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Role of nonlocal exchange in the electronic structure of correlated oxides
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We present a systematic study of the electronic structure of several prototypical correlated transition-metal
oxides: VO2, V2O3, Ti2O3, LaTiO3, and YTiO3. In all these materials, in the low-temperature insulating phases
the local and semilocal density approximations (LDA and GGA, respectively) of density-functional theory
yield a metallic Kohn-Sham band structure. Here we show that, without invoking strong-correlation effects, the
role of nonlocal exchange is essential to cure the LDA/GGA delocalization error and provide a band-structure
description of the electronic properties in qualitative agreement with the experimental photoemission results.
To this end, we make use of hybrid functionals that mix a portion of nonlocal Fock exchange with the local
LDA exchange-correlation potential. Finally, we discuss the advantages and the shortcomings of using hybrid
functionals for correlated transition-metal oxides.
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I. INTRODUCTION

Nowadays, the standard model of electronic structure
calculations is based on density-functional theory (DFT) in the
Kohn-Sham (KS) formalism.1 The DFT-KS scheme, also in its
simplest approximations like the local-density approximation
(LDA)1 or the generalized-gradient approximation (GGA),2

is generally highly successful in a very large variety of
applications. Thus, when a LDA (or GGA) KS band structure
turns out to be metallic in an insulating compound (e.g., in
a transition-metal oxide), the result is often interpreted as
a direct indication for strong electron correlation effects in
the material, and a failure of the band-structure picture. A
possible strategy that has been followed in the literature to
overcome these difficulties is to resort to model approaches,
like the multiband Hubbard model. In the LDA + U approach,3

LDA band structures are supplemented by an on-site Coulomb
interaction (the Hubbard U) acting only on the “correlated”
subset of the electronic degrees of freedom. In a higher level
of theory, dynamical mean-field theory (DMFT),4 the Hubbard
model is further mapped onto an Anderson impurity model,
which can then be solved with different techniques, allowing
for the description of dynamical effects beyond the LDA + U.
In those cases the LDA is claimed to be inadequate to
capture the strong interactions taking place between correlated
electrons in partially filled d (or f ) shells, which give rise to
narrow bands in the solid.

However, we remark that DFT is a ground-state theory and
KS band structures are not meant to describe the electronic
excitations measured in photoemission, which also define the
fundamental band gap of an insulator. Moreover, the LDA
lacks the discontinuity of the local KS exchange-correlation
(xc) potential Vxc(r) on a change of the electron number5–7 and
suffers from a severe delocalization error,8 which is particu-
larly relevant for localized d and f electrons. The underesti-
mation of the fundamental band gaps in sp semiconductors
is well known,9,10 and understood in terms of self-energy
corrections at the GW level of approximation.11,12 This un-
derestimation sometimes may lead to metallic band structures

also in “weakly correlated” small-gap semiconductors, like in
germanium.

Here we consider several prototypical correlated transition-
metal oxides that have been studied by other methods in the
past years: VO2, V2O3, Ti2O3, LaTiO3, and YTiO3. In all
the low-temperature insulating phases of these materials, the
KS-LDA yields a metallic band structure. We thus address
the following question: Is this just a result of the inadequacy
of the LDA to deal with strong correlations or, rather, is this
finding related to the systematic KS-LDA underestimation of
band gaps that occurs also in weakly correlated semiconduc-
tors and gets enhanced in the oxides? To answer this question
we make use of a generalized Kohn-Sham (gKS) scheme,13

where the local KS xc potential Vxc(r) is replaced by a spatially
nonlocal Vxc(r,r ′). In these hybrid functionals, the nonlocal
Fock exchange potential is mixed with the local (LDA or GGA)
KS xc potential.14–16 In these approaches, the difference with
LDA results stems solely from the nonlocal exchange term.
This is not supposed to improve the description of electronic
correlation. Therefore, if strong correlations are responsible
for invalidating the KS-LDA description of these insulators,
then one should expect to find the same problems in the gKS
scheme. We will instead show how, without invoking strong-
correlation effects, the role of nonlocal exchange is essential
to cure most of the LDA delocalization error and provide
a band-structure description of the electronic properties of
several transition-metal oxides in qualitative agreement with
the experimental results (the same conclusion was reached for
instance in the series of transition metal monoxides in Ref. 17).

The paper is organized as follows. In Sec. II we briefly
introduce the generalized Kohn-Sham (gKS) scheme and the
hybrid-functional parametrization that we use, and compare
them with standard methods that treat electronic correlations.
In Sec. III we present and discuss the results that we have
obtained for the various transition-metal oxides, also across
their metal-insulator phase transitions (MIT).18 Finally, in
Sec. IV we draw our conclusions on the basis of these
results and discuss the advantages and shortcomings of the
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use of hybrid functionals in the description of the electronic
properties of correlated oxides.

II. METHOD

In the gKS scheme the xc potential is generalized to be non-
local in space,13 contrary to the ordinary KS where it is local. In
this framework, a common choice is to write the gKS nonlocal
potential Vxc(r,r ′) as a sum of a nonlocal exchange term and a
local KS correlation potential:14 Vxc(r,r ′) = Vx(r,r ′) + Vc(r).
For Vc(r) a LDA or GGA expression is adopted, while the
nonlocal exchange term Vx(r,r ′) is obtained by mixing the KS
local exchange Vx(r) with a fraction α of the nonlocal Fock
operator V F

x (r,r ′) = −γ (r,r ′)v(r,r ′), built using gKS orbitals
in the one-particle density matrix γ [v(r,r ′) = 1/|r − r ′ | is
the Coulomb interaction]:

Vx(r,r ′) = αV F
x (r,r ′) + (1 − α)Vx(r). (1)

This construction is often justified from considerations based
on the adiabatic-connection formula, which fix the mixing
parameter to be α = 0.25.15 The Coulomb interaction can then
be split into a sum of a long-range and a short-range term
v(r,r ′) = vLR(r,r ′) + vSR(r,r ′), respectively, as:

v(r,r ′) = erf(μ|r − r ′ |)
|r − r ′ | + 1 − erf(μ|r − r ′ |)

|r − r ′ | . (2)

Here both the choice of the erf error function and the
parameter μ are arbitrary. Replacing the bare interaction
v by either term, the same separation is obtained in the
local and nonlocal exchange potentials appearing in (1):
V F

x (r,r ′) = V F,LR
x (r,r ′) + V F,SR

x (r,r ′) and Vx(r) = V LR
x (r) +

V SR
x (r). Assuming that the effects of V F,LR

x (r,r ′) and V LR
x (r)

compensate each other, the following approximation for (1) is
introduced:

Vx(r,r ′) = αV F,SR
x (r,r ′) + (1 − α)V SR

x (r) + V LR
x (r). (3)

Regrouping the various terms contributing to the xc gKS
potential, one finally finds:

Vxc(r,r ′) = α
[
V F,SR

x (r,r ′) − V SR
x (r)

] + Vxc(r), (4)

where the correction to the KS local potential Vxc(r) (with
the original Coulomb interaction) stems entirely from the first
term in the right-hand side. The final approximation depends
on the two parameters α and μ. With μ = 0, α = 0.25, and
using the Perdew-Burke-Ernzerhof (PBE) GGA xc potential
for the local part Vxc(r), one finds the PBE0 approximation.15

In the Heyd-Scuseria-Ernzerhof (HSE06) hybrid functional,16

instead, the value of μ = 0.2 Å
−1

is obtained by numerically
fitting the results against a benchmark set of data.

More in general, both the α and μ parameters play the role of
effective screening of the Coulomb interaction.19 The nonlocal
potential (1) with μ = 0 can be alternatively understood as a
static approximation to the many-body GW self-energy.11 By
identifying 1/α as an effective static dielectric constant ε,
αV F

x can be seen as a screened exchange potential, while the
local part of (1) acts as an approximation to the Coulomb hole
term.11,20 In fact, varying α between 0 and 1 in Eq. (1), one
in practice interpolates between the KS underestimation and
the Hartree-Fock (HF) overestimation of band gaps, with the
possibility to get close to the experimental results. Moreover,

the use of a finite value for μ, together with neglecting the
corresponding long-range terms in Eq. (3), efficiently acts
as a further screening of the Coulomb interaction.16,21 By
increasing the value of μ, the two-point distance |r − r ′ |
beyond which the Coulomb interaction is cut off becomes
shorter. In fact, screening the long-range Coulomb interaction
is crucial for many properties in bulk materials,22 especially
for small-gap and metallic systems. While for μ = ∞ Eq. (3)
reduces to the KS local potential Vxc(r), a finite μ tunes
the correction to KS stemming from the difference between
nonlocal Fock and local exchange terms in Eq. (3). For fixed
α, increasing μ gives less weight to this correction.

While the LDA suffers from a delocalization error, the
HF instead is affected by an excess of localization.8 Hence,
the inclusion in the functional (4) of a partial contribution
of nonlocal Fock exchange leads to a localization correction
with respect to the LDA. This affects in particular d and f

states, which are more localized and generally suffer from a
self-interaction error more than s and p states.23 Even though
it is derived from a very different point of view, this effect
of localization of d and f orbitals is shared also by the
LDA + U approach. As we will show in the following, curing
the delocalization error of the LDA is the key to get results in
better qualitative agreement with experiment.

Both the LDA + U (as well as the LDA + DMFT) and the
hybrid functional (4) depend on parameters (like the Hubbard
U and J in the former and α and μ in the latter), which limits
their predictivity power. However, in the hybrid functional
(4) there is no need of an additional term for correcting the
(unknown) spurious double counting, while this is the case for
the LDA + U or LDA + DMFT. The need of a double-counting
correction in fact corresponds to the introduction of a certain
degree of arbitrariness in the definition of the functional.24

Moreover, while the Hubbard term in the LDA + U and
LDA + DMFT schemes acts only on the correlated subset of
electrons, in the hybrid functional all the electrons are treated
on an equal footing.

At the formal level, the KS band gap, calculated as the
difference of KS eigenvalues, is not supposed to reproduce
the fundamental band gap of an insulator. The difference
between the two is in fact given by the derivative discontinuity
of the KS xc energy.5–7 In principle, it is even possible
that the exact KS potential yields a zero KS gap in an
insulator (without necessarily implying strong correlation).
In that particular case, the band gap would be equal to the
derivative discontinuity. Moreover, given an approximation
of the nonlocal gKS potential, it is possible to obtain a
local and orbital-dependent KS potential at the same level
of approximation by using an optimized effective potential
(OEP) method.25 In this way, it is found that the gKS gap
is always larger than the corresponding OEP-KS gap, the
difference between the two being the derivative discontinuity
of the orbital-dependent part of the xc energy functional.26

This underlines the role of the nonlocality of xc potential in
the gKS scheme.

Modeling efficiently the static screening of the Coulomb
interaction without introducing adjustable parameters would
help to improve greatly the gKS scheme. At the same time,
this should keep its computational cost cheaper than the
more sophisticated many-body GW approximation, where the
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dynamical screening is explicitly calculated (in the random-
phase approximation). In any case, being a static approxi-
mation to the many-body self-energy, the Vxc(r,r ′) functional
in Eq. (4) cannot account for spectral properties related to
dynamical screening effects, which for instance give rise
to satellites in the photoemission spectra,27 and are instead
accounted for, though in different manners, by both the GW
approximation and the LDA + DMFT approach.

In the following we will use the hybrid functional form (4),
as implemented in the VASP computer code.28,29 In the case of
VO2 we will discuss the effect of different choices of the two
parameters α and μ, while for the rest of the paper we will
fix α = 0.25 and μ = 0.2 Å

−1
as in the HSE06 functional.

For the local Vxc(r) part we adopt a LDA xc potential, since
we want to make a direct comparison with other correlated
methods that treat the LDA as the uncorrelated reference. We
will name this choice of the functional as the LDA-HSE06, to
distinguish it from the original HSE06 functional, where the
PBE approximation is used for the local xc potential. VO2 is
the only compound among those that we have considered here
that has been previously studied with the HSE06 functional.30

We will show that the LDA-HSE06 gives the same result for
the density of states as the HSE06, justifying its use also for
the other compounds.

III. RESULTS AND DISCUSSION

A. VO2

VO2 undergoes a twofold phase transition at 340 K.31 The
MIT is accompanied by a lowering of the symmetry of the
crystal structure, from rutile to monoclinic, with a doubling of
the unit cell and a dimerization of V atoms along the rutile c

axis. It has been long debated32,33 which of the two aspects,
the electronic or the structural change, is the key to drive the
phase transition.

In VO2 both the LDA (Ref. 34) and standard single-site
DMFT (Refs. 35 and 36) are unable to get the insulating band
gap, while the LDA + U (Refs. 35 and 37) has problems with
the metallic phase and gives an ordered magnetic phase for
the insulator, contrary to the experiment. The deficiencies
of single-site DMFT have been corrected by its extension to
cluster DMFT (Refs. 38 and 39), where the local impurity is
taken to be a V dimer instead of a V atom, as in single-site
DMFT. On the other hand, parameter-free GW calculations40

have shown that in the insulating phase, KS-LDA wave
functions are not a sufficiently good approximation to
quasiparticle (QP) wave functions. The LDA error is due to
an excessive delocalization of the KS wave functions at the
Fermi level. They turn out to be too isotropic, underestimating
the effect of the V dimerization along the c axis,33 and the
corresponding bonding-antibonding splitting of the V a1g

states. Once this LDA error is corrected by using better QP
wave functions, as obtained in a restricted self-consistent
GW scheme, the results correctly reproduce the electronic
properties of both phases40–42 and also show that the satellite
in the photoemission spectrum of the metallic phase is related
to a neutral (plasmon) excitation visible in the loss function.43

A very recent calculation30 within the HSE06 hybrid
functional obtained a gap in the density of states (DOS)
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FIG. 1. (Color online) Densities of states of insulating VO2

obtained with the hybrid functional of Eq. (4) according to different
choices of the mixing parameter α and the screening parameter μ.
In (a) the topmost panel corresponds to the LDA. In the other panels
μ = 0.2 Å−1 and α is raised up to 0.5. In (b) α is fixed to 0.25 and
the results are obtained for different values of μ. Here, and in all
the following figures, the Fermi energy for insulators is set in the
midpoint of the band gap.

of the insulator, also concluding in favor of the structural
distortion as the key to explain the insulating gap. Here, more in
detail, we start our investigation by analyzing the performance
of the hybrid functional (4) according to different choices
of the values of the mixing parameter α and the screening
parameter μ. We use the experimental crystal structures for
the two phases,44,45 a 6×6×6 k-point grid for the insulator
and a 12×12×12 one for the metal. As we can see in
Fig. 1, the hybrid functional (4) correctly yields a gap in
the insulating phase of VO2 for many choices of the two
parameters, correcting the LDA error [which is retrieved for
α = 0; see topmost panel in Fig. 1(a)]. On the other hand, the
DOS is highly sensitive to the values of α and μ, both for
the size of the band gap and for the separation between the
highest occupied V a1g state and the rest of the O p states
at higher binding energies (see Table I). Either reducing α

[Fig. 1(a)] or increasing μ [Fig. 1(b)], the gap decreases until
it disappears for α < 0.125 or μ > 0.6 Å−1. Keeping α fixed,
the reduction of μ from 0.6 to 0 Å−1 has mainly the effect of
a rigid expansion of the DOS [see Fig. 1(b)]. On the contrary,
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TABLE I. Values of the fundamental band gap, the Op bandwidth,
the Op – Va1g separation, and the Va1g bandwidth in insulating VO2

depending on the different choices for the α and μ parameters in the
hybrid functional of Eq. (4). The local Vxc is the LDA.

μ Band gap Op Op – Va1g Va1g

α (Å−1) (eV) (eV) (eV) (eV)

0 0.00 6.23 0.96
0.125 0.2 0.00 6.54 1.02 0.60
0.250 0.2 1.13 6.85 0.95 0.63
0.500 0.2 1.17 7.58 0.09 1.16

0.250 0.0 1.88 6.86 0.94 0.64
0.250 0.4 0.65 6.74 0.96 0.60
0.250 0.6 0.00 6.62 0.97 0.59

fixing μ and changing α leads also to larger modifications in
the shape of all the structures appearing in the DOS, both for
the occupied and the unoccupied states [see Fig. 1(a)]. Thus,
the addition of nonlocal exchange to the KS-LDA functional
leads to an improved qualitative agreement with experiment,
i.e., a sizable band gap is obtained, without the need to invoke
strong correlation effects. However, the comparison with
photoemission spectra depends quantitatively on the choice
that one makes for the values of the two parameters α and μ.
In fact, they both physically act as a screening of the Coulomb
interaction. However, their fine tuning generally depends on
an adequate microscopic description of the screening in the
actual material.

We have also calculated the equilibrium volumes V of the
insulating phase of VO2 according to different parametriza-
tions of the hybrid functional (see Table II). All the results are
very close to the experimental value V exp, with a discrepancy
of 5% at most. As generally found in the literature, also for
VO2 the LDA overbinds and the PBE underbinds. In both
cases, the difference with respect to experiment is only 3%,
confirming previous results.33,40 DFT is an exact theory for the
ground state and the LDA and PBE are, even for VO2, already
good approximations. The effect of the nonlocal exchange is a
general reduction of the LDA and PBE volumes, resulting
in a slight underestimation of the experimental value. We
find that the choice of both the approximation for the local
Vxc (either the LDA or PBE) and the values of the α and μ

TABLE II. Equilibrium volumes V of the insulating VO2 divided
by the experimental volume V exp, calculated with different choices
of the α and μ parameters and the approximation for the local Vxc.
The first row corresponds to the local LDA and PBE approximations
and the third row to the LDA-HSE06 and HSE06 parametrizations.

Local Vxc LDA Local Vxc PBE
α μ V/V exp V/V exp

0 0.97 1.03
0.125 0.2 0.96 1.00
0.250 0.2 0.95 0.98
0.500 0.2 0.95 0.95

0.250 0.0 0.95 0.98
0.250 0.4 0.95 0.98
0.250 0.6 0.95 0.99
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FIG. 2. (Color online) Comparison of the calculated density of
states of (upper panel) insulating monoclinic and (bottom panel)
metallic rutile phases of VO2 with the experimental photoemission
spectra from Ref. 46. The MIT is correctly reproduced by the
LDA-HSE06 hybrid functional, while the LDA DOS is always
metallic.

parameters affect only to a small extent the results obtained
with hybrid functionals. In particular, the difference between
HSE06 and LDA-HSE06 results is smaller than between their
local counterparts, the PBE and LDA, respectively.

In Fig. 2 we compare the calculated DOS for both phases
of VO2 with the experimental photoemission spectra.46 When
comparing with experiments, it is essential to have bulk-
sensitive photoemission data, which can be obtained by using
high-energy photons as in an x-ray photoemission (XPS) or,
even better, a hard x-ray photoemission (HAXPES) setup.47

In fact, at low photon energies, photoemission spectroscopy
is mainly surface sensitive. However, in these materials the
electronic properties of the surfaces are generally different
from the bulk. Here, and in the rest of paper, we use
μ = 0.2 Å−1 and α = 0.25, in agreement with the HSE06
parametrization. With this choice we find a gap of 1.13 eV, in
excellent agreement with the value of 1.1 eV from Ref. 30,
where a GGA instead of a KS-LDA local functional has been
used though. This shows that using either a LDA or GGA KS
functional does not have an influence on the DOS. Both results
overestimate the experimental band gap, which is 0.6 eV in the
insulator.46 Nevertheless, the HSE06 hybrid functional is able
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to describe correctly the MIT, contrary to the LDA, LDA + U,
and LDA + DMFT.

B. V2O3

Like VO2, V2O3 is a time-honored correlated material,
whose great interest is due to its temperature-induced MIT.18,48

At T > 154 K it is a paramagnetic metal, while at low
temperature it becomes an antiferromagnetic insulator and
undergoes a crystal distortion from a corundum to a monoclinic
structure. The phase diagram is made more complex by
doping with Cr, which induces a different isostructural MIT
to a paramagnetic phase. The antiferromagnetic phase has
been studied in the LDA + U (Ref. 49) (also followed by a
perturbative GW calculation50) and LDA + DMFT (Ref. 51),
while the spectral properties of the metallic phase have been
extensively analyzed in the LDA + DMFT (Refs. 51–54) and
in the GW (Ref. 55).

Here we take the experimental lattice parameters of the
pure compounds.56,57 We consider different magnetic config-
urations for the insulating phase, in order to analyze their
influence on the electronic structure and compare hybrid
functional results with those found in the LDA + U.49 In
the calculation we used a 6 × 6 × 6 grid of k points for
the insulator, which becomes 10 × 10 × 10 for the metal.
In the experimental magnetic structure (AFI1),58 each V
atom has one spin-parallel neighbor and two spin-antiparallel
neighbors in the (distorted) hexagonal planes of the monoclinic
crystal, while the coupling between neighbors in different
planes is ferromagnetic [see inset to Fig. 3(a)]. We also
considered a ferromagnetic (FM) order and an alternative
antiferromagnetic (AFI2) order, in which, with respect to the
experiment, the interplane magnetic coupling is inverted, while
it is unchanged inside the planes [see inset to Fig. 3(b)].
The LDA always yields a metal, regardless of the magnetic
structures. Instead, the LDA-HSE06 gives an insulator for all
the magnetic configurations considered. The band gap is 1.80
eV in the AFI1, much larger than the 0.66 eV experimental
optical gap.59 The two antiferromagnetic DOSs turn out to
be very similar, while for the FM the DOS [see Fig. 3(c)]
is quite different and the band gap reduces to 0.7 eV. In the
LDA + U calculation,49 the FM DOS is half metallic, and the
experimental antiferromagnetic structure has a 0.7 eV gap.
The LDA-HSE06 consistently overestimates the band gap in
all the magnetic structures. This result is connected to an
overestimation of the local magnetic moment, which in the
LDA-HSE06 is 1.8μB for the AFI structures and 1.9μB for
the FM, whereas experimentally it is 1.2μB/(V at.). Similarly
to the LDA + U, the ground-state total energy difference
between different magnetic structures is rather small, with the
experimental AFI1 structure being the one with lowest total
energy.

In Fig. 4 we compare the calculated DOSs with the
experimental HAXPES results from Ref. 60. As in VO2 (see
Sec. III A), the LDA-HSE06 is able to reproduce the MIT,
contrary to the LDA. At the same time, it also corrects
the LDA underestimation of the binding energy of the O
p states in both phases. This is a clear illustration of the
advantage of treating all the electrons on equal footing (in
the LDA + U or LDA + DMFT, instead, the position of Op

FIG. 3. (Color online) Density of states of monoclinic insulating
V2O3, calculated both in the LDA and LDA-HSE06, according to
the different considered magnetic structures. The magnetic order is
visualized in the insets to each panel, where the light blue circles
schematically represent V atoms in the (distorted) hexagonal planes
that characterize the monoclinic crystal structure and the arrows
display the directions of the local magnetic moments.

states is essentially the same as in the LDA). However, the
LDA-HSE06 overestimates the bandwidth of the top valence
a1g states, and the band gap in the insulator.
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FIG. 4. (Color online) Comparison between the DOSs calculated
in the LDA and LDA-HSE06 and the experimental photoemission
spectra from Ref. 60. (a) Antiferromagnetic insulating phase and (b)
paramagnetic metallic phases of V2O3.

C. Ti2O3

Ti2O3 has a corundum crystal structure like metallic V2O3

and a formal d1 configuration like VO2. Below 400 K it is
insulating and above 600 K it is metallic, undergoing a very
broad temperature-induced MIT (Refs. 31 and 61). Moreover,
neither phase is magnetically ordered,62 and, contrary to both
VO2 and V2O3, the MIT in Ti2O3 is isostructural.63 In fact,
by raising the temperature only an increase of the c/a ratio is
observed, accompanied by an increase of the Ti dimer distance
along the c axis. Here we consider two crystal structures
with lattice parameters measured at 296 and 868 K (Ref. 63),
where Ti2O3 is insulating and metallic, respectively. In our
calculations we used a 6 × 6 × 6 k-point grid for the insulating
phase and a 8 × 8 × 8 one for the metal.

The presence of Ti dimers along the c axis leads to a
large bonding-antibonding splitting of the a1g states, as in
the insulating VO2 case. Here, without additional structural
changes, we can directly relate the shortening of the Ti dimer
distance with the increase of the a1g bonding-antibonding
splitting, and hence the band-gap opening between the bonding
a1g and the eπ

g states in the t2g subband of Ti 3d orbitals. Also
in the present case, this effect is masked in the LDA by its
underestimation of the anisotropy introduced by the Ti dimers.
For this reason, the LDA DOS remains metallic also at low
temperatures.64,65 The relevance of the Ti dimers is underlined
also by the fact that, as in VO2, single-site DMFT is not able
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FIG. 5. (Color online) (a) LDA and LDA-HSE06 densities of
states (upper and bottom panels, respectively), together with the DOSs
projected onto Ti s, Ti d , and Op states, for insulating Ti2O3 at room
temperature. (b) Comparison of the total DOS in the LDA and HSE06
with the XPS spectrum from Ref. 67.

to obtain the insulating phase, which is instead reproduced by
a cluster DMFT calculation66 for which the local impurity is
given by the pair of Ti atoms.

The effect of the LDA-HSE06 corrections over the LDA
[see Figs. 5(a) and 6] is visible for both phases: (i) at the Fermi
energy, where the top valence band is split off from the bottom
of the conduction states, leading to the gap opening in the
insulator and to a strong reduction of the spectral weight at the
Fermi energy in the metal; (ii) in the transfer of spectral weight
in the unoccupied Ti t2g band toward the high-energy part of
the band; (iii) in the increasing of the separation between Ti
d states and O p states, as a consequence of a rigid shift of
the latter. In general, LDA-HSE06 results do not change the
hybridization character of the bands with respect to the LDA.

At room temperature the LDA-HSE06 gives a 0.57 eV
gap, which is much larger than the 0.11 eV estimate from
conductivity and thermoelectric coefficient measurements.68

However, contrary to HF calculations,69 the spin-polarized
LDA-HSE06 correctly yields a nonmagnetic solution also in
the insulating phase. This result is important since it shows
that within the hybrid functional the existence of a gap is
not necessarily linked to the presence of magnetic order, as
it often happens in the LDA + U. Moreover, the LDA-HSE06
correctly describes also the metallic phase and the MIT (see
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FIG. 6. (Color online) Comparison between the LDA and LDA-
HSE06 DOSs and Ti s, Ti d , and O p projected DOSs, calculated for
metallic Ti2O3 at T = 868 K.

Fig. 6), which is often problematic within the LDA + U. Thus,
these results appear to have two advantages of the HSE06 with
respect to the LDA + U in nonmagnetic insulators and metals.

In the XPS spectrum [at hν = 1487 eV, reproduced in
Fig. 5(b)]67 for the insulating phase at room temperature, a
satellite is clearly visible at 2.4 eV, between the Ti 3d peak at
0.7 eV and the broad O 2p band at 4 to 10 eV. This satellite
cannot be obtained with the static hybrid functional employed
here, but is absent also in the cluster DMFT calculation.66 The
HAXPES spectrum (hν = 5931 eV),67 which is dominated
by the cation s contribution as in the vanadium oxides43,55

(see Fig. 4), confirms that the satellite present in the XPS
spectrum is a genuine bulk feature of insulating Ti2O3 (instead,
experimental photoemission results for the metallic phase are
not available). Overall, the LDA-HSE06 results [see Fig. 5(b)]
compare much better with the experimental spectra than the
LDA.

D. LaTiO3 and YTiO3

In a seminal paper, Fujimori et al.70 considered a series
of d1 transition metal oxides. On the basis of a single-band
Hubbard model, they explained the opening of the band gap,
going from metallic VO2 and SrVO3 to insulating YTiO3 and
LaTiO3, as the progressive increase of the ratio between the
Hubbard U and the d bandwidth, which is accompanied by
the transfer of spectral weight from the quasiparticle peak at
the Fermi energy in the metals to the Hubbard bands in the
insulators. Within this view, both LaTiO3 and YTiO3 are Mott
insulators, with a gap opening between the lower and the upper
Hubbard bands. Thus a band-structure description would not
be able to reproduce these incoherent atomiclike excitations in
the spectra, and hence the gap. In fact, KS-LDA band structures
are metallic for both compounds,71,72 while LDA + U71–73 and
LDA + DMFT74–76 calculations correctly yield a gap.

At low temperatures both compounds order magnetically.
Below 148 K LaTiO3 displays a G-type antiferromagnetic
order with a local magnetic moment of 0.57μB (Ref. 77).
YTiO3 is ferromagnetic below 29 K, where the magnetic
moment is 0.8μB /(Ti at.) (Ref. 78). It has been much debated
whether the magnetic properties of these compounds can be
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FIG. 7. (Color online) (a) DOS and projected DOS for LaTiO3

calculated in the LDA and LDA-HSE06 and (b) comparison with
experimental photoemission spectra from Ref. 83.

explained in terms of the formation of an orbital liquid or
orbital ordering.79–81

Here we use the low-temperature experimental crystal
structures from Refs. 77 and 82, and a 4 × 4 × 4 grid of
k points. While LaTiO3 is nonmagnetic in the LDA, in
the LDA-HSE06 the local magnetic moment is 0.76μB ,
overestimating the experimental value of 0.57μB . Also in
ferromagnetic YTiO3, in the LDA-HSE06 it increases up to
0.84μB from 0.7μB in the LDA, reaching a similar value as in
the GGA + U.73

Also in these compounds, the LDA-HSE06 gives insulating
densities of states [see Figs. 7(a) and 8(a) for LaTiO3 and
YTiO3, respectively]. This is the result of the splitting off of
a Ti t2g band from the states crossing the Fermi level in the
LDA. In the case of YTiO3 only spin-up states contribute to
the occupied t2g band. Thus, these results for both compounds
seem to be in contrast with the traditional interpretation of the
topmost occupied state as an incoherent lower Hubbard band.70

In fact, the peak in the experimental spectra83 [see Figs. 7(b)
and 8(b)] is matched, at least partially, by this (coherent) Ti
t2g band. Moreover, within the hybrid functional scheme, the
opening of the gap with respect to the metallic LDA DOS is due
to nonlocal exchange. However, contrary to the experiment, in
the LDA-HSE06 the bandwidth of these valence Ti t2g states
is larger in YTiO3 than in LaTiO3. At the same time, also
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FIG. 8. (Color online) (a) DOS and projected DOS for YTiO3

calculated in the LDA and LDA-HSE06 and (b) comparison with
experimental photoemission spectra from Ref. 83.

the band gap is larger in LaTiO3 (1.74 eV) than in YTiO3

(1.41 eV), while the experimental optical gap is 0.2 eV for
LaTiO3 (Ref. 84) and 0.7 eV for YTiO3 (Ref. 85). In both
compounds the band gap is overestimated, while the occupied
Ti t2g bandwidth is underestimated, also for possible dynamical
effects74 that are missing here.

While, as in all the other compounds, the hybridization
between O p states and Ti d states does not change much
between the LDA and LDA-HSE06 [see Figs. 7(a) and 8(a)],
a larger effect is seen here for the unoccupied La f states
in LaTiO3. In the LDA they are located in the middle of the
conduction band, while in the LDA-HSE06 they are shifted to
the upper end of the band. The band gap opening between Ti d

states and the upshift of the La f states can been obtained in the
GGA + U approach73 only with the simultaneous use of two
(different) Hubbard U values applied to Ti d and La f states.
Within hybrid functionals this result emerges naturally as a
consequence of the localization of these states (the nonlocal
exchange corrects the LDA delocalization error treating all the
electrons on equal footing).

Both LaTiO3 and YTiO3 remain insulating also above the
corresponding (Néel or Curie) temperatures where they loose
their magnetic order. A spin-unpolarized HSE06 calculation
would not be able to obtain a gap in this case. In agreement
with the Mott picture,86 while the long-range magnetic order

is not essential to have an insulator, the electronic spins do
matter. In fact, LaTiO3 and YTiO3 in the disordered phases
are both paramagnetic. Similarly, above the Néel temperatures
transition-metal monoxides are also paramagnetic insulators.
For these compounds it was recently shown that a calculation,
based on the self-interaction-corrected (SIC) functional and
taking explicitly into account the disordered local moments
of the paramagnetic phase, was able to correctly describe
the insulating phases.87 Thus, a similar calculation would
be suitable in the (disordered) paramagnetic phase also for
the present perovskite compounds (for which a modified SIC
implementation has been recently used for the magnetically
ordered phases).88

IV. CONCLUSIONS

The hybrid functionals employed in the present work
are not explicitly designed to treat electronic correlations.
Nevertheless, we have shown that the inclusion of nonlocal
Fock exchange is essential to cure the fundamental problem of
getting metallic band structures in the Kohn-Sham LDA in the
insulating phases of several correlated transition-metal oxides,
as those that have been discussed here: VO2, V2O3, Ti2O3,
LaTiO3, and YTiO3. Analogous results have been obtained for
instance also by Rödl et al.17 in the series of transition-metal
monoxides, where hybrid functionals were also used as an
improved starting point for one-shot GW calculations.89

Thus, a common conclusion emerges from the study of all
these correlated transition-metal oxides using the LDA-HSE06
(see Table III): (i) With respect to the LDA, besides providing a
finite band gap, the LDA-HSE06 also correct the position of the
O p states. This is a clear advantage with respect to other ap-
proaches (the LDA + U, LDA + DMFT, etc.) stemming from
treating all the electrons on the same footing. (ii) With respect
to the LDA + U another advantage is the consistent treatment
of insulators and metals and the fact that hybrid functionals do
not yield an insulator together with magnetic long-range order.
(iii) The LDA-HSE06 parametrization overestimates the band
gap in all the compounds considered here, and, in general,
the results are sensitive to the choice of the parameters (as in
the LDA + U and LDA + DMFT) used to build the functional.
(iv) Hybrid functionals miss completely dynamical screening

TABLE III. Summary of the results for the local magnetic moment
for the magnetically ordered compounds and for the band gaps of the
insulating phases.

Local magnetic moment (μB )

Expt. LDA LDA-HSE06

V2O3 1.2 1.22 1.8
LaTiO3 0.57 0 0.76
YTiO3 0.8 0.7 0.84

Band gap (eV)
Expt. LDA LDA-HSE06

VO2 0.6 0 1.13
V2O3 0.66 0 1.80
Ti2O3 0.11 0 0.57
LaTiO3 0.2 0 1.74
YTiO3 0.7 0 1.41
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effects, which are essential for the description of satellites in
photoemission spectra.27

Therefore, it is evident that hybrid functionals cannot be
(and they are not meant to be) the final answer for the
description of spectral properties of correlated transition-metal
oxides. However, also in these compounds, hybrid functionals
demonstratebeing very useful for the discussion of the role
of nonlocal exchange, upon which a clean analysis of the
effects of (dynamical) electronic correlation can be then
established.
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F. Venturini, N. B. Brookes, O. Tjernberg, W. Reichelt, H. H. Hsieh,
H.-J. Lin, C. T. Chen, and L. H. Tjeng, Phys. Rev. Lett. 97, 116402
(2006).

47See, e.g., G. Panaccione, F. Offi, M. Sacchi, and P. Torelli, C. R.
Physique 9, 524 (2008); K. Kobayashi, Nucl. Instrum. Methods A
601, 32 (2009).

48B. McWhan, A. Menth, J. P. Remeika, W. F. Brinkman, and T. M.
Rice, Phys. Rev. B 7, 1920 (1973).

49S. Y. Ezhov, V. I. Anisimov, D. I. Khomskii, and G. A. Sawatzky,
Phys. Rev. Lett. 83, 4136 (1999).

115129-9

http://dx.doi.org/10.1103/PhysRev.140.A1133
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.77.3865
http://dx.doi.org/10.1103/PhysRevLett.78.1396
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/PhysRevB.44.943
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevLett.51.1888
http://dx.doi.org/10.1103/PhysRevLett.51.1884
http://dx.doi.org/10.1103/PhysRevLett.56.2415
http://dx.doi.org/10.1103/PhysRevLett.56.2415
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/PhysRevLett.100.146401
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/RevModPhys.74.601
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRevLett.96.226402
http://dx.doi.org/10.1103/PhysRev.139.A796
http://dx.doi.org/10.1103/PhysRevB.34.5390
http://dx.doi.org/10.1103/PhysRevB.53.3764
http://dx.doi.org/10.1103/PhysRevB.53.3764
http://dx.doi.org/10.1103/PhysRevB.41.7868
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.472933
http://dx.doi.org/10.1063/1.478522
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.1564060
http://dx.doi.org/10.1063/1.2204597
http://dx.doi.org/10.1103/PhysRevB.79.235114
http://dx.doi.org/10.1103/PhysRevB.79.235114
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/RevModPhys.70.1039
http://dx.doi.org/10.1103/PhysRevB.83.035119
http://dx.doi.org/10.1103/PhysRevLett.62.2160
http://dx.doi.org/10.1063/1.2404663
http://dx.doi.org/10.1063/1.2186996
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1063/1.2403848
http://dx.doi.org/10.1103/PhysRevB.79.035103
http://dx.doi.org/10.1103/PhysRevB.79.035103
http://dx.doi.org/10.1103/PhysRev.90.317
http://dx.doi.org/10.1103/PhysRevA.14.36
http://dx.doi.org/10.1103/PhysRevB.74.161103
http://dx.doi.org/10.1103/PhysRevB.74.161103
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1103/PhysRevLett.107.166401
http://dx.doi.org/10.1016/0927-0256(96)00008-0
http://dx.doi.org/10.1103/PhysRevB.54.11169
http://dx.doi.org/10.1063/1.2187006
http://dx.doi.org/10.1103/PhysRevLett.107.016401
http://dx.doi.org/10.1103/PhysRevLett.3.34
http://dx.doi.org/10.1103/PhysRevB.11.4383
http://dx.doi.org/10.1103/PhysRevLett.72.3389
http://dx.doi.org/10.1103/PhysRevLett.72.3389
http://dx.doi.org/10.1002/1521-3889(200210)11:9<650::AID-ANDP650>3.0.CO;2-K
http://dx.doi.org/10.1103/PhysRevB.71.085109
http://dx.doi.org/10.1103/PhysRevB.71.085109
http://dx.doi.org/10.1103/PhysRevB.73.195120
http://dx.doi.org/10.1103/PhysRevB.73.195120
http://dx.doi.org/10.1134/S0031918X07090013
http://dx.doi.org/10.1134/S0031918X07090013
http://dx.doi.org/10.1103/PhysRevLett.94.026404
http://dx.doi.org/10.1103/PhysRevB.81.115117
http://dx.doi.org/10.1103/PhysRevB.81.115117
http://dx.doi.org/10.1103/PhysRevLett.99.266402
http://dx.doi.org/10.1103/PhysRevLett.99.266402
http://dx.doi.org/10.1103/PhysRevB.60.15699
http://dx.doi.org/10.1103/PhysRevB.60.15699
http://dx.doi.org/10.1103/PhysRevB.78.075106
http://dx.doi.org/10.1103/PhysRevB.78.075106
http://dx.doi.org/10.1103/PhysRevB.10.490
http://dx.doi.org/10.1103/PhysRevB.10.490
http://dx.doi.org/10.3891/acta.chem.scand.24-0420
http://dx.doi.org/10.1103/PhysRevLett.97.116402
http://dx.doi.org/10.1103/PhysRevLett.97.116402
http://dx.doi.org/10.1016/j.crhy.2007.04.005
http://dx.doi.org/10.1016/j.crhy.2007.04.005
http://dx.doi.org/10.1016/j.nima.2008.12.188
http://dx.doi.org/10.1016/j.nima.2008.12.188
http://dx.doi.org/10.1103/PhysRevB.7.1920
http://dx.doi.org/10.1103/PhysRevLett.83.4136


FEDERICO IORI, MATTEO GATTI, AND ANGEL RUBIO PHYSICAL REVIEW B 85, 115129 (2012)

50S. Kobayashi, Y. Nohara, S. Yamamoto, and T. Fujiwara, Phys. Rev.
B 78, 155112 (2008).

51G. Panaccione, M. Altarelli, A. Fondacaro, A. Georges, S. Huotari,
P. Lacovig, A. Lichtenstein, P. Metcalf, G. Monaco, F. Offi,
L. Paolasini, A. Poteryaev, M. Sacchi, and O. Tjernberg, Phys.
Rev. Lett. 97, 116401 (2006).

52S.-K. Mo, J. D. Denlinger, H.-D. Kim, J.-H. Park, J. W.
Allen, A. Sekiyama, A. Yamasaki, K. Kadono, S. Suga,
Y. Saitoh, T. Muro, P. Metcalf, G. Keller, K. Held, V. Eyert,
V. I. Anisimov, and D. Vollhardt, Phys. Rev. Lett. 90, 186403
(2003).

53G. Keller, K. Held, V. Eyert, D. Vollhardt, and V. I. Anisimov, Phys.
Rev. B 70, 205116 (2004).

54A. I. Poteryaev, J. M. Tomczak, S. Biermann, A. Georges,
A. I. Lichtenstein, A. N. Rubtsov, T. Saha-Dasgupta, and O. K.
Andersen, Phys. Rev. B 76, 085127 (2007).

55E. Papalazarou, M. Gatti, M. Marsi, V. Brouet, F. Iori,
L. Reining, E. Annese, I. Vobornik, F. Offi, A. Fondacaro,
S. Huotari, P. Lacovig, O. Tjernberg, N. B. Brookes, M. Sacchi,
P. Metcalf, and G. Panaccione, Phys. Rev. B 80, 155115 (2009).

56P. D. Dernier, J. Phys. Chem. Solids 31, 2569 (1970).
57P. D. Dernier and M. Marezio, Phys. Rev. B 2, 3771 (1970).
58R. M. Moon, Phys. Rev. Lett. 25, 527 (1970).
59G. A. Thomas, D. H. Rapkine, S. A. Carter, A. J. Millis, T. F.

Rosenbaum, P. Metcalf, and J. M. Honig, Phys. Rev. Lett. 73, 1529
(1994).

60H. Fujiwara, A. Sekiyama, S.-K. Mo, J. W. Allen, J. Yamaguchi,
G. Funabashi, S. Imada, P. Metcalf, A. Higashiya, M. Yabashi,
K. Tamasaku, T. Ishikawa, and S. Suga, Phys. Rev. B 84, 075117
(2011).

61J. M. Honig and T. B. Reed, Phys. Rev. 174, 1020 (1968).
62R. M. Moon, T. Riste, W. C. Koehler, and S. C. Abrahams, J. Appl.

Phys. 40, 1445 (1969).
63C. E. Rice and W. R. Robinson, Acta Crystallogr. Sect. B 33, 1342

(1977).
64L. F. Mattheis, J. Phys.: Condens. Matter 8, 5987 (1996).
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