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Summary
Expression of amyloid precursor protein (APP) and its two paralogues, APLP1 and APLP2 during brain development coincides with key
cellular events such as neuronal differentiation and migration. However, genetic knockout and shRNA studies have led to contradictory

conclusions about their role during embryonic brain development. To address this issue, we analysed in depth the role of APLP2 during
neurogenesis by silencing APLP2 in vivo in an APP/APLP1 double knockout mouse background. We find that under these conditions
cortical progenitors remain in their undifferentiated state much longer, displaying a higher number of mitotic cells. In addition, we show
that neuron-specific APLP2 downregulation does not impact the speed or position of migrating excitatory cortical neurons. In summary,

our data reveal that APLP2 is specifically required for proper cell cycle exit of neuronal progenitors, and thus has a distinct role in
priming cortical progenitors for neuronal differentiation.
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Introduction
In mammals, the APP gene family consists of three evolutionary

conserved members: amyloid precursor protein (APP), amyloid

precursor-like protein (APLP) 1 and APLP2. Although the role of

APP as precursor of amyloid beta in the context of Alzheimer’s

disease is well understood (Reinhard et al., 2005), the

physiological role of APP is still largely unclear. Gain and loss

of function studies have suggested a role of APP in neuronal

migration (Herms et al., 2004; Young-Pearse et al., 2007), cell–cell

adhesion (Soba et al., 2005), neurite outgrowth (Leyssen et al.,

2005; Young-Pearse et al., 2008), synapse formation and function

(Wang et al., 2009; Weyer et al., 2011), intracellular signalling

(Cao and Südhof, 2001; Deyts et al., 2012) see however (Hébert

et al., 2006), axonal pruning (Nikolaev et al., 2009) and

neurogenesis (Aydin et al., 2011; Ma et al., 2008; for reviews,

see Müller et al., 2012; Reinhard et al., 2005). Moreover,

observations made in different models are sometimes

contradictory and argue at first glance for opposing functions for

the APP family. For instance, Young-Pearse et al. (Young-Pearse

et al., 2007) demonstrated that the downregulation of APP in

precursors and neurons of the developing cortex in vivo blocks the

migration of neurons towards the cortical plate. Conversely, Herms

et al. (Herms et al., 2004) had reported that neurons in an APP/

APLP1/APLP2 triple knockout (ko) mice overmigrate and

accumulate ectopically in the marginal zone (Herms et al.,

2004), resembling human type 2 cobblestone lissencephaly. The

discrepancy between the overmigration effects in the triple ko

(Herms et al., 2004) and the blocked migration in the case of APP

downregulation (Young-Pearse et al., 2007) shows that the role of

the APP family members in the course of cortical development is

still unclear. Alternatively, APP and APLPs may regulate distinct

processes in different regions of the developing cortex.

Interestingly, mRNA expression data support this idea because

APP and APLP1 and APLP2 expression patterns differ in the

developing cortex: APP is found in the cortical plate (CP) and

ventricular zone (VZ), APLP2 in the VZ and subventricular zone

(SVZ) and APLP1 in the CP only (Diez-Roux et al., 2011; López-

Sánchez et al., 2005; Visel et al., 2004). The restriction of APLP2

expression to the proliferative zones (VZ/SVZ) of the developing

cortex makes it a very interesting candidate for a specific function

in the development and specification of cortical progenitors.

Therefore we focused our attention on the involvement of APLP2

in cortical development.

To address this question, we silenced, in utero, the expression

of APLP2 in developing cortices of both wild-type (wt) and APP/

APLP1 double knockout (dko) embryos. We investigated the

effect of the loss of APLP2 function in the proliferation and

differentiation of progenitors, and migration and final positioning

of cortical excitatory neurons. Our data reveal that APLP2 is

required for proper progression of neuronal differentiation

program of cortical progenitors.

Results
APLP2 downregulation in dko cortices affects cortical
positioning

To examine the role of APLP2 in cortical development, we used two

different U6 driven shRNA constructs targeting different regions of

the coding sequence of the APLP2 transcript. Western-blot analysis
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of APLP2-V5 overexpressing HEK293 cells which were transfected

with one of those shRNA constructs confirmed the downregulation

of APLP2 protein (APLP2 shRNA1 more than 95% knockdown and

APLP2 shRNA2 more than 80% knockdown; Fig. 1A). Since

APLP2 shRNA1 was more efficient for the downregulation of

APLP2 protein, we used in most of our analysis this shRNA

construct (referred to hereafter as APLP2 shRNA) and utilized the

second construct in initial experiments in order to validate the

Fig. 1. APLP2 downregulation changes the positioning of cells in dko cortices. (A) Left: Western blot showing protein levels of APLP2-V5 and actin (loading

control) of HEK cells expressing APLP2-V5 transfected with U6 driven APLP2 shRNA1, APLP2 shRNA2 or control shRNA. Right: downregulation of APLP2

normalized to the total actin (n54). (B) Confocal images of coronal slices of wild-type (WT) brains electroporated with constructs expressing APLP2 shRNA or

control shRNA together with EGFP, 4 days after electroporation (E14.5–E18.5). APLP2 shRNA expression does not lead to developmental differences in respect

to wild-type conditions. (C) Quantification of EGFP-positive cells shown in B. Bar graphs represent frequency distribution of EGFP-positive cells in ten equally

divided bins from ventricle (1) to the pial surface (10) of the cortical wall. Values represent the mean 6 s.d. (n55; Student’s t-test). The inset scatter plot

compares the population distribution of EGFP-positive cells (n53, only 300–400 cells only are shown for clarity of graph; values represent the

median 6 interquartile range; Mann–Whitney test). (D) Confocal images of APP/APLP1 dko cortices transfected with APLP2 shRNA or control shRNA

construct coexpressing EGFP, 4 days after electroporation (E14.5–E18.5). APLP2 shRNA expression alters cortical positioning of dko cells (E) Quantification of

EGFP-positive cells shown in D. Bar graphs show frequency distribution of EGFP-positive cells in ten equally divided bins from ventricle (1) to the pial surface

(10) of cortical wall. Values represent the mean 6 s.d. (n55; Student’s t-test). The inset scatter plot compares the population distribution of EGFP-positive cells

(n53, 300–400 cells for clarity of graph; values represent the median 6 interquartile range; Mann–Whitney test). All confocal images are maximal intensity

projections of 10–15 consecutive z-sections. Upper cortical layers are stained with Cux1 antibody and DAPI is used for nuclear staining. Scale bars: 50 mm.

**P,0.01, ***P,0.001.
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phenotype and exclude the possibility of off-target effects. Also in
cultures of cortical neurons from E14 mice (supplementary material

Fig. S2A) and in mouse embryonic fibroblasts (data not shown),
endogenous APLP2 expression was clearly downregulated by
APLP2 shRNA1 three days after transfection.

To address APLP2 function, we expressed the APLP2 shRNA

constructs in cortical progenitors of wt mice at E14.5 by using in

utero electroporation. APLP2 is highly expressed in the
developing cortex at E14.5 (López-Sánchez et al., 2005; Lorent

et al., 1995) when upper layer neurons are generated (Molyneaux
et al., 2007). In order to visualize electroporated cells, EGFP was
coexpressed. As control, we used a scrambled control shRNA

that does not align significantly with any NCBI mouse transcript
sequence. Four days after electroporation, the time point when
transfected precursors are expected to have differentiated into
neurons which are residing in the upper layers of the cortical

plate (Fig. 1B), we fixed the brains and analysed the position of
labelled cells in coronal sections. For this purpose we divided the
cortex into ten equal bins and counted the relative number of

EGFP-positive cells in each bin (see Materials and Methods;
Fig. 1B,C). Moreover, we analysed the difference of the entire
population distribution (Fig. 1C, inset). Both types of analysis

did not reveal any difference in the behaviour of APLP2 shRNA
expressing cells in respect to control shRNA cells (Fig. 1B,C). In
both cases, EGFP-positive cells were mostly positioned in the

upper layers of the cortex, which is marked by Cux1 antibody
(Fig. 1B).

We considered the possibility that the well-described
redundant function of APP, APLP1 and APLP2 throughout

development (Heber et al., 2000) could have led to a
compensation for the loss of APLP2 function. To test this, we
expressed APLP2 shRNA in cortical progenitors from APP/

APLP1 dko mice. APLP2 downregulation in APP/APLP1 dko
resulted in a large number of EGFP-positive cells (54%) residing
in the Cux1 negative region, i.e. predominantly in the VZ/SVZ of

the developing cortex (Fig. 1D,E). Similar to wt mice, the
majority of neurons electroporated with the control shRNA
construct (APP/APLP1 dko) migrated to the upper layer of the
cortical plate (Cux1-positive layer, Fig. 1D). This indicates that

APLP2 is an important component of the machinery responsible
for proper neuronal progression towards the cortical plate. To
guard against possible off-target of the APLP2 shRNA construct,

we used a second shRNA (i.e. shRNA2) to target APLP2 in the
developing cortex. Again, we find only a change in the cortical
positioning of cells transfected with APLP2 shRNA2 in APP/

APLP1 dko mice (supplementary material Fig. S1). Moreover,
the inability of both APLP2 shRNA constructs to induce any
phenotype in wt cortices (Fig. 1B,C; supplementary material Fig.

S1) argues for the specificity of our approach.

Next, we asked whether the morphology of neurons that are
moving towards the cortical plate is different in dko versus ‘triple
ko’ neurons, which could explain the observed changes in

cortical positioning of the cells. Careful microscopic analysis
revealed that this is not the case: neurons in both groups
displayed the typical bipolar morphology of migrating neurons

with a thickened leading edge and a thinner trailing process
(Fig. 2A), indicating that APLP2 is not essential for the
acquisition of the morphological polarization required for

proper migration. To assess directly neuronal migration, we
monitored the migration speed and distance of dko neurons either
expressing the control shRNA or the APLP2 shRNA through the

use of an in vitro migration assay in Matrigel (Calderon de Anda
et al., 2008). We did not detect any differences in the distance
that double or ‘triple’ ko neurons migrate away from the explants

(Fig. 2B). Moreover, live imaging of migrating neurons did not
reveal differences in the speed of neuronal migration nor in the
morphology nor in the behaviour of the migrating neurons

(Fig. 2B; supplementary material Movies 1 and 2). Thus, neither
a morphological defect nor the migratory behaviour of neurons is
the cause of altered cortical positioning.

To test whether the migration delay was due to a change in the
morphological differentiation of radial glia cells, which provide

the scaffold for radially migrating neurons, we analysed the
morphology of EGFP-labelled radial glia cells in E16.5 dko slices
of mice with downregulated APLP2 from E14.5. The

morphology of radial glia was similar in APLP2 shRNA and
control plasmid electroporated dko cortices: they were radially
oriented, well aligned and spanned the entire cortical wall with

branched basal end feet and apical connections (Fig. 2C)
(Chanas-Sacre et al., 2000).

‘Triple knockout’ cells remain in a proliferative
progenitor state

Apart from the defective cortical positioning of ‘triple knockout’
neurons described above, we also detected retention of ‘triple
knockout’ cells in the VZ/SVZ (Fig. 1D,E). To determine
whether the cells arrested in the VZ/SVZ are progenitors which

remain longer in a proliferative state, or neurons which fail to
migrate away from the proliferative zones, we labelled the brain
slices with the basal progenitor marker Tbr2 (Fig. 2D). In dko

cortices electroporated with the control shRNA a small number
of EGFP positive cells were located in the VZ/SVZ and only 7%
(6s.d. 2.4%, n53) were Tbr2 positive, demonstrating that four

days after electroporation, most of the cells became post-mitotic
and migrated to the cortical plate (Fig. 2D). In contrast, in dko
cortices electroporated with the APLP2 shRNA, a large number
of cells remained in the VZ/SVZ of which 29% (6s.d. 3.5%,

n53) expressed Tbr2 suggesting that they failed to differentiate
into post-mitotic neurons (Fig. 2D). In addition, a Tbr2 negative
population in the ventricular zone, most likely radial glia

progenitors (see later), was still present (Fig. 2D,E) and some
cells (Fig. 2E) were still expressing phospho-histone 3 (PH3), a
marker tightly associated to chromosome condensation during

mitosis (Goto et al., 1999), showing that they were undergoing
mitosis. In contrast, in dko cortices electroporated with the
control shRNA we very rarely found mitotic PH3/EGFP-positive

cells and only observed a very small number of radial glia cell
progenitors.

Altogether, these data suggest that APLP2 plays a role in the
normal progression of the neuronal differentiation program from
precursors to post-mitotic neurons.

APLP2 has a progenitor-specific function and is
dispensable for radial migration

To substantiate the above hypothesis, we designed a construct to
achieve cell-specific expression of the APLP2 shRNA, based on

the use of a let-7 microRNA embedded shRNA that can be
expressed from cell-type-specific promoters (Fig. 3A). The let-7
microRNA based shRNA was more effective in downregulation

of mCherry compared to the commonly used miR-30 microRNA
system (data not shown). Its functionality for APLP2
downregulation was proven by western blot analysis of

Journal of Cell Science 126 (5)1270
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HEK293 cells expressing a V5 tagged APLP2 cDNA and

transfected with a shRNAmir construct (Fig. 3B). Similar to the

U6-APLP2 shRNA constructs (Fig. 1A), the APLP2 shRNAmir

construct reduced APLP2 protein expression by about 90%.

Moreover, E14 cortical cultures transfected with APLP2

shRNAmir, showed comparable downregulation of endogenous

APLP2 to the U6-driven shRNA (supplementary material Fig.

S2A). In addition, in utero electroporation of APLP2 shRNAmir

using the ubiquitous CAG promoter recapitulated the phenotype

(supplementary material Fig. S2B) that was obtained by the U6

driven APLP2 downregulation in dko mice (Fig. 1D).

This system allowed us to investigate the result of a cell

specific loss of APLP2 function by driving the expression of

APLP2 shRNA in neural progenitors and post-mitotic neurons

using the Brain lipid-binding protein (BLBP) and Tubulin-a (Ta)

promoters, respectively (Coksaygan et al., 2006; Feng et al.,

1994; Gloster et al., 1994; Hashimoto-Torii et al., 2008).

Differential expression of Ta and BLBP promoters was

confirmed by co-electroporation of Ta-mCherry with BLBP-

EGFP in utero (Fig. 3C).

Expression of APLP2 shRNAmir under the control of neuronal

Ta promoter in dko post-mitotic cells did not result in any

changes in the cortical positioning of EGFP-positive cells when

compared with control shRNA (Fig. 3D,E). In contrast,

progenitor specific expression of APLP2 shRNAmir caused the

accumulation of cells in the VZ/SVZ similar to the phenotype

that we observed using the U6 promoter (compare Fig. 3F,G with

Fig. 1D,E). In order to visualize the progeny of cells

electroporated with BLBP APLP2 shRNAmir after the BLBP

promoter is switched off in young neurons, we co-electroporated

a mCherry-expressing construct with the ubiquitous CAG

promoter. Four days after electroporation we detected BLBP-

EGFP-positive cells only in the APLP2 shRNAmir expressing

cortices (Fig. 3F). This supports a progenitor specific function of

APLP2 and the delay in the exit from the progenitor stage, further

highlighting the importance of APLP2 in neural differentiation of

cortical progenitors.

Cell cycle variables are regulated by APLP2

In order to understand the role of APLP2 during precursor

proliferation in more detail, we chose to analyse in utero

electroporated brains two days after electroporation instead of

four days. After two days, a substantial number of progenitors

can still be found in the proliferative zone of the developing

cortex even under control conditions (Tabata and Nakajima,

2001; Tabata and Nakajima, 2008), allowing us to compare the

proliferative fraction of cells under different conditions, whilst

after 4 days most of the progeny deriving from in utero

Fig. 2. Arrested ‘triple ko’ cells express progenitor

and mitotic markers but do not show morphological

changes. (A) Confocal images of 20–25 (0.8 mm)

consecutive z-sections illustrating morphology of dko

migrating neurons transfected with APLP2 shRNA or

control shRNA. Drawings on the right depict the

morphology of two migrating neurons (blue) and one

positioned in the CP. The morphology of neurons in

both groups is comparable. (B) Images of control

shRNA or APLP2 shRNA transfected neuronal explants

embedded in Matrigel 3 days after plating. The upper

graph shows the mean distance of EGFP-positive cells

from the margin of explants, which does not change in

triple ko neurons. Values represent the mean 6 s.d.

(n53 different experiments, control, 161 cells from 16

explants; shRNA, 182 cells from 18 explants; Student’s

t-test). The lower graph shows that the velocity of

neuronal movement does not change with expression of

APLP2 shRNA (n52 independent experiments, 29 cells

for APLP2 shRNA and 26 cells for control shRNA).

(C) Confocal projection images of 20–25 consecutive z-

sections (0.8 mm) of radial glia cells illustrating their

ascending fibres (left) and end feet (right) in APP/

APLP1 dko cortices transfected with APLP2 shRNA or

control shRNA. In both groups, the fibres span the

entire cortical wall with branched end feet that are

attached to the pial surface. (D) APP/APLP1 dko

cortices transfected with APLP2 shRNA or control

shRNA construct coexpressing EGFP. Confocal images

of coronal cortical sections labelled with Tbr2 antibody

4 days after electroporation show progenitors in the VZ/

SVZ of APLP2 shRNA-treated cortices. (E) APP/

APLP1 dko cortices transfected with APLP2 shRNA or

control shRNA labelled with the mitotic PH3 marker

show mitotic APLP2 shRNA transfected cells (white

arrowheads). Scale bars: 25 mm (A, C right); 50 mm (B,

C left, E); 100 mm (D).

APLP2 in neuronal differentiation 1271
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electroporated progenitors has been differentiated into neurons
(Fig. 1D,E).

Initially, we analysed the position of APLP2 shRNAmir
expressing cells and found a higher number of cells compared to

control transfected cells many of which were located closer to the

ventricle (Fig. 4A). This initial observation suggested that

APLP2 may be involved in the regulation of progenitor
proliferation. Alternatively, the higher number of cells simply

reflects differences in electroporation efficiencies. To distinguish

between these possibilities, we analysed the fraction of EGFP
positive cells which were still proliferating under control and

‘triple ko’ conditions. To determine which fraction of the

progenitor pool remains in the proliferative state, we examined

cell cycle exit rates of EGFP-positive cells after in utero

electroporation of E14 cortices and BrdU (5-bromo-29-

deoxyuridine) pulse labelling of S-phase cells 24 hours before

collecting the brains at E16.5. This was followed by Ki67
staining, which is expressed throughout the cell cycle and thus

labels all proliferating cells (Chenn and Walsh, 2002). Hence, the

cells which integrate BrdU and express Ki67 after 24 hours
correspond to the proliferative pool, while Ki67 negative but

BrdU positive cells correspond to the pool of cells that have

recently exited mitosis, and consequently are young neurons. The

rate of cell cycle exit was calculated as the ratio between EGFP+/
BrdU+/Ki672 cells and the total EGFP+/BrdU+ population. This

ratio was significantly decreased from 74% in ctrl shRNAmir

expressing cells to 45% in APLP2 shRNAmir dko cells,
demonstrating essential function of APLP2 in the regulation of

neuronal differentiation (Fig. 4B). In light of these findings, the

observed decrease in neuronal progression and resulting changes

in cortical positioning of ‘triple ko’ cells likely results from delay
in the cell cycle exit rate and a delayed entry into the neuronal

differentiation program.

We reasoned that a reduced cell cycle exit rate can result in

more mitotic cells in ‘triple ko’ conditions. To test this

hypothesis, we labelled specifically mitotic cells using an
antibody against phosphorylated histone 3 (Ser10). Two days

after electroporation a twofold increase in the number of mitotic

Fig. 3. Progenitor-specific expression of APLP2

shRNA is sufficient to retain cells in the proliferative

zone of developing cortex. (A) Schematic comparison of

U6-shRNA and microRNA-based shRNA.

(B) Western blot showing protein levels of APLP2-V5

and actin (loading control) of HEK cells expressing

APLP2-V5 transfected with APLP2 shRNAmir or control

shRNAmir. The downregulation obtained by the

microRNA construct was about 90% and comparable to

the efficiency of the U6 shRNA1 construct (see Fig. 1A).

(C) Co-transfection of Ta-cherry (solid arrowheads) with

BLBP-GFP using in utero electroporation (E14.5–E16.5)

shows that the two promoters target different cell

populations because only a very small fraction of cells

coexpress mCherry and EGFP (6.12%; 150 cells, open

arrowheads). (D) Confocal images (projection of 10–15

consecutive z-sections) of dko cortical slices transfected

with APLP2 shRNAmir or control shRNAmir under the

control of Ta promoter. Neuronal downregulation of

APLP2 does not change cortical positioning.

(E) Quantification of EGFP-positive cells shown in D.

Bar graphs represent frequency distribution of EGFP-

positive cells in ten equally divided bins from ventricle (1)

to the pial surface (10) of the cortical wall. Values

represent the mean 6 s.d. (n53; Student’s t-test). The

inset scatter plot compares the population distribution of

EGFP-positive cells (n53, 300–400 cells for clarity of

graph; values represent the median 6 interquartile range,

Mann–Whitney test). (F) Confocal images (projection of

10–15 consecutive z-sections) of dko cortical slices

transfected with APLP2 shRNAmir or control shRNAmir

under the control of BLBP promoter. Progenitor-specific

expression of shRNA leads to retention of cells in the VZ/

SVZ. (G) Quantification of Cherry-positive cells shown

in F. Bar graphs represent the frequency distribution of

Cherry-positive cells in ten equally divided bins from

ventricle (1) to the pial surface (10) of the cortical wall.

Values represent the mean 6 s.d. (n53; Student’s t-test).

The inset scatter plot compares the population distribution

of Cherry-positive cells (n53, 300–400 cells; values

represent the median 6 interquartile range, Mann–

Whitney test). **P,0.01, ***P,0.001. Scale bars:

50 mm (C); 100 mm (D,F).
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cells was observed in VZ/SVZ of dko cortices electroporated

with APLP2 shRNAmir when compared to control shRNAmir

(Fig. 4C).

The observed changes in progenitor proliferation raised the

question of whether this had resulted in a different distribution of

the progenitor and neuronal pools. The balance between

progenitors and post-mitotic neurons depends on the ratio of

neurogenic versus proliferative radial glia cell division. A

proliferative division can be self-renewing or leading to the

generation of a radial glia cell and intermediate progenitor cells.

These two principal classes of progenitors can be distinguished

by specific molecular markers: Sox2 for radial glia and Tbr2 for

intermediate progenitor cells. We therefore used double-staining

of Sox2 and Tbr2 to determine the balance between proliferative

Fig. 4. Downregulation of APLP2 leads to decreased cell cycle exit and expansion of progenitor pools. (A) Confocal images (projection of 10–15 consecutive z-

sections) of E16 dko cortical slices co-transfected with APLP2 shRNAmir or control shRNAmir at E14. Two days after electroporation, more cells are found close to

the VZ of the developing cortex in APLP2 shRNA expressing cortices. (B) Confocal images of dko cortices transfected by APLP2 or control shRNA at E14.5

followed by BrdU injection at E15.5 and then triple staining for EGFP, BrdU and Ki67 at E16.5 (see scheme of the cell cycle exit assay). Open yellow arrowheads

indicate the cells that did not leave the cell cycle; solid yellow arrowheads indicate EGFP+/BrdU+/Ki672 cells. The graph shows the decreased cycle exit of APLP2

shRNA-expressing progenitors that is calculated by the ratio of EGFP+/BrdU+/Ki672 cells divided by the total EGFP+/BrdU+ population (n55). (C) Confocal

images as in B, labelled with the mitotic PH3 marker. After APLP2 downregulation the number of mitotic cells increased (white arrowheads). Graph shows mitotic

index as calculated by the ratio of PH3+ cells divided by the total number of EGFP-positive cells. Values represent the mean 6 s.d. (n53). (D) Confocal images of

Sox2-Tbr2 double-stained slices transfected with APLP2 shRNA or control shRNA. Solid white arrowheads indicate EGFP/Sox2 double-positive progenitors; white

arrows indicate EGFP/Tbr2 double-positive progenitors. The graph shows that both classes of progenitors are increased after APLP2 downregulation (n53). Values

represent the mean 6 s.d.; *P,0.05, **P,0.01, Student’s t-test. Scale bars: 50 mm (A); 100 mm (B); 25 mm (C); 20 mm (D).

APLP2 in neuronal differentiation 1273



J
o
u
rn

a
l
o
f

C
e
ll

S
c
ie

n
c
e

and neurogenic division of radial glia cells after APLP2

downregulation. APLP2 downregulation in dko cortices
significantly increased both Sox2 and Tbr2 EGFP-positive cells
with a corresponding relative paucity of post-mitotic neurons

(Fig. 4D). This result shows that lack of APLP2 shifts radial glia
cells towards proliferative division, implying that APLP2 is
involved in neurogenic division.

Discussion
Our data are consistent with the view that APLP2 plays a key role
in the essential biological decision of differentiating a neuronal
progenitor into a neuron. The control of this step is essential

during cortical development since there is a close link between
the timing of the cell cycle exit and the determination of the
laminar fate of the generated neurons (McConnell and

Kaznowski, 1991). Hence, prospective cortical architecture is
already determined at early developmental stages.

Previously, we analysed neurons generated in vitro from triple
ko APP/APLP1/APLP2 embryonic stem cells (Bergmans et al.,

2010) and did not find any obvious phenotype. This prompted us
to further investigate the role of APP gene family in vivo. Among
the different combinatorial genetic deletions of APP/APLPs

in mice, only APP/APLP1 double ko is a viable genotype,
suggesting a crucial and distinct developmental role for APLP2
(Heber et al., 2000). Therefore, in order to study APLP2 function

and to preclude redundancy, we analysed the role of APLP2
in APP/APLP1 dko mice. In order to avoid lethality, we
downregulated APLP2 in a subpopulation of cells in the ventral

telencephalon by in utero electroporation of shRNA against
APLP2 (Fig. 1). The cells are indeed viable under those
conditions as shown by their even increased proliferation rate
and their normal morphology (Figs 2, 4). Although our studies

demonstrate that APLP2 downregulation alone is not sufficient to
elicit developmental defects (Fig. 1B,C), a number of indications
reveals a central role of APLP2: APLP2 is specifically distributed

in the proliferative VZ and SVZ of the developing cortex. In
contrast, APLP1 is restricted to the CP where differentiated
neurons reside and APP is present rather non-specifically in the

VZ/SVZ and CP (López-Sánchez et al., 2005). Thus, APP
residing in the VZ/SVZ could be responsible for the redundant
effect on proliferation.

We show that reduced level of APLP2 in APP/APLP1 dko

progenitors led to decrease of cell cycle exit and preservation of
progenitors in their proliferative stage (Fig. 4B,D). APLP2 is a
trans-membrane protein with a large extracellular multidomain

region and could therefore regulate the proliferation of
progenitors in various ways. The extracellular domain could be
involved in receptor–ligand or in cell-adhesion interactions. The
intracellular domain, which contains a YENPTY motif can bind

several adapter molecules some of which are involved in the
control of neurogenesis such as Dab1 (Homayouni et al., 1999;
Lakomá et al., 2011), Numb (Roncarati et al., 2002) and Fe65

(Ma et al., 2008). Numb is involved in cell fate decisions such as
proliferation versus differentiation by its repressing activity on
Notch (Roncarati et al., 2002). Active Notch is promoting the

self-renewal of specifically radial glia progenitors (Yoon et al.,
2004), the population which is also increased after APLP2
downregulation in progenitors of dko mouse (Fig. 3F; Fig. 4D).

Interestingly, Thr668 close to the APLP2 YENPTY interaction
domain can be phosphorylated by a CDK1 kinase changing the
binding properties of the YENPTY motif and thus couples

APLP2 function and metabolism to the cell cycle (Suzuki et al.,
1997; Tamayev et al., 2009). Similar to APLP2, CDK1

expression is also concentrated in the VZ/SVZ of developing
cortex (Diez-Roux et al., 2011; Visel et al., 2004) suggesting that
CDK1 could be involved in the regulation of neuronal
development through APLP2. Alternatively, APLP2 which

plays a role in cell–cell and cell–extracellular matrix
interactions (Müller and Zheng, 2012; Soba et al., 2005) could
directly regulate the decision between progenitor proliferation

and differentiation into neurons, which is strongly dependent on
specific membrane associated factors (Temple and Davis, 1994).
Indeed, at the neuromuscular junction, APP family proteins are

proposed as novel synaptic adhesion molecules (Wang et al.,
2009) and it will be of interest to investigate a similar role in the
context of neuronal progenitor differentiation. An analysis of
proteins interacting specifically with APLP2 revealed members

of the RhoGTPase family such as Rac1 and RhoA (Bai et al.,
2008), which can potentially influence cell cycle progression
(Vidaki et al., 2012; Yang et al., 2012). A recent DNA microarray

transcriptome profiling of the adult prefrontal cortex showed that
the expression of genes involved in neurogenesis is altered in
APLP2 ko brains (Aydin et al., 2011). In this study, CDK

inhibitor p21 was found to be downregulated in APLP2 ko mice.
Downregulation of p21 enhances progenitor proliferation in the
adult hippocampus (Pechnick et al., 2008). It will be interesting

to determine whether similar mechanisms are relevant for
embryonic neurogenesis regulation.

In order to investigate which progenitor populations were
affected after APLP2 downregulation, we analysed the

proportion of radial glia (Sox2 positive) and intermediate (Tbr2
positive) progenitors in cells two days after ubiquitous APLP2
downregulation (Fig. 4D). We observed not only an expansion of

the radial glia cell pool, but also that of intermediate progenitors
(Fig. 4D), which mainly divide symmetrically into neurons
(Haubensak et al., 2004). Interestingly, many Tbr2 positive

intermediate progenitors were found in the VZ indicating that
they were generated recently by radial glia cells (Fig. 4D). This
suggests that their increase is a consequence of the larger pool of
radial glia cells which are generating more intermediate

progenitors. Our data do not support, but cannot completely
exclude, a direct influence of APLP2 on intermediate progenitor
division and/or migration.

Our studies showed that APLPs and APP appeared largely
dispensable for the radial migration of cortical excitatory
neurons. Cortical neuron positioning in APP/APLP1 double

knockout mice or in APLP2 knockdown cells was
indistinguishable from that in wild-type mice (Fig. 1B–E). We
found differences in cortical positioning in ‘triple ko’ mice
(Fig. 1D,E). This delay in cortical neuron progression towards

the CP is likely a consequence of a primary defect in progenitor
function: first, we could not detect any differences in migration
speed of isolated ‘triple ko’ neurons and wt neurons using an in

vitro assay (Fig. 2D); second, we could phenocopy the
accumulation of cells close to the VZ/SVZ by expressing
APLP2 shRNA only in progenitors of dko mice (Fig. 3E,F).

The absence of a migration defect contrasts with other findings
showing abnormalities in neuronal migration during cortical
development. Yet, the findings of these studies were not

conclusive, one study showing a complete inhibition of cortical
plate entry and the other an ectopic accumulation of neurons in
the marginal zone (Heber et al., 2000; Young-Pearse et al., 2007).
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However, these studies did not investigate progenitor function

which could be a possible alternative or additional explanation

for the observed cortical positioning defects. Taken together, the

current data support a model in which APP is functional in both

progenitors and post-mitotic migrating neurons, whilst APLP2 is

playing a specific role in regulating progenitor proliferation and

differentiation.

In summary our data contribute to our understanding of the

contribution of the APP family molecule APLP2 in the early

developmental steps of the cerebral cortex, which lays the basis

for subsequent development of correct cortical networks.

Materials and Methods
DNA constructs

The APLP2 shRNA1 (GI562807) (sequence: 59-CGATTACAATGAGGAGAAT-
CCAACCGAAC-39), the APLP2 shRNA2 (GI562808) (sequence 59-ATGA-
AGGCTCTGGAATGGCAGAACAAGAC-39) and control shRNA (scrambled
sequence: 59-GCACTACCAGAGCTAACTCAGATAGTACT-39) driven by the U6
promoter were obtained from Origene (Rockville, MD).

The pCAG-EGFPintron-let-7f-based shRNA expression system was constructed
as follows. The synthetic intron found in the psicheck2 plasmid (Promega,
Leiden, The Netherlands) was PCR amplified using Promega IntronF (59-
CGAAGGTAAGTATCAAGGTTACAAGACAG-39) and R (59-GACGTAGCC-
TGTGGAGAGAAAGGCAAAGTG-39) primers. The intron was then inserted into
EGFP by overlap-PCR using two inner primers for 59 (59-TGATACTTACCTTCG-
GGCATGGCGGACTTGAAG-39) and 39arms (59-TCTCTCCACAGGCTACG-
TCCAGGAGCGCACCATCTTCTTC-39) of EGFP and two outer primers for 59

(59-GCCACCGGTCGATCCACGCCACCATGGTGAGCAAGGGCGAGGAG-39) and
39 (59-GATTGTCGACTTACTTGTACAGCTCGTCCATGCCG-39) arms. Next,
XhoI and EcoRI restriction sites were added to the intron by PCR using Intron
XhoI-EcoRI-F (59-GAATTCCAATCTCGAGCTATTGGTCTTACTGACATCCAC-
TTTGC-39) and Intron XhoI-EcoRI-R (59-CTCGAGATTGGAATTCAGCCTATC-
AGAAACGCAAGAGTCTTCTCTG-39) primers (pCAG-EGFP intron). The let-7f2
genomic sequence was amplified from human genomic DNA using LET-7Fhu-MfeI
(59-TCATCAATTGTAACTCTCCTTCCCTTTCTCCCTTCTTAC-39) and LET-
7Fhu-SalI (59-TCATGTCGACCATCAAAGGACCAGCCACTT-39) primers and
cloned into the pCAG-EGFP intron vector digested by XhoI and EcoRI. This
intermediate construct contains the genomic sequence of human let-7f2 precursor
including the mature let-7f sequence. In order to remove this mature sequence and
facilitate cloning of shRNAs, the 59 and 39 arms of the let-7f scaffold were amplified
using two inner primers: 59 arm (59-GGCGCGCCCTCGAGCCATCTTCAGCC-
TATGTGGG-39) and 39 arm (59-GGCGCGCCG AATTCTCTTCTCCGACTGG-
CTCTGTTC-39) scaffold and two outer primers: Let7F-XhoI (59-CAAT-
CTCGAGGTGCTCTGTGGGAT-39) and Let7F-EcoRI (59-CAATGAATTCGT-
ACCACCGTGGGA-39). The PCR product was cloned into the intermediate
construct resulting in the pCAG-EGFPintron-let-7f plasmid. For shRNA cloning,
overlapping DNA oligonucleotides were designed to embed the shRNA into the let-
7f scaffold sequence. The shRNAs for APLP2 and mCherry were obtained after
annealing the following oligonucleotides: APLP2-let7-I (59-CTCGAGGTGC-
TCTGTGGGATCGCTGCTGGGTTCGGTTGGATTTAGGGTCATACCCCATC-
TTG-39); APLP2-let7-II (59-GAATTCGTACCACCGTGGGACGCCACTGGGT-
TCGGTTGGATATCTCCAAGATGGGGTATGAC-39); mCherry-let7-I (59-
CTCGAGGTGCTCTGTGGGATGATGTTGACGTTGTAGGCGCCTTAGGGTCAT-
ACCCCATCTTG-39); mCherry-Let7-II (59-GAATTCGTACCACCGTGGGAGATA-
CTGACGTTGTAGGCGCCATCTCCAAGATGGGGTATGAC-39) and PCR amplified
using pre-Let7F and pre-Let7R universal primers. The resulting shRNAs were digested
and cloned into the pCAG-EGFPintron-let-7f plasmid using XhoI and EcoRI restriction
sites.

BLBP-shRNA mir
For cell-specific expression into radial glia cells, the BLBP promoter was
amplified from mouse genomic DNA using BLBP-F (59-CAATGTCGACAG-
CACAGCAGAAAGGGAAAA-39) and BLBP-R (59-GGTGGGCGCGCCAGG-
CAGGAACTGGAGGAACTC-39) primers and cloned into the pCAG-
EGFPintron-let-7f digested by SalI and AscI, thus replacing the CAG promoter
by the mouse BLBP promoter.

Ta-shRNAmir
The tubulin alpha promoter was chosen to drive neuronal expression and amplified
from mouse genomic DNA using Ta-F (59-ACCTACTAGTGTATTAGAA-
GGGATGGCTCA-39) and Ta-R (59-ACCTACCGGTGGTTGCTGCTTCGC-
GGCTGCC-39) primers and cloned into the pCAG-EGFPintron-let-7f digested
by SpeI and AscI. For in utero electroporation, DNA preparations, included
endotoxin removal treatment, were obtained using Qiagen EndoFree Plasmid Maxi

Kit (Qiagen, Venlo, The Nethelands), with final concentration between 2 and 3 mg/ml
plasmid DNA.

Western blot

Total cell lysates of cortical neuron cultures or HEK293 were prepared in cell
lysate buffer (1% Triton-X100, with protease inhibitors in PBS). 20 mg of protein
was separated on a NuPAGE 4–12% (Invitrogen), transferred to nitrocellulose and
membranes were incubated overnight at 4 C̊ with the following primary
antibodies: APLP2 (CT12 a kind gift from G. Thinakaran, University of
Chicago, IL), V5 antibody (1:10,000-mouse, Invitrogen Gent, Belgium), APP
antibody (B63-1:5000, custom made rabbit antibody), GAPDH (1:5000-mouse,
HyTest), Actin (1:1000-mouse, Sigma-Aldrich, Diegem, Belgium) and detected
with HRP conjugated secondary antibodies using a ECL chemiluminescence
detection kit (PerkinElmer Life Sciences, Zaventem, Belgium). The density of
bands was quantified by densitometry using Aida Image Analyser 4.27 (Raytest,
Straubenhardt, Germany) and linearity of the signal was tested using different
dilution of total cell lysate.

Cell cultures

Mouse embryonic cortical neurons were prepared as described previously (Banker
and Goslin, 1988) and plated at a density of 100,000 cells/cm2 on poly-L-lysine
(PLL) coated dishes. Neurons were transfected before plating using nucleofection
(Amaxa, Cologne, Germany). HEK293 cells overexpressing V5 tagged APLP2
were grown in DMEM/F12 with 10% fetal calf serum (FCS) and were transfected
with shRNA expressing construct using TransITH-LT1 transfection reagent (Mirus,
Madison, WI).

Matrigel assay for migration

E14 embryonic cortices were dissected and digested by papain for 20 minutes at
37 C̊. After subsequent mechanical dissociation, cells were transfected by
nucleofection (Amaxa) followed by overnight shaking (350 rpm) at 37 C̊ to
form aggregates. The aggregates were embedded in Matrigel (BD Biosciences,
Erembodegem, Belgium) on coverslips and fixed in 4% paraformaldehyde (PFA)
after 3–4 days. For live imaging from one day after plating onwards, coverslips
were mounted in a closed metal chamber and images were acquired at 20 minutes
intervals for up to 24 hours using an inverted Olympus CellR microscope.

Transgenic mice

APP/APLP1 double knockout mice were described previously and generated by
genomic deletion of the promoter and initiation codon of APP and APLP1 loci
(Heber et al., 2000; Herms et al., 2004). Wild-type embryos were from C57/Bl6
background.

In utero electroporation

All animal experiments were approved by the Ethics Committee of the K.U.
Leuven. Pregnant mice were anaesthetized by intramuscular injections of 88 mg
ketamine and 132 mg xylazine per gram of body weight. The uterine horns were
exposed and the plasmids (1–2 mg/ml) mixed with Fast Green (Sigma) were
microinjected in the lateral ventricles of E14.5 mouse embryos. Five current pulses
(50 milliseconds pulse/950 milliseconds interval) were delivered across the head
of the embryos (36 V) targeting the dorsal-medial part of the cortex. After 2–4
days, embryos were collected and perfused with PBS and 4% PFA and the brains
postfixed for 6–10 hours in 4% PFA at 4 C̊.

Immunocytochemistry

Coronal vibratome sections of the fixed embryonic brains were prepared with
100 mm thickness. Subsequently, the sections were permeabilized and blocked at
RT for 1 hour in PBS, 0.3% Triton X-100, 3% BSA, 5% goat or donkey normal
serum, incubated with the primary antibody at 4 C̊ overnight followed by the
secondary Alexa-Fluor-conjugated antibodies for 2 hours at room temperature
(Invitrogen). For BrdU detection, slices were pre-treated with 1 M HCl
(10 minutes 4 C̊) and 2 M HCl (10 minutes RT and 20 minutes 37 C̊) with
subsequent washes in 0.1 M borate buffer.

The following primary antibodies were used: chicken anti-EGFP (1:500; Aves
Labs, Oregon), rabbit anti-Ki67 (1:300; Novacastra, Diegem, Belgium), rabbit
anti-Tbr2 (1:1000; Abcam, Cambridge, UK), rabbit anti-PH3 (1:300; Cell
Signaling, Leiden, The Netherlands), rabbit anti-bIII-tubulin (1:1000, Abcam),
mouse anti-BrdU (1:200; Roche, Vilvoorde, Belgium), rabbit anti-Cux1 (1:500;
Santa-Cruz, Heidelberg, Germany), goat anti-Sox2 (1:150; Santa-Cruz). Nuclei
were visualized with DAPI.

Cell cycle exit

One day after in utero electroporation, pregnant mice were injected
intraperitoneally with BrdU (75 mg/kg, Sigma-Aldrich). After another 24 hours
the brains were collected, fixed and immuno-stained using anti-EGFP, anti-BrdU
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and anti-Ki67 antibodies. The cell cycle exit rate was calculated as the ratio of
EGFP+/BrdU+/Ki672 cells (cells which are not in the cell cycle) divided by the
number of EGFP+/BrdU+ cells (total number of dividing and non-dividing cells).

Confocal imaging and quantification

Confocal images were captured on a Nikon microscope (Eclipse; Ti A1) using an
Apo 106 1.40 N.A. objective lens. The images were acquired by Nis-Element
software and the imaging parameters were kept constant during imaging. Ten to
fifteen consecutive z-sections were obtained per brain slice. All images were
processed using the ImageJ software (NIH).

For cortical positioning
The entire length of cortical walls was divided into ten equal bins and the
frequency of cells per bin was calculated by counting the cell bodies of EGFP-
positive cells in each bin, divided by the total number of EGFP-positive cells.

For cell cycle exit
All the images were thresholded and BrdU+/EGFP+ cells were detected by the
AND function of Image Calculator (ImageJ software). Next, the same function was
used to find BrdU/EGFP double positive cells that are positive or negative for
Ki67.

Statistics

Corresponding bins were compared using Student’s t-test. The population
distribution of two groups of neurons was compared using a non-parametric
Mann–Whitney U test (P,0.05 as significance level). All statistical analysis and
graph preparation were performed by using GraphPad Prism5.
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J. Verwaeren and G. Mariën for their great technical assistance with
mice.

Author contributions
S.A.M.S., B.A.H., B.D.S., C.D. and A.G. designed the project;
S.A.M.S., P.L. and A.G. performed research, U.M. contributed
reagents, S.A.M.S. and A.G. analyzed the data and S.A.M.S., B.D.S.,
C.D. and A.G. wrote the paper.

Funding
This work was made possible by grants from the Fund for Scientific
Research, Flanders; the K.U. Leuven; the VIB, Methusalem (K.U.
Leuven and the Flemish government); the Foundation for Alzheimer
Research (SAO/FRMA); and funding by the European Research
Council (ERC). B.D.S. is the Arthur Bax and Anna Vanluffelen chair
for Alzheimer’s disease. U.M. was supported by grants from the
German Research Foundation (DFG) [grant numbers MU1457/8-1
and MU1457/9-1].

Supplementary material available online at

http://jcs.biologists.org/lookup/suppl/doi:10.1242/jcs.122440/-/DC1

References
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