R, but
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Figure 9. A, Effects of cortisol, T3, or bezafibrate, a PPAR agonist, on MRAP expression.
Animals were fed with food pellets containing 500 ng/g of the different hormones and
humanely destroyed after 7 days. Total RNA of the whole fish was purified and used for cDNA
synthesis. MRAP1, MRAP2a, and MRAP2b expression was analyzed with the AACt (cycle

hibiting  MSH-induced activation
(27, 29, 30). Cross talk between
a-MSH and AGRP regulates the ac-

threshold) method. B, Fasting and rearing density effects on brain expression of MRAP2a and
MRAP2b. Animals were fed for 14 days at 4% of the body weight and subsequently fasted for 7
and 14 days. For density experiments animals were maintained during 7 and 14 days in 1/20 of
water volume when compared with the control (CTRL) group. MRAP2s expression data were
treated as before. C, Effects of hACTH(1-24) on zebrafish (wild-type TU strain) food intake levels.
Food intake levels were recorded during 4 consecutive days to establish a base line for each
intact fish. The fifth day animals were injected ip with hACTH(1-24). After 15 minutes, food
intake levels of each treated fish were recorded after 2 and 4 hours and expressed as the
percentage of the base line (average of the food intake levels during the previous 4 days). D,
Effects of hACTH(1-24) on zebrafish sa122 food intake levels. Food intake levels were recorded
and calculated as before (see Figure 12). Asterisks show significant differences after one-way

ANOVA and Tukey's method (P < .05).

ACTH-induced receptor activation was not tested. Rein-
ick et al (28) reported that dogfish MCSR (Scualus acan-
thias) responds with higher affinity to ACTH(1-25) than
a-MSH, and sensitivity of the receptor to ACTH(1-25)
increased by coexpression with zebrafish or mouse
MRAP1. However, the coexpression of cartilaginous
MRAP2 had no impact on MC3R function. The present
experiments cannot discriminate the mechanism by
which MRAP2a promotes the ACTH-induced MC4R ac-
tivation, but immunoprecipitation and immunofluores-
cence experiments demonstrate that both proteins inter-

tivity of the MC4R, thus controlling
output effects on energy balance and
growth (5). Decreased MC4R sig-
naling in MC4R knockout mice (7),
AGRP overexpressing mice (9), ag-
outi mice (8, 31) or morpholino ze-
brafish (24) results in hyperphagia,
obesity,
growth. Our results demonstrate
that fasting severely increases cen-
tral MRAP2b expression. There-
fore, it is plausible that MRAP2b could decrease consti-
tutive activity of the MC4R during fasting periods,
driving the animal toward positive energy balance. Fur-
ther supporting this idea, we demonstrate that transient
transfection of low quantities of MRPA2D is able to de-
crease basal galactosidase activity in cells lines stably ex-
pressing MC4R. In addition, double ISH experiments
show that both MC4R and MRAP2b expression colocal-
ize in the neurons of the ventral hypothalamus, a brain
area involved in the regulation of pituitary secretion but
also in the control of energy balance. In fact, the ventral

and increased linear
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hypothalamus seems to be the homolog of the mamma-
lian arcuate nucleus (32). Colocalization studies provide
an anatomic support to the immunoprecipitation experi-
ments but also a physiologic role to the protein interaction.
We anticipate that overexpression of MRAP2b in zebrafish
could result in increased linear growth as observed in AGRP
transgenic zebrafish (33) or MC4R knockout zebrafish (24).

Both MC4R and MRAP2a mRNAs colocalize also in
the preoptic area, tuberal hypothalamus, and optic tec-
tum. The interaction between both proteins in the brain
suggests that ACTH could be involved in the regulation of
food intake and growth in zebrafish. In support of this,
we demonstrate that peripheral administration of ACTH
inhibits short-term food intake in wild animals but not in
the zebrafish strain sa122 that lacks a functional MC4R.
It demonstrates that MC4R, but not MC2R, mediates
anorexic effects of ACTH. In mammals, ACTH is synthe-
sized mainly in the pituitary, but central POMC is mainly
processed to a-MSH and B-endorphin (2). Therefore, it
suggests that peripheral ACTH could reach central struc-
tures controlling food intake, particularly brain areas ex-
pressing both MC4R and MRAP2a, to inhibit food in-
take. However, immunohistochemical experiments in
carp, a species very closely related to zebrafish, have re-
ported the presence of ACTH in the preoptic area but
expression studies demonstrated that POMC is exclu-
sively expressed in the tuberal hypothalamus of goldfish
(34). It suggests that hypothalamic POMC can be pro-
cessed into ACTH and projected to the preoptic area,
where MC4R/MRAP2a are expressed, to modulate mela-
nocortin signaling. Alternatively, ACTH could stimulate
cortisol secretion, via interrenal MC2R, and inhibits food
intake as observed in other fish species (35). However, it
is unlikely because sa122 animals exhibit a functional
MC2R but food intake levels remain unaltered. In addi-
tion, cortisol treatment exhibits long lasting effects on
feeding response (35). However, our results show that
ACTH-treated animals reduce food intake levels after 2
hours, thus making it improbable that cortisol mediates
ACTH effects on food intake. Central effects of ACTH on
MCA4R are not exempt of AGRP competitive antagonist
because the presence of this protein can decrease the
ACTH-induced MC4R activation. This result lends
weight to the central action of ACTH because AGRP is
basically expressed in the zebrafish brain (36).

The MRAP system provides a mechanism for the fine
tuning of melanocortin signaling throughout the regula-
tion of the receptor activity and/or response. Supporting
this idea, we demonstrate that MRAP1 and MRAP2a
expression, both proteins involved in the regulation of
ACTH responsiveness via MC2R and MC4R, respec-
tively, are down-regulated by cortisol, T, and bezafi-
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brate. All 3 compounds could modulate the response to
ACTH, regulating the presence of MC2R in the mem-
brane, by decreasing MRAP1 expression, or regulating
ACTH binding to MC4R, by down-regulating MRAP2a
expression. This fact acquires special relevance in regula-
tory feedback systems. The MC4R, together with MC2R
(24), is also highly expressed in the head-kidney where
interrenal tissue, the equivalent of mammalian adrenal
tissue, is intermingled. Increased cortisol levels could de-
crease interrenal MRAP1 and MRAP2a expression, pro-
viding a mechanism for a local negative feedback by de-
creasing the sensitivity to systemic ACTH.

In summary, we demonstrate that MC4R, a canonical
MSH receptor involved in the control of energy balance,
becomes ACTH receptor-like when coexpressed with
MRAP2a. Both proteins, MRAP2a and MC4R, physi-
cally interact and are coexpressed at the central nervous
system (CNS), in key areas involved in the regulation of
energy balance. In addition, ACTH administration inhib-
its food intake in wild-type animals but not in MC4R-
deficient zebrafish, suggesting that MC4R mediates the
anorexigenic effects of ACTH. MRAP2a is regulated by
several hormonal systems including corticosteroid and
thyroid hormones, thus providing an excellent substrate
for the fine tuning of melanocortin activity. MRAP2D is
also able to interact with MC4R, and both proteins are
coexpressed in the brain, in similar areas where MC4R
and MRAP2a are coexpressed. MRAP2b cannot modify
the receptor response to the agonist but is up-regulated
during chronic fasting, suggesting that the protein can
decrease the constitutive activity of the receptor during
fasting. This result supports a role for MRAP2b in the
control of energy balance and suggests that protein dys-
function would result in increased growth and/or obesity.
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