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ABBREVIATIONS 

PCD – Programmed cell death 

Cc – Cytochrome c 

Apaf-1 – Apoptosis protease-activating factor-1 

CED-4 – Cell death abnormality-4 

Dark – Drosophila Apaf-1-related killer 

BiFC – Bimolecular fluorescence complementation 

CPT – Camptothecin 

SPR – Surface plasmon resonance  

NAA – Naphthalene acetic acid 

MS – Murashige and Skoog medium 

TS-4B – Thiol-Sepharose 4B 

YFP – Yellow fluorescent protein 

DAPI – 4’,6-diamidino-2-phenylindole 

DMEM – Dulbecco’s modified Eagle’s medium 
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SUMMARY 

Programmed cell death is an event displayed by many different organisms along the 

evolutionary scale. In plants, programmed cell death is necessary for development 

and the hypersensitive response to stress or pathogenic infection. A common feature 

in programmed cell death across organisms is the translocation of cytochrome c 

from mitochondria to the cytosol. To better understand the role of cytochrome c in 

the onset of programmed cell death in plants, a proteomic approach was developed 

based on affinity chromatography and using Arabidopsis thaliana cytochrome c as 

bait. Using this approach, ten putative new cytochrome c partners were identified. Of 

these putative partners and as indicated by bimolecular fluorescence 

complementation, nine of them bind the heme protein in plant protoplasts and human 

cells as a heterologous system. The in vitro interaction between cytochrome c and 

such soluble cytochrome c-targets was further corroborated using surface plasmon 

resonance. Taken together, the results obtained in the study indicate that 

Arabidopsis thaliana cytochrome c interacts with several distinct proteins involved in 

protein folding, translational regulation, cell death, oxidative stress, DNA damage, 

energetic metabolism and mRNA metabolism. Interestingly, some of these novel 

Arabidopsis thaliana cytochrome c-targets are closely related to those for Homo 

sapiens cytochrome c (Martínez-Fábregas et al., unpublished). These results 

indicate that the evolutionarily well-conserved cytosolic cytochrome c, appearing in 

organisms from plants to mammals, interacts with a wide range of targets upon 

programmed cell death. The data have been deposited to the ProteomeXchange 

with identifier PXD000280. 
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INTRODUCTION 

Programmed cell death (PCD) is a fundamental event for the development of 

multicellular organisms and the homeostasis of their tissues. It is an evolutionarily 

conserved mechanism present in organisms ranging from yeast to mammals [1-3].  

In mammals, cytochrome c (Cc) and dATP bind to apoptosis protease-activating 

factor-1 (Apaf-1) in the cytoplasm, a process leading to the formation of the Apaf-

1/caspase-9 complex known as apoptosome. This apoptosome subsequently 

activates caspases-3 and -7 [4,5]. In other organisms, such as Caenorhabditis 

elegans or Drosophila melanogaster, however, Cc is not essential for the assembly 

and activation of the apoptosome [6] despite the presence of proteins homologous to 

Apaf-1 – cell death abnormality-4 (CED-4) in C. elegans and Drosophila Apaf-1-

related killer (Dark) in D. melanogaster – which have been found to be essential for 

caspase cascade activation. Furthermore, other organisms such as Arabidopsis 

thaliana lack Apaf-1 [7]. In fact, highly distant caspase homologues (metacaspases) 

[8,9], serine proteases (saspases) [10], phytaspases [11] and VEIDases [12-14], 

among others, with caspase-like activity have been detected in plants; however, their 

targets remain veiled and whether they are activated by Cc remains unclear.  

Intriguingly, the release of Cc from mitochondria into the cytoplasm during the onset 

of PCD is an evolutionarily conserved event found in organisms ranging from yeast 

[15] and plants [16] to flies [17] and mammals [18]. However, understanding of the 

roles of this phenomenon in different species can be said to be uneven at best. In 

fact, the release of Cc from mitochondria has thus far been considered a random 

event in all organisms, save mammals. Thus, the participation of Cc in the onset and 

progression of PCD needs to be further elucidated. 

Even in the case of mammals, the role(s) of Cc in the cytoplasm during PCD 

remain(s) controversial. Recently, new putative functions of Cc, going beyond the 

already-established apoptosome assembly process, have been proposed in the 

nucleus [19,20] and the endoplasmic reticulum [21-23]. Neither these newly 

proposed functions nor other arising functions, such as oxidative stress [24], are as 

yet fully understood. This current state of affairs demands deeper exploration of the 

additional roles played by Cc in non-mammalian species. 
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In this study, putative novel Cc-partners involved in plant PCD were identified. For 

this identification, a proteomic approach was employed based on affinity 

chromatography and using Cc as bait. The Cc-interacting proteins were identified 

using nano-liquid chromatography tandem mass spectrometry (NanoLC-MS/MS). 

These Cc-partners were then further confirmed in vivo through bimolecular 

fluorescence complementation (BiFC) in A. thaliana protoplasts and human 

HEK293T cells, as a heterologous system. Finally, the Cc-GLY2, Cc-NRP1 and Cc-

TCL interactions were corroborated in vitro using surface plasmon resonance (SPR).  

These results indicate that Cc is able to interact with targets in the plant cell 

cytoplasm during PCD. Moreover, they provide new ways of understanding why Cc 

release is an evolutionarily well-conserved event, and allow us to propose Cc as a 

signaling messenger, which somehow controls different essential events during 

PCD. 
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EXPERIMENTAL PROCEDURES 

Protein Expression and Purification  

Plasmid pCytA [25], containing the coding region for A. thaliana Cc, was used to 

obtain the Cc mutant A111C, in which the C-terminal alanine was replaced by a 

cysteine, through mutagenic PCR. The oligonucleotides designed to build the A111C 

mutant were 5’-gaaggcacctgttgatgaattc-3’ and 3’-cttccgtggacaactacttaag-5’. The 

A111C mutant was expressed and further purified using ionic exchange 

chromatography, a process previously described for wild-type Cc by Rodríguez-

Roldán et al. [25]. 

A. thaliana Cell Cultures and PCD Induction 

A. thaliana MM2d cell suspension cultures (Bayer CropScience) were grown in 1 x 

Murashige and Skoog (MS) medium (Duchefa Biochemie) supplemented with 30 g∙L-

1 sucrose (Sigma-Aldrich), 0.5 mg∙L-1 NAA (Sigma-Aldrich), 0.05 mg∙L-1 kinetin 

(Sigma-Aldrich), 200 mg∙L-1 cefotaxime (Duchefa Biochemie) and 200 mg∙L-1 

penicillin (Duchefa Biochemie) at 100 rpm and 25 ºC. 

PCD was then induced according to the procedure described by De Pinto et al. [26]. 

Explained briefly, a stationary phase culture was diluted 5:100 (v/v). Following three 

days of growth under normal conditions, 35 mM H2O2 was added to 100 mL cell 

suspension cultures. 

Cell Viability and Morphology  

Cell viability was measured using the trypan blue dye exclusion test as described by 

De Pinto et al. [27] and cells were counted with a hemocytometer. The MM2d cell 

viability rate was calculated dividing the number of viable cells by the total number of 

cells. Following the collection of MM2d cells through centrifugation at 1,000 x g for 

10 min, cell morphology was analyzed and visualized using an Olympus BX60 

fluorescence microscope. 

Protein and Chlorophyll Determination 

Protein content was determined using the Bradford assay [28], while chlorophyll 

determination carried out according to MacKinney’s protocol [29]. 



Running title: New Arabidopsis thaliana Cc-targets during plant PCD 

 7 

Cell Extract Preparation for Purification by Affinity Chromatography 

Cell extracts from 0.5 L of culture containing either untreated or 35 mM H2O2-treated 

cells were prepared for affinity chromatography purification. In both cases, cells were 

harvested following centrifugation at 1,000 x g for 5 min, washed twice in PBS, 

pelleted again and resuspended to be further lysed by sonication in buffer I (50 mM 

Tris-HCl [pH 7.5], 50 mM NaCl, 0.25 % Triton X-100) supplemented with 1 mM 

phenylmethylsulfonyl fluoride, 10 μg·mL-1 aprotinin, 10 μg·mL-1 leupeptin and 10 

μg·mL-1 of soybean trypsin inhibitor. Cellular debris was then removed through 

centrifugation at 20,000 x g for 30 min at 4 C. Protein aliquots were stored at -80 

C. 

Purification by Affinity Chromatography 

As previously described in Azzi et al. [30], affinity chromatography was carried out in 

a column prepared by the covalent linkage of the Cc mutant A111C to the Thiol-

Sepharose 4B (TS-4B) matrix (Pharmacia). As a control, a TS-4B matrix devoid of 

Cc (Blank TS-4B) was also prepared. 

MM2d cell extracts, both those untreated and treated with 35 mM H2O2, were loaded 

into the columns, both with and without Cc. The columns were washed with 30 mL of 

buffer I and 30 mL of buffer II (50 mM Tris-HCl [pH 7.5], 75 mM NaCl) to remove 

nonspecifically bound proteins. Proteins interacting with greater strength were then 

eluted with 30 mL of buffer III (50 mM Tris-HCl [pH 7.5], 300 mM NaCl), collected, 

lyophilized and stored at -80 C before being analyzed using NanoLC-MS/MS.  

Four sets of samples were thus obtained: (1) untreated cell extracts loaded into 

Blank TS-4B column, (2) untreated cell extracts loaded into the Cc TS-4B column, 

(3) cell extracts treated with H2O2 and purified with the Blank TS-4B column and (4) 

cell extracts treated with H2O2 and purified using the Cc TS-4B column. 

NanoLC-MS/MS 

Prior to the performance of NanoLC-MS/MS analysis, the purified protein samples 

above were digested with trypsin. Thus, samples were treated with 8 M urea and 10 

mM DTT. Following 1 h of incubation at 37 ºC, iodoacetamide was added until a final 

concentration of 55 mM was reached and incubated for 1 h in the dark at room 
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temperature. The samples were diluted with ammonium bicarbonate 4 x until 

obtaining a final concentration of 2 M urea. Finally, 25 mg of recombinant trypsin was 

added and the mixture was incubated overnight at 37 ºC. 

The resulting peptides were analyzed using NanoLC-MS/MS on a linear trap 

quadrupole (LTQ; Thermo Electron), a linear ion trap mass spectrometer. The 

peptides were separated in a BioBasic C-18 PicoFrit column (75 μm [internal 

hamester] by 10 cm; New Objective) at a flow rate of 200 nL·min-1. Water and 

acetonitrile, both containing 0.1 % formic acid, were used as solvents A and B, 

respectively. The peptides were trapped and desalted in the trap column for 5 min. 

The gradient was started and maintained for 5 min at 5 % B, then ramped to 50 % B 

over 120 min, ramped to 70 % over 10 min and finally maintained at 95 % B for 

another 10 min. The mass spectrometer was operated in data-dependent mode in 

order to automatically switch between full MS and MS/MS acquisition. Parameters 

for ion scanning were the following: full-scan MS (400-1800 m/z) plus top seven 

peaks Zoom/MS/MS (isolation width 2 m/z), normalized collision energy 35 %. 

Peak lists from all MS/MS spectra were extracted from the Xcalibur RAW files using 

a freely available program DTAsupercharge v1.19 (http://msquant.sourceforge.net). 

Bioinformatics 

For protein identification, the UniProt_Arabidopsis protein database 100323 (90895 

sequences, 33249465 residues) was searched using a local license for MASCOT 

2.1. Database search parameters used were the following: trypsin as enzyme; 

peptide tolerance, 300 ppm; fragment ion tolerance, 0.6 Da; missed cleavage sites,1, 

and fixed modification, carbamidomethyl cysteine and variable modifications, 

methionine oxidation. In all protein identification, probability scores were greater than 

the score established by MASCOT (30) as significant, with a p-value less than 0.05. 

Design of Vectors for BiFC Assays 

The cDNA coding available for 9 out of the 10 Cc potential targets previously 

identified by the proteomic approach were purchased (ABRC Stocks). The cDNA of 

Cc and its novel protein partners were fused with the C-end fragment of the yellow 

fluorescent protein (cYFP) of the pSPYCE vector and with the N-end part of the YFP 

(nYFP) of the pSPYNE vector, respectively [31]. As a negative control, protoplasts 

http://msquant.sourceforge.net/
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were transfected with the chromatin-remodeling complex element SWI3B, which is 

unable to interact with Cc. The oligonucleotides indicated in the Supplemental Data 

(Figure S1.Panel A) were used to amplify the cDNAs while introducing proper 

restriction sites by PCR. In Figure S1.Panel B, a scheme is shown of the vector 

constructs used for the BiFC assays. 

Similarly, Figure S2.Panel A represents the oligonucleotides required for cloning 

cDNAs into YFP vectors. BiFC experiments in human HEK293T cells were assayed 

after cloning Cc cDNA into the cYFP vector and the cDNA of its targets into the 

nYFP vector (Figure S2.Panel B) [32]. As discussed by Hu et al. [33], pBiFC-

bJunYN155 and pBiFC-bFosYC155 were used as positive controls, while pBiFC-

bJunYN155 and pBiFC-bFosΔZipYC155 were employed as negative controls. 

BiFC Assays in A. thaliana Protoplasts: Cell Cultures, Protoplast Preparation, 

Cellular Transfection and Fluorescence Microscopy 

Protoplasts were generated from 1-week-old A. thaliana MM2d cell cultures grown in 

MS medium. 50 mL of cells were collected using centrifugation at 1,500 rpm for 5 

min and then resuspended in 50 mL of MS-Glucose / Mannitol (0.34 M), cellulose 1 

% and macerozyme 0.2 %. Cells were incubated in this buffer for 3 h at 50 rpm in the 

dark in order to facilitate the digestion of the cell wall. Resulting protoplasts were 

collected following two, 5-min rounds of centrifugation at 800 rpm with a wash with 

25 mL of MS-Glucose / Mannitol (0.34 M) carried out between centrifugations. The 

final pellet was resuspended in MS-Sucrose (0.28 M) and centrifuged at 800 rpm for 

5 min. The A. thaliana protoplasts were recovered from supernatant.  

Following Sheen’s protocol [34], protoplasts were transiently transfected with the 

pSPYCE / pSPYNE BiFC vectors and incubated overnight; upon PCD induction with 

35 mM H2O2, the resulting fluorescence was monitored. 

BiFC Assays in Human HEK293T: Cell Cultures, Cellular Transfection and 

Fluorescence Microscopy 

HEK293T cells were grown in Dulbecco’s modified Eagle’s medium (DMEM; PAA) 

supplemented with 2 mM L-glutamine (Gibco), 100 U·mL-1 streptomycin (Gibco), 100 

μg·mL-1 penicillin (Gibco) and 10 % heat-inactivated fetal bovine serum (PAA) at 37 

C in a humidified atmosphere of 5 % CO2 / 95 % air. HEK293T cells were grown to 
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80 % confluence in 24-well plates with 500 μL of DMEM, containing 20 mm 

coverslips. Cells were transfected with the YFP BiFC vectors using the 

Lipofectamine 2000 Transfection Reagent (Invitrogen) following the manufacturer’s 

instructions. To favor the protein expression of both constructs, the transfected cells 

were then incubated for 24 h at 37 C. Apoptosis was further induced with 10 μM 

CPT (camptothecin) for 6 h and in vivo binding was assessed through YFP 

reconstitution visualized with fluorescence microscopy. Nuclei were then stained with 

4’,6-diamidino-2-phenylindole (DAPI). 

Western Blot Analysis 

The HEK293T cells were harvested 48 h after transfection through centrifugation at 

1,500 rpm for 5 min. Total cell extracts were obtained through repeated freeze-thaw 

cycles. SDS-PAGE was performed using 12 % polyacrylamide gels. Proteins were 

transferred onto nitrocellulose membranes (BioRad) using a semi-dry transfer 

system and immunoblotted with a rabbit anti-EGFP polyclonal antibody (1:1,000; 

Biovision Research Products). A horseradish-peroxidase (HRP)-conjugated goat 

anti-rabbit IgG (1:12,000; Sigma-Aldrich) was then used for detection. The 

immunoreactive bands were developed using ECL Plus Western Blotting Detection 

System (Amersham). 

Cloning, Expression and Purification of A. thaliana Cc and its Protein Partners 

Wild-type A. thaliana Cc was cloned in the pBTR vector under lac promoter and 

expressed in E. coli BL-21. For this, 25 mL of pre-cultures were grown overnight at 

37 ºC in LB medium. 2.5 mL of pre-culture was used to inoculate 2.5 L of the same 

medium in a 5 L Erlenmeyer flask. The culture was shaken at 30 ºC for 24 h, after 

which further protein purification was carried out as indicated in Rodríguez-Roldán et 

al. [25]. 

Proteins interacting with A. thaliana Cc – GAPDC1, GLY2, NRP1 and TCL – were 

cloned in the pET-28a vector under the T7 promoter. cDNAs coding for Cc targets 

were purchased from ABRC. These constructs were used to express the Cc-targets 

in the E. coli BL-21 (DE3) RIL strain. 250 mL pre-cultures in LB medium 

supplemented with 50 μg·mL-1 kanamycin were grown overnight and used to 

inoculate 2.5 L of LB medium in 5 L flasks. Following the induction of cultures (1 mM 
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IPTG) and growth at 30 ºC for 24 h, cells were harvested at 6,000 rpm for 10 min 

and resuspended in 40 mL lysis buffer (20 mM Tris-HCl buffer [pH 8], 0.8 M NaCl, 10 

mM imidazole, 0.01 % phenylmethylsulphonyl fluoride [PMSF], 0.2 mg·mL-1 

lysozyme, 5 mM DTT and 0.02 mg·mL-1 DNase), sonicated for 4 min and then 

centrifuged at 20,000 rpm for 20 min. Proteins were further purified by means of an 

Ni-column (GE Healthcare). 

SPR Measurements 

The formation of complexes between A. thaliana Cc and its protein partners – 

GAPDC1, GLY2, NRP1 and TCL – was assayed with SPR using a BiaCore 3000 

and CM4 Chips. An automated desorption procedure was performed prior to each 

experiment to ensure the cleanliness of the BiaCore tubing, channels and sample 

injection port. The initial electrostatic attraction of A. thaliana Cc to the CM4 Sensor 

Chip surface was assessed by taking into account its isoelectric point and was 

optimized to pH 5.8. The plant Cc was then covalently attached to the matrix using 

standard amine-coupling chemistry, as previously described [35]. A reference flow 

cell was used as a control in which the chip surface was treated as described above, 

but without the injection of plant Cc. 

The binding measurements were performed at 25 ºC using HBS-EP buffer 

containing 10 mM HEPES, 150 mM NaCl, 3 mM EDTA and 0.005 % surfactant P20, 

adjusted to pH 7.4. Interactions between plant Cc and its protein partners were 

analyzed by flowing several GAPDC1, GLY2, NRP1 and TCL proteins at different 

concentrations (from 0.1 to 10 μM) over the Cc-modified surface at a flow rate of 10 

μL·min-1. Each concentration was injected at least three times. In each sensogram, 

the signals from the reference flow cell surface were subtracted.  

 

RESULTS 

PCD Induction in A. thaliana Cells 

Oxidative stress has emerged as an important signal in the activation of plant PCD. 

Thus, following Desikan et al. [36], PCD was induced in A. thaliana MM2d cells 

growing in MS medium with 35 mM H2O2. Following a 6 h period during which Cc is 
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known to be released into the cytosol [37], the cells were collected and 

morphological hallmarks occurring after PCD induction in plants [38] were analyzed. 

Figure 1A shows the cellular viability (75 %) after 6 h H2O2 treatment, a calculation 

obtained from the performance of the trypan blue dye exclusion test (Figure 1D). 

Correspondingly, chlorophyll (Figure 1B) and protein (Figure 1C) contents decreased 

after 6 hours.  

At 24 h after the H2O2 treatment, the amount of chlorophyll and protein decreased 

substantially, suggesting the activation of proteolysis (Figures 1B and 1C) and 

coinciding with an important increase of cell death to 80 % (Figures 1A and 1E). The 

morphological features of PCD were visualized as indicated by Houot et al. [39] with 

cytoplasmic and nuclear shrinkage clearly appreciable (Figures 1E and 1F). The 

degradation of chlorophyll and condensation of nuclei concur with the cytoplasmic 

shrinkage in the H2O2–treated cells (Figures 1I and 1J) and not in the untreated cells 

(Figures 1G and 1H).  

Exploring Novel Cc Protein Partners during PCD Using a Proteomic Approach 

Based on Affinity Chromatography and NanoLC-MS/MS. 

As explained earlier, understanding the role of Cc during plant PCD is necessary in 

order to grasp the evolution of heme protein-dependent PCD pathways. Hence, 

novel Cc protein partners during PCD were identified using a proteomic approach 

relying on affinity chromatography and mass spectrometry (Figure S3). In affinity 

chromatography, the thiol-sepharose matrix (TS-4B) was used which covalently 

binds proteins displaying solvent-exposed cysteines. Therefore, to attach Cc to the 

TS-4B matrix, the C-terminal alanine residue of Cc was replaced by a cysteine 

through mutagenic PCR. The resulting A111C Cc mutant, expressed and purified as 

described in Rodríguez-Roldán et al. [25], was able to bind covalently the TS-4B 

matrix through a disulfide bridge. The other two cysteine residues in Cc were 

unreactive since they were already binding the heme group [40]. A TS-4B column 

devoid of A111C Cc (Blank TS-4B) was used as a control.   

A. thaliana MM2d cell extracts, both untreated and H2O2-treated, were loaded into 

both types of TS-4B columns. Thus, proteins interacting with Cc were eluted by 

increasing ionic strength. Given the differing experimental conditions, four different 

protein samples were yielded: (a) proteins from untreated cells purified using the 
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control column; (b) proteins from H2O2-treated cells purified with the control column; 

(c) proteins from untreated cells purified using a column with Cc covalently bound to 

the matrix; (d) proteins from H2O2-treated cells purified using a column with Cc 

covalently bound to the matrix. All samples were separately lyophilized, with the 

mixture of proteins present in each being analyzed by NanoLC-MS/MS and the 

putative new Cc partners identified in this work summarized in Table 1. 

Up to 10 novel Cc partners were identified (Supplemental Data 1). Table 1 shows a 

list of these Cc-targets, indicating their molecular weight, isoelectric point, as well as 

their cellular localization as described in the literature. 

Verification of Cc Interactions In vivo 

The BiFC approach is a widely-used technique permitting the analysis of protein-

protein interactions in their biological environment, as well as the localization of the 

protein complexes in living cells [33]. For this purpose, A. thaliana Cc cDNA as well 

as the cDNAs available for 9 out of 10 Cc potential targets – excluding Apoptosis 

Inhibitory 5 - were fused to the C-end and N-end fragments of YFP, respectively.  

The resulting vectors were then co-delivered into A. thaliana protoplasts, following 

the protocol described by Sheen [34]. Fluorescence images showing the YFP 

reconstitution upon Cc-target binding were captured 6 h following PCD induction 

(Figure 2). In each case, representative bright-field (left) and fluorescence 

microscopy (right) images are shown. The YFP reconstitution is represented as 

green fluorescence and the nuclei appear in blue as a result of DAPI staining. 

Protoplasts transfected with chromatin-remodeling complex element SWI3B, a 

protein unable to interact with Cc, were used as a negative control. The observable 

YFP complementation for all constructs tested clearly indicates that the interactions 

previously identified in vitro through affinity chromatography also occur in vivo at the 

onset of PCD. In contrast, no YFP fluorescence signal was detected in co-

transfected plant protoplasts before the H2O2-mediated PCD induction because the 

Cc-cYFP fusion protein is targeted to the mitochondria (see Figure S4, for the target 

BIP2). To test the ability of the purported targets to interact with Cc in an 

independent heterologous system, BiFC assays were also performed on HEK293T 

cells. Plant cDNA was cloned into BiFC mammalian vectors nYFP and cYFP [32]. 
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HEK293T cells were efficiently co-transfected with both constructs and PCD was 

induced with 10 M of CPT for 6 h, as reported in Johnson et al. [41]. 

It had been previously reported that YFP fragments may complement each other 

with low efficiency, yet still yield fluorescent complexes, even in the absence of a 

specific interaction [42]. Thus, to ensure that the interactions performed by Cc were 

not the result of spontaneous YFP complementation, several precise controls were 

designed. In particular, the most appropriate controls for BiFC assays are based on 

the expression of two fusion proteins that, being expressed in the same cellular 

compartment, are unable to interact. Therefore, pBiFC-bFosYC155 and pBiFC-

bJunYN155 were used as a positive control and pBiFC-bFosΔZIPYC155 and pBiFC-

bJunYN155 were used as a negative control [43].  

Fluorescence results are shown in Figure S5. Overall, the interaction between Cc 

and the 9 targets was also corroborated in human cells. Some of these interactions, 

like those involving eIF2, BiP1, BiP2, GAPDC1 and RD21, occur in the cytoplasm, 

while others like those involving GLY2 and Sm/D1 whose YFP fluorescence overlaps 

with DAPI staining, are characterized by nucleo-cytoplasmic localization. 

Interestingly, NRP1-Cc and TCL-Cc complexes take place inside the nucleus.  

Notably, apo-Cc needs to be translocated from the cytosol to mitochondria in order 

to assemble its heme group and form a holoenzyme. Under homeostatic conditions, 

the punctuate pattern of fluorescence for the distribution of Cc, following the 

transfection of HEK293T cells with both the Cc-cYFP vector and empty nYFP vector, 

indicates mitochondrial localization of Cc (Figure S6) [44]. In contrast, CPT-treated 

cells show a diffuse fluorescence pattern, consistent with the release of Cc from 

mitochondria into the cytosol (Figure S6). Transient expression of the Cc-targets 

fused to nYFP in the BiFC assays was confirmed by immunoblotting with a rabbit 

anti-EGFP polyclonal antibody, as shown in Figure S5. All constructs assayed 

together with Cc yielded a band of the expected molecular mass for each target.  

In vitro Validation of Cc Adducts: SPR Measurements 

The interactions between plant Cc and the novel partners presented here were 

further analyzed through SPR in vitro. Of the 9 Cc-targets, GAPDC1, GLY2, NRP1 

and TCL were over-expressed as soluble recombinant proteins. Figure 3 shows the 
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SPR-sensograms resulting from increased flowing concentrations of GLY2, NRP1 or 

TCL on a Cc-immobilized chip. The background response was subtracted from the 

sample sensogram to obtain the actual binding response. The Cc-GAPDC1 

interaction could not be detected by this technique. Values for the dissociation 

equilibrium constant (KD), as well as for the association and dissociation rate 

constants (kon and koff, respectively) are in Supplemental Data 2.  
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DISCUSSION 

Mammalian Cc acts as an electron shuttle in the respiratory chain. In addition, it is a 

constituent piece of the apoptosome platform during PCD. This moonlighting 

character of Cc has been underscored in recent studies revealing additional 

functions of the heme protein [19-24,45]. 

As mentioned previously, during PCD, Cc is released from mitochondria into the 

cytosol in a wide variety of organisms including yeasts [15], plants [16], flies [17] and 

mammals [18]. Nevertheless, a function for this cytoplasmic pool of Cc has, thus far, 

been described only in mammals [4,5]. This evolutionarily conserved release of Cc, 

as well as the additional and less-understood functions of mammalian Cc during 

PCD suggest the existence of a conserved signaling network hovering around Cc. 

Such would also seem to explain why Cc is a highly-conserved protein [46] and, 

furthermore, why the mitochondria-to-cytosol translocation of the heme protein is a 

common, evolutionarily conserved event.  

Based on a proteomic approach combined with BiFC, 9 Cc interacting proteins have 

been identified in A. thaliana. These novel Cc-targets are divided into seven main 

categories, according to their cellular functions (Figure 4): 

1. Protein Folding 

Luminal binding proteins BiP1 and BiP2 have been related to endoplasmic reticulum 

(ER) stress, drought tolerance and leaf senescence [47]. Moreover, the over-

expression of BiP proteins in tobacco protoplasts increases cell tolerance to ER 

stress [48]. BiP1 and BiP2 are also known to be close homologues of human 

HSPA5, which has been related to caspase inhibition [49] and the regulation of 

survival pathways and cell proliferation [50-52]. Furthermore, translocation from the 

ER to cytoplasm has been previously described under ER stress conditions [51]. 

Notably, HSPA5 is also targeted by Cc in human cells (Martínez-Fábregas et al., 

unpublished). 

2. Translational Regulation 

Eukaryotic initiation factor 2 (eIF2) is a heterotrimeric complex formed by eIF2, 

eIF2 and eIF2 [53]. In mammals, the inhibition of protein synthesis enhances the 
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induction of PCD through different stimuli [54]. Under apoptotic conditions, PKR 

phosphorylates eIF2, leading to eIF2 dissociation and thereby hindering translation 

[55], an essential event for autophagy initiation [56]. Notably, it was found that eIF2 

(Martínez-Fábregas et al., unpublished) and eIF2 bind Cc in human and A. thaliana 

cells, respectively, indicating eIF2 to be a common target of the heme protein in 

eukaryotes.   

3. Cell Death 

In animal cells, the activation of cysteine proteases is an important step for PCD [57]. 

These enzymes have also been detected in plant cells undergoing PCD [58-60].  

RD21 (Responsive to Dehydration 21) is a cysteine protease synthesized as a 57 

kDa inactive precursor which matures into a 33 kDa active form [61]. RD21 contains 

a redox-sensitive catalytic site, GxCGSCW, with two cysteine residues capable of 

forming a disulfide bond [62]. It has been recently proposed that protein disulfide-

isomerase-5 (PDI5) sequesters plant cysteine proteases in the protein storage 

vacuoles of endothelial cells, thereby blocking their protease activity until the onset 

of PCD. According to yeast two-hybrid assays, PDI5 interacts with RD21 and inhibits 

recombinant RD21 activity in vitro [63]. Hence, PDI5 seems to be involved in 

regulating the timing of PCD [64].  

4. Oxidative Stress 

The glyoxalase system consists of several enzymes. GLY1 and GLY2 are involved in 

methylglyoxal (MG) detoxification. Recently, novel glyoxalases have been described 

in A. thaliana [65]. MG is produced in all living organisms and its levels in plants are 

enhanced upon exposure to different abiotic stresses [66]. Excessive MG formation 

leads to ROS production, causing oxidative stress [67]. Increased levels of GLY2 

have been detected in mammalian tumor cells and GLY2 inhibitors have been used 

to slow the growth of tumor cells in vitro [68,69]. Moreover, MG has been 

demonstrated to induce apoptosis in different types of mammalian cells [70-73]. 

5. DNA Damage 

Nucleosome assembly protein 1 (NAP-1)-related proteins (NRP) are well conserved 

in all kingdoms. In A. thaliana, the nrp1-1 nrp2-1 double loss-of-function mutant is 
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highly sensitive to genotoxic stress and shows increased levels of DNA damage, 

being essential for cell proliferation [74]. 

NRP1 is also a homologue of human SET [74], which has been related to DNA 

repair after single-strand breaks during oxidative stress [75]. Nevertheless, this 

function has not yet been attributed to plant NRP1. Interestingly, SET has been 

identified as a human Cc target (Martínez-Fábregas et al., unpublished). 

6. Energetic Metabolism 

GAPDC1 is homologous to mammal GAPDH, a soluble multitasking protein involved 

in glycolysis, apoptosis induction, cell signaling, tRNA export and DNA repair, among 

other functions [76]. Recently, new anti-PCD functions for plant GAPDH have begun 

to emerge (e.g., suppression of reactive oxygen species) [77]. Notably, Cc does not 

target the same protein in human cells, but rather another, ALDOA (Martinez-

Fábregas et al., unpublished), affecting the same metabolite, GAL-3P. 

7. mRNA Metabolism 

The spliceosome, a macromolecular machine containing several uridine-rich small 

nuclear ribonucleoproteins (U snRNPs) and many non-RNP splicing factors, is a 

“major player” in splicing [78]. While there are different U snRNP complexes, all 

share core components such as Sm proteins (e.g., Sm/D1) [79]. Alternative splicing 

has been recently linked to apoptosis in mammals by different groups [80,81]. The 

mutation, deletion or knockdown of core spliceosomal proteins can result in altered 

splicing patterns in yeast cells [82-85], fly cells [86] and mammalian cells [87-91].  

The TREX (transcription/export) complex has a conserved role in coupling 

transcription to mRNA export in yeast and metazoan. It consists of two export 

factors, Yra1/ALY/REF and Sub2/UAP56, along with the THO transcription 

elongation complex [92,93]. The A. thaliana genome contains at least one gene 

(At5g59950, TCL) homologous to Yra1/ALY/REF and two genes (At5g11170 and 

At5g11200) homologous to Sub2/UAP56 [94]. The existence of the THO complex in 

plants, as well, underscores the importance of THO-related proteins in the context of 

plant development. 
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It is worth mentioning that most of these new Cc-interacting proteins, or their 

homologues in humans, play an anti-PCD role in plant cells, except in the cases of 

RD21 and API5. Finally, SPR measurements permitted us to corroborate the in vitro 

interaction of three targets – GLY2, NRP1 and TCL – with Cc.  

In summary, the new data produced regarding the poorly-understood process of 

non-mammalian PCD suggests that Cc targets analogous functions in different 

organisms. Furthermore, the data points to the conservation of the role of Cc during 

PCD even in organisms devoid of an apoptosome. This supports the theory 

proposed by D.R. Green et al. that the PCD signaling role of Cc emerged early in the 

evolutionary timeline [95]. Thus, although the Cc-targets likely vary according to the 

organism, the results recorded here indicate that cytoplasmic Cc targets processes 

essential for cell life and may ensure the correct progress of PCD. 
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FIGURE LEGENDS 
 
Figure 1. PCD hallmarks in A. thaliana MM2d cell cultures treated with 35 mM 

H2O2. 

(A) Cell viability measured using trypan blue dye exclusion assay. Untreated and 

H2O2-treated cells are represented by solid and dashed lines, respectively. Data is 

the result of three independent experiments, each including 500 cells. 

(B) Effect of H2O2 treatment on chlorophyll concentration. 1 mL of H2O2-treated cell 

cultures was collected at the indicated times and the chlorophyll amount was 

calculated according to MacKinney’s protocol [29]. 

(C) Effect of H2O2 treatment on protein concentration. Similar to (B), but the protein 

amount was determined using the Bradford assay [28]. 

(D) Bright-field microscope image showing cells treated with H2O2 for 6 h. Cells were 

stained with trypan blue dye. 

(E) Similar to (D), but after 24 h of H2O2 treatment. 

(F) Bright-field microscope image for 35 mM H2O2 treated cells, stained with trypan 

blue dye indicating a cell wall (CW) and cell shrinkage (CS). 

(G-J) Changes in the cellular morphology of H2O2-treated cells analyzed by DAPI 

nuclear staining, chlorophyll fluorescence and bright-field images. Cells were 

observed under fluorescence (Left Panels G and I) and bright-field (Right panels H 

and J) microscopy. Upper (G and H) and lower (I and J) panels correspond to 0 and 

24 h of H2O2 treatment, respectively. Apoptotic nuclei are stained in blue dye and, 

having undergone shrinkage, lack red fluorescence. 

 

Figure 2. BiFC assays in A. thaliana protoplasts.  

A. thaliana protoplasts were transfected with pSPYCE/pSPYNE vectors, as 

described in Sheen [34], to corroborate the in vivo interaction of Cc and its potential 

targets in BiFC. Images were captured 24 h following transient transfection and after 

6 h of treatment with 35 mM H2O2. Reconstruction of eYFP leads to the obtainment 
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of green fluorescence signal emission, indicative of interaction between Cc and its 

partners. Protoplasts transfected with chromatin-remodeling complex element 

SWI3B, a protein unable to interact with Cc, were used as a negative control. The 

nucleus was stained in blue using DAPI dye. Scale bar is 10 µm.  

 

Figure 3. SPR Measurements.  

(A) Sensograms recorded for the binding of plant Cc with GLY2. Three replicate 

injections were performed for each protein concentration. In each sensogram, the 

signals from the control surface were subtracted. 

(B) Similar to (A), but for the plant Cc-NRP1 complex. 

(C) Similar to (A), but for the plant Cc-TCL interaction. 

 

Figure 4. Principal functions ascribed to novel Cc protein partners.  

Diagram showing the principal functions of novel plant Cc protein partners identified 

in vitro with proteomics and corroborated in vivo with BiFC. All targets have been 

grouped into seven functional categories.  
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Table 1. Cc protein partners identified with NanoLC-MS/MS.  

Up to 10 novel Cc partners identified. MW: molecular weight, pI: isoelectric point. #Cell location of the Cc-interacting proteins is that 

reported in the literature.  

Protein name Uniprot ID Score Cell location# 
MW 

(kDa)/pI 

Apoptosis inhibitory 5 O22957 47 ND 61.9/8.05 

Hydroxyacylglutathione hydrolase (GLY2) Q0WQY6 62 Cytoplasm 29.2/5.93 

Glyceraldehyde 3‐phosphate dehydrogenase (GAPDC1) Q0WVE7 100 Cytoplasm 37.0/6.62 

Translation initiation factor eIF2γ Q8LAP5 45 Cytoplasm 51.4/8.96 

Nucleosome assembly protein 1‐related protein 1 (NRP1) Q9CA59 404 Nucleus, cytoplasm 29.5/4.23 

Small nuclear ribonucleoprotein Sm/D1 Q9SY09 96 Nucleus, cytoplasm 12.7/11.23 

Transcriptional coactivator‐like (TCL) Q8L773 186 Nucleus, cytoplasm 25.7/9.83 

Cysteine proteinase RD21 P43297 34 ER Bodies 52.1/5.26 

Luminal-binding protein 1 (BiP1) Q9LKR3 47 Endoplasmic reticulum 73.8/5.08 

Luminal‐binding protein 2 (BiP2) Q39043 47 Endoplasmic reticulum 73.8/5.11 
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Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 


