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Abstract 20 
Samples from a colluvial soil rich in pyrogenic material (Black C, BC) in NW Spain 21 
were subjected to K2Cr2O7 and KMnO4 oxidation and the residual soil organic matter 22 
(SOM) was NaOH-extracted and analyzed using analytical pyrolysis–gas 23 
chromatography–mass spectroscopy (Py-GC/MS) and solid-state 13C cross 24 
polarization–magic angle spinning–nuclear magnetic resonance (13C CP MAS-NMR) in 25 
order to study the susceptibility of different SOM fractions (fresh, degraded/microbial, 26 
BC and aliphatic) towards these oxidizing agents. NaOH extracts of untreated samples 27 
were also analyzed. Py-GC/MS and 13C NMR indicated that KMnO4 promotes the 28 
oxidation of carbohydrate products, mostly from degraded/microbial SOM and 29 
lignocellulose, causing a relative enrichment of aliphatic and aromatic structures. 30 
Residual SOM after K2Cr2O7 oxidation contained BC, N-containing BC and aliphatic 31 
structures. This was corroborated by a relatively intense resonance of aromatic C and 32 
some signal of alkyl C in 13C NMR spectra. These results confirm that dichromate 33 
oxidation residues contain a non-pyrogenic fraction mainly consisting of aliphatic 34 
structures. 35 
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1. Introduction 36 
Soil organic matter (SOM) is a complex mixture of plant, animal and microbial 37 

tissue, both fresh and at different stages of decomposition (Stevenson 1994; Tabatabai 38 
1996). The molecular structures present in SOM have been a source of debate for many 39 
decades due the analytical difficulties inherent to SOM characterization (Piccolo 1996). 40 
A wide set of methodologies have been used to study SOM composition, including 1) 41 
fractionation methods such as (i) chemolytic techniques (i.e. application of acid-42 
hydrolysis or extracting agents) that are coupled with colorimetric and/or GC/MS 43 
analyses to identify specific SOM components (polysaccharides, lignin-derived 44 
compounds, amino sugars, extractable- lipids or hydrolysable proteins) (Kögel-Knabner 45 
1995); (ii) physical fractionation into organo- mineral fractions based on particle size 46 
and/or density yields (Christensen 1992; Six et al. 2002); (iii) wet oxidation with 47 
potassium permanganate (KMnO4) (Loginow et al. 1987; Tirol-Padre and Ladha 2004), 48 
H2O2 (Eusterhues et al. 2005), Na2S2O8 (Eusterhues et al. 2003), NaOCl (Kleber et al. 49 
2005), and K2Cr207 (Skjemstad and Taylor 1999); and 2) analytical techniques 50 
including (i) spectroscopic techniques, such as infrared (IR) spectroscopy and solid-51 
state 13C nuclear magnetic resonance (13C NMR) (Wilson et al. 1981; Fründ et al. 1993) 52 
and (ii) pyrolysis-GC/MS (Py-GC/MS) (Sáiz-Jiménez and the Leeuw 1994a). Whereas 53 
IR and 13C NMR provide information on the environment of carbon atoms (functional 54 
groups) (Baldock and Smernik 2002), more detail on the molecular chemistry is 55 
obtained by pyrolysis-GC/MS. 56 

Py-GC/MS is based on thermal degradation in an inert atmosphere (pyrolysis) 57 
and subsequent separation (GC) and identification (MS) of the pyrolyzate, from which 58 
information on macromolecular structures can be extracted (Moldoveanu 1998). For 59 
example, it allows the identification of different sources and degradation states of plant 60 
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detritus, secondary/microbial material, Black C (BC), and the estimation of their 61 
relative proportions (Nierop et al. 2005; Buurman et al. 2007). Nonetheless, Py-GC/MS 62 
is a semi-quantitative method because of differences in the pyrolyzability of different 63 
organic matter components, not all pyrolysis products are amenable and detectable by 64 
GC, and differences in relative response factors by MS (Sáiz-Jiménez 1994a)  65 

The Walkley-Black dichromate oxidation, as modified by Heanes (1984), is a 66 
relatively simple and rapid procedure with minimal equipment needs (Nelson and 67 
Sommers 1996) that has long been used to estimate the organic C (OC) content of soils. 68 
Its major disadvantage is that it incompletely oxidizes soil OC (Gillman et al. 1986), 69 
and has different oxidation efficiencies for different soils (Tabatabai 1996), which 70 
produce considerable and unpredictable deviations from ‘true’ soil OC content. 71 
Probable causes of deviations in recoveries are (i) spatial inaccessibility of organic 72 
substrates to the oxidation agent (Skjemstad et al. 1996; Six et al. 2002), (ii) binding 73 
with inorganic phases (Eusterhues et al. 2005) and (iii) the presence of chemically 74 
recalcitrant SOM fractions such as BC (Six et al. 2002). In fact, the difference between 75 
total OC and dichromate-oxidizable OC has been used to estimate the BC content of 76 
soils. BC is defined as the product resulting from incomplete thermal combustion of 77 
vegetation and/or fossil fuels, and is relatively resistant to decomposition (Schmidt et al. 78 
2001). However, an unknown portion of BC is actually oxidized while some non-79 
pyrogenic SOM may survive the oxidation, e.g. non-hydrolyzable aliphatic compounds 80 
that resist aqueous dichromate oxidation (Knicker et al. 2007). This implies that the 81 
properties of the oxidation-resistant residue must be assessed in order to obtain 82 
meaningful estimations of BC content using dichromate oxidation (Knicker et al. 2007). 83 
The stability of BC towards these reagents is of significant interest considering its 84 
upcoming use as a soil amendment (as biochar). 85 
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The permanganate-oxidizable fraction has been used as a proxy for the labile 86 
fraction of SOM (Loginow et al. 1987, Lefroy et al. 1993), based on the assumption that 87 
the oxidative capacity of KMnO4 on SOM is comparable to that of soil microbial 88 
enzymes (Conteh et al. 1997). However, some studies indicated that KMnO4- oxidizable 89 
C may not be a reliable measure of the proportion of labile C because, even though it 90 
efficiently degrades lignin (van Soest and Wine 1986), it has little effect on several 91 
SOM components that are widely recognised as easily degraded by soil 92 
microorganisms, e.g. structural carbohydrates, sugars and amino acids (e.g. Tyrol-Padre 93 
and Ladha 2004). Furthermore, its ability to react with charcoal was also stated 94 
(Skjemstad et al. 2006). 95 

SOM is thermodynamically unstable in well-aerated soils (Macías and Camps-96 
Arbestain 2010). However, SOM stabilized by specific mechanisms can remain as 97 
meta-stable forms in soils for hundreds to thousands of years (Six et al. 2002). These 98 
non-ideal conditions for SOM decay are associated to physical and chemical protection 99 
mechanisms offered by the soil matrix that either impede the access of enzymes to SOM 100 
(e.g., within microaggregates or by creating hydrophobicity) or increase the energy 101 
needed to degrade SOM through interactions with minerals (Eusterhues et al. 2003). In 102 
addition, enhanced SOM preservation may occur when environmental conditions are 103 
not adequate for microbial growth, e.g. the presence of free Al and Fe, low soil pH 104 
and/or due to low nutrient availability (Buurman and Roscoe 2011). Furthermore, 105 
intrinsic recalcitrance of specific SOM components may increase its longevity in soil. 106 
This is most likely the main process responsible for the long turn-over time of highly 107 
condensed aromatic compounds present in BC (Harvey et al. 2012). 108 

The nature of permanganate- and dichromate-oxidation resistant SOM is still 109 
poorly understood. Here we study the molecular properties of KMnO4- and K2Cr2O7- 110 
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oxidation-resistant SOM from a BC-rich colluvial soil, by Py-GC/MS and solid-state 111 
13C NMR, which may add to our knowledge on the stability of specific organic 112 
compounds against soil microbial oxidative enzymes. 113 

114 
2. Material and methods 115 
2.1. Study site and sample descriptions 116 

Soil PRD-4 is a 2.4 m thick Haplic Umbrisol (humic/alumic) according to the 117 
IUSS Working Group (2006) and Humic Pachic Dystrudept according to the SSS 118 
(1998). This soil type is traditionally referred to as Atlantic Ranker (Carballas et al. 119 
1967). Radiocarbon dating showed that the soil gradually accumulated through 120 
colluviation during the last ca. 13,000 yr (Kaal et al. 2011). Soil PRD-4 has a deep 121 
black color owing to a combination of high SOM content and abundance of BC (Table 122 
1). For the present study, three samples were selected from this soil, corresponding to 123 
three periods with radically different ecosystems and hypothetically also different SOM 124 
compositions: S1 (5-10 cm depth) corresponds to recent material (<150 y BP), 125 
evidenced by 14C dating and the presence of pollen of exotic species Eucalyptus sp. 126 
(López-Merino et al. 2012) (Table 1). This soil layer contains considerable amounts of 127 
“fresh” (non- or slightly degraded) SOM and root fragments, as described by Kaal and 128 
van Mourik (2008). The vegetation corresponding to this sample is a mosaic of 129 
shrubland (dominated by Ericaceae), pasture and exotic tree species. Sample S2 (95- 130 
100 cm depth) contains large amounts of charcoal from palaeofires (Kaal et al. 2011) 131 
that occurred ca. 5,000 yr ago. Anthracological analysis showed that most charcoal 132 
originates from deciduous Quercus sp. This sample is thought to correspond to an oak-133 
dominated woodland under substantial fire and grazing pressure. Sample S3 (190- 195 134 
cm depth) corresponds to an Early- Holocene phase (ca. 9,700 yr BP) that preceded the 135 
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colonization of the area by deciduous forest, with “steppe-like” vegetation dominated 136 
by Betula sp. (birch), shrubs of the Fabaceae family and herbaceous species. 137 

138 
2.2. Determination of organic C fractions 139 

Potassium dichromate-oxidizable organic C (OCdichro) was determined following 140 
the Walkley-Black oxidation method as modified by Wolbach and Anders (1989) and 141 
Knicker et al. (2007). 0.5 g of dry soil (< 2 mm) were oxidized in triplicate with 20 ml 142 
of 0.2 M K2Cr2O7 and 20 ml of concentrated H2SO4 at 60 °C in a water bath for 6 h. 143 
Control samples without soil were also analyzed. After the reaction, excess dichromate 144 
was determined by titration against 0.033 M FeSO4. The amount of dichromate 145 
consumed by the soil was used to calculate the amount of dichromate-oxidizable 146 
organic C (OCdichro) assuming that (i) the oxidation state of soil OC is zero (C0) and (ii) 147 
complete oxidation to C+4 occurs. 148 

Potassium permanganate-oxidizable organic C (OCper) was determined, in 149 
triplicate, using 25 ml of 33 mM KMnO4 solution added in 50 ml centrifuge tubes 150 
containing an amount of dry soil (<2 mm) equivalent to 15 mg organic C (Tirol-Padre 151 
and Ladha 2004). After 24 h shaking, the tubes were centrifuged for 5 min at 2600 g152 
and the supernatant diluted in distilled water (1:25 v:v). Absorbance was read on a split 153 
beam spectrophotometer at 565 nm. Blanks and a standard soil were analyzed before 154 
each run. For calculation purposes, it was assumed that three moles of C (e.g. 155 
carbohydrates) are oxidized for every four moles of Mn+7 reduced (Tirol-Padre and 156 
Ladha 2004). 157 

158 
2.3. Isolation of SOM fractions 159 
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The non-oxidized (NO) SOM extraction was considered the control treatment, 160 
consisting of SOM extraction by NaOH as described by Buurman et al. (2007). Briefly, 161 
5 g soil (air- dried fine earth <2 mm) was extracted with 50 ml of 1 M NaOH and 162 
shaken for 24 h under N2 to prevent oxidation/saponification. The suspension was 163 
centrifuged at 2600 g for 1 h and the extract decanted, after which the extraction was 164 
repeated. The two extracts were combined and the residues discarded. The extracts were 165 
then acidified to pH 1 with concentrated HCl to protonate SOM. One ml of concentrated 166 
HF was added to dissolve silicates and increase C content of the extracted fraction. The 167 
acid mixture was shaken for 48 h, after which it was dialyzed to neutral pH against 168 
distilled water to remove excess salt. Finally, the suspension was freeze- dried. 169 

Dichromate oxidation-resistant SOM (CR): 12.5 g soil was oxidized in 500 ml 170 
of 0.2 M K2Cr2O7 and 100 ml of concentrated H2SO4 for 6 h at 60 °C using a water 171 
bath. Once cooled, the suspension was centrifuged at 2600 g for 1 h and the supernatant 172 
decanted, after which the sediment was washed with distilled water until the solution 173 
was colorless. The suspension was discarded and the dichromate oxidation-resistant 174 
SOM extracted by 200 ml of 1 M NaOH for 24 h under N2. The resultant suspension 175 
was centrifuged at 2600 g for 1 h and the supernatant decanted. This extraction was 176 
repeated twice. Thereafter, the three extracts were combined and acidified to pH 1 with 177 
concentrated HCl. One ml of concentrated HF was added to dissolve silicates and 178 
increase the content of organic C of the extracted fraction. This acid mixture was shaken 179 
for 48 h, dialyzed against H2O to neutral pH and finally freeze- dried. 180 

Permanganate oxidation-resistant SOM (MN): 1000 ml of 33 mM KMnO4 were 181 
added to 4.8, 8.2 and 7.0 g dry soil (<2 mm) for samples S1, S2 and S3, respectively, 182 
aiming to add 25 ml of KMnO4 per 15 mg of organic C (calculated from OCdichro183 
values). After 24 h shaking, the suspension was centrifuged at 2600 g for 1.5 h and the 184 
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extract decanted, after which the sediment was washed with distilled water until the 185 
supernatant was colorless. The MN in the residue was isolated and purified using 200 186 
ml of 1 M NaOH for 24 h under N2 atmosphere, analogous to the extraction of CR 187 
described above. 188 

189 
2.4. Py-GC/MS 190 

Platinum filament Py-GC-MS was performed with a Pyroprobe 5000 (CDS 191 
Analytical Inc., Oxford, USA) coupled to a 6890 GC and 5975 MS (Agilent 192 
Technologies, Palo Alto, USA). The non-oxidized (NO) and oxidation-resistant SOM 193 
fractions (MN and CR) were pyrolyzed at 750 °C for 10 s (heating rate 10 °C/ms). 194 
Analyses of sample S2 of the CR series was repeated, first at 400 ºC and then at 750 ºC, 195 
to distinguish between evaporation and pyrolysis products from volatile and 196 
macromolecular components, respectively. The pyrolysis interface was set at 300 ºC 197 
and the GC inlet at 325 °C. The oven of the GC was heated from 50 to 325 °C at 10 198 
°C/min and held isothermal for 5 min. The GC/MS transfer line was held at 325 °C, the 199 
ion source (in electron impact mode, 70 eV) at 230 °C and the quadrupole detector at 200 
150 °C, measuring fragments in the m/z 50-500 range. The GC was equipped with a 201 
(non-polar) HP-1 100% dimethylpolysiloxane column. Helium was used as the carrier 202 
gas (constant gas flow, 1 ml/min). The major peaks in the total ion current of all 203 
samples were listed and, if possible, identified using the NIST ‘05 library and Py-204 
GC/MS literature (Appendix A). Quantification of these pyrolysis products, 172 in total, 205 
was obtained by using the peak area of the major fragment ions (m/z). The sum of these 206 
peaks, i.e. total quantified peak area (TQPA) was set as 100% and the relative 207 
proportions of the pyrolysis products were calculated as the % of TQPA. This is a semi-208 
quantitative estimate that allows for better comparison among samples than visual 209 
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inspection of pyrolysis chromatograms (pyrograms) alone, and produces a dataset that 210 
can be treated statistically. 211 

212 
2.5. 13C NMR spectroscopy213 
Solid-state NMR spectroscopy experiments were performed with cross-polarization 214 
magic angle spinning (CPMAS) at 298 K in a 17.6 T Varian Inova-750 spectrometer 215 
(operating at 750 MHz proton frequency) equipped with a T3 Varian solid probe 216 

[Varian, Inc, USA]. Solid NMR samples were prepared in 3.2 mm rotors with an 217 
effective sample capacity of 22 µL which corresponds to approximately 30 mg of the 218 
powdered sample. Spectra were processed and analyzed with MestreC software 219 
(Mestrelab Research Inc.). Carbon chemical shifts were referred to the carbon 220 
methylene signal of solid adamantane at 28.92 ppm. This sample was also used for the 221 
calibration of the 1D CPMAS experiments. 1D CPMAS spectra were acquired for the 222 
samples with the following conditions: the inter-scan delay was set to 0.5 s, the number 223 
of scans was 24000 and the MAS rate was 20 kHz. Heteronuclear decoupling during 224 
acquisition of the FID was performed with Spinal-64 with a proton field strength of 70 225 
kHz. The cross polarization time was set to 1 ms. During cross polarization, the field 226 
strength of the proton pulse was set constant to 75 kHz and that of the 13C pulse was 227 
linearly ramped during a 10% of the duration with a 20 kHz ramp near the matching 228 
sideband. Spectra were divided into different regions of chemical shift following 229 
Knicker et al (2005). Relative abundances of the various C groups were determined by 230 
integration of the signal intensity in their respective chemical shift regions. The region 231 
between 0– 45 ppm is assigned to alkyl C corresponding to terminal methyl groups and 232 
methylene groups of aliphatic moieties. The O-alkyl C region, typically assigned to 233 
carbohydrate-derived structures, between 45– 95 ppm. Here, between 45– 60 ppm, N-234 
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alkyl C (i.e. in amino sugars and peptide structures) can contribute to the signal. 235 
Between 90 and 160 ppm resonance lines of olefins and aromatic C are detected. The 236 
regions from 160 to 220 ppm and from 220 to 245 are assigned to carbonyl C separated 237 
into carboxyl/amide and aldehyde/ketone groups, respectively. Although often assumed 238 
that solid- state 13C NMR underestimate BC, recent studies demonstrated that most 239 
charcoals have an atomic H/C ratio > 0.5 and thus provide sufficient protonation for 240 
efficient cross polarization and reliable NMR spectra (Knicker et al. 2005). Because of 241 
the limited sample availability some samples required Al-oxide to fill the rotor, causing 242 
some signal quality deterioration. Samples MN-2, MN-3 and CR-3 were not analyzed 243 
for that reason. 244 

245 
2.6. Factor analysis 246 

The relative proportions of pyrolysis products were subjected to factor analysis 247 
using Statistica Version 8 (Statsoft, Tulsa, USA). Factor analysis proved useful in the 248 
interpretation of Py-GC/MS datasets, especially with respect to the sources and 249 
degradation states to which the pyrolysis products correspond. 250 

251 
3. Results and discussion 252 
3.1. Py-GC/MS: source allocation 253 

The pyrolysis products were grouped according to their chemical structure into 254 
the following classes: (i) aliphatic compounds (homologous series of n-alkanes and n-255 
alkenes, and branched alkenes), (ii) lignin-derived methoxyphenols, (iii) phenols, (iv) 256 
monocyclic aromatic compounds (MAHs), (v) polycyclic aromatic hydrocarbons 257 
(PAHs), (vi) N-containing compounds, (vii) carbohydrate-derived pyrolysis products 258 
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and (viii) unidentified compounds. Appendix A is a list of the pyrolysis products 259 
identified. 260 

Aliphatic compounds. n-alkane/n-alkene pairs, ranging from C10 to C28, originate 261 
largely from aliphatic biopolymers (Eglinton and Hamilton 1967). The other short- and 262 
mid-chain (ca. C10-C20) alkenes, not from the homologous series and most of which are 263 
probably branched, are considered significant products of charred aliphatic matter 264 
according to recent studies, even though they are not produced exclusively from 265 
pyrolysis of BC (Eckmeier and Wiesenberg 2009; Kaal et al. 2012a). Several n-fatty 266 
acids (mainly C16 and C18) seemed to increase disproportionally upon chemical 267 
oxidation, especially in CR. This might be explained by the enrichment of aliphatic 268 
structures upon dichromate oxidation due to their hydrophobicity (Knicker et al. 2007). 269 
However, the use of a HP-1 column, which has a larger internal diameter than 270 
frequently used non-polar columns for Py-GC/MS, may have affected the 271 
‘chromatographic mobility’ and the relative proportions of these compounds, thus 272 
making its interpretation difficult. Therefore, these compounds were not included in the 273 
statistical analyses neither. 274 

Lignin-derived methoxyphenols. Methoxyphenols (guaiacyl- and syringyl-based) 275 
are typical products of coniferyl and sinapyl lignin, respectively (Boerjan et al. 2003). 276 
4-vinylphenol was also added to this group because it has frequently been shown to be 277 
marker of coumaryl lignin and the non-lignin coumaric acid  in grasses (Sáiz-Jiménez 278 
and de Leeuw 1986). An unknown proportion of 4-vinylphenol and 4-vinylguaiacol 279 
may originate from non-lignin phenolic acids as well (Schellekens et al. 2012), but that 280 
does not influence the interpretation of results here as statistically they behave as the 281 
lignin markers (see below). 282 
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Phenols. The other phenols have multiple origins: phenol and C1-C2-283 
alkylphenols may originate from any phenolic precursor including lignin, tannin, 284 
proteinaceous biomass, weakly-charred BC and carbohydrates (Tegelaar et al. 1995; 285 
Stuczynski et al. 1997), while lignin, tannin or thermally demethylated lignin (Kaal et 286 
al. 2012b) are the most likely precursors of 1,2-benzenediol (catechol). 287 

Monocyclic aromatic hydrocarbons. MAHs include benzene, toluene, styrene, 288 
dimethylbenzenes, linear C2-C4-alkylbenzenes, a dimethylstyrene and a dimethyl-289 
methylethylbenzene compound. MAHs are formed from many aromatic and some non-290 
aromatic precursors (Schulten et al. 1991) but BC is known to produce an exceptionally 291 
high proportion of especially benzene (Kaal et al. 2012a). Indeed, the analysis of the 292 
products of incomplete combustion by Py-GC/MS showed that MAHs and also PAHs 293 
are major pyrolysis products of Black C (Pastorova et al. 1994, Almendros et al. 2003). 294 
Besides a renewed interest in the detection of burning residues in SOM established that 295 
BC is a major source of SOM and that its oxidation products could be a potential source 296 
of highly aromatic humic acids (Hatcher et al. 1989; Skjemstad et al. 1996; Shindo et 297 
al., 2004). On the other hand, the alkylstyrenes most likely originate from the 298 
monoterpenes present in Eucalyptus globulus litter (see below). 299 

Polycyclic aromatic hydrocarbon compounds. The origin of PAHs in SOM 300 
pyrolyzates have been the subject of considerable debate. They were sometimes 301 
considered actual building blocks of humic substances formed upon condensation 302 
reactions during humification (Schulten et al. 1991), or more frequently interpreted as 303 
analytical artefacts because of evidence of their formation during pyrolysis of aliphatic 304 
compounds through cyclization and aromatization (Sáiz-Jiménez 1994b). More 305 
recently, PAHs and particularly the non-alkyl-substituted and >2 ring PAHs (Rumpel et 306 
al. 2007) are considered indicative of (but not markers of) BC in SOM (Kaal and 307 
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Rumpel 2009; Song and Peng 2010). In the present study, unsubstituted PAHs (indene, 308 
naphthalene, fluorene, biphenyl, phenanthrene and anthracene) and C1-C2 alkyl 309 
analogues of these PAHs were abundant. In addition, a series of C3-C4310 
alkylnaphthalenes and C5:0 and C5:1 alkylnaphthalenes probably originate from 311 
evaporation and pyrolysis of monoterpenes (e.g. pinene, phellandrene, eucalyptol) and 312 
sesquiterpenoids (aromadendrene, globulol), respectively, present in Eucalyptus sp. oil. 313 
Indeed, these compounds were identified in Eucalyptus globulus litter (a mixture of 314 
leaves, cortex and branches) pyrolyzates (data not shown). Some of the polysubstituted 315 
PAHs (C3-indene, C2-C5:0- and C5:1-naphthalene) provided the largest contributions to 316 
the pyrograms of sample S1 (contrary to many unsubstituted or C1- alkylsubstituted 317 
PAHs, largely from BC); this suggests that a significant portion of these compounds 318 
originate from fresh Eucalyptus sp. litter. Overall, it should be noted that, in this study, 319 
where distinguishing between BC and non-pyrogenic SOM components will appear to 320 
be important, the interpretation of MAHs and PAHs relies more strongly on the growing 321 
body of knowledge on BC’s pyrolysis fingerprints (Kaal et al. 2012a; Fabbri et al. 2012; 322 
Song and Peng 2010) than on previous studies on the structural characteristics of humic 323 
acids (Schulten et al. 1991; Sáiz-Jiménez 1994a). 324 

N-containing products. Of the 24 N-containing pyrolysis products identified, 325 
benzonitrile and C1-benzonitriles were recently proposed as the main products of N-326 
containing groups in BC (Schnitzer et al. 2007; Song and Peng 2010). In addition, 327 
isoquinoline, phenylpyridine, benzenedicarbonitriles and pyridinecarbonitriles can be 328 
considered as markers of ‘Black N’ (BN) (Knicker 2007; Kaal et al. 2009). Note that 329 
absence of these products does not imply absence of BN: these compounds can 330 
probably only be detected in high-quality pyrograms of exceptionally BN-rich samples. 331 
Pyrroles, pyridines and indoles are potential products of BN as well but these 332 
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compounds are common in the pyrolyzates of non-pyrogenic N-moieties. Several 333 
markers of chitin (acetamide and a compound tentatively identified as trianhydro-2-334 
acetamido-2-deoxyglucose; van der Kaaden et al. 1984; Stankiewicz et al. 1996) and 335 
chitin-entangled protein (diketopiperazine) probably originate from fungal cell walls 336 
and/or arthropod exoskeleta, either way serving as an indication of biologically re-337 
assimilated (“secondary”) remains in SOM (Gutierrez et al. 1995). Finally, for 338 
picolinamide, cyanobenzoic acid and phthalimide-based compounds no specific origin 339 
has been identified yet. 340 

Carbohydrate compounds. Of the carbohydrate products identified, levoglucosan, 341 
dianhydro-α-glucopyranose, pyranones and dianhydrorhamnose largely originate from 342 
“fresh” or well-preserved polysaccharides (Stuczynski et al. 1997; Poirier et al. 2005; 343 
Nierop et al. 2005). On the other hand, cyclopentenediones, furans, furfurals, 344 
levoglucosenone and dibenzofuran originate from fresh and/or degraded carbohydrates 345 
(Buurman and Roscoe 2011). This degradation may be either biological or thermal in 346 
nature, the latter especially for the furans, furaldehydes and dibenzofuran (Pastorova et 347 
al. 1994; Boon et al. 1994). 348 

Unidentified compounds. An unsaturated non-aromatic cyclic compound (U1) was 349 
identified only in the pyrolyzates from S1 (NO-1 and MN-1), which also contained the 350 
pollen of Eucalyptus sp. It probably corresponds to α-phellandrene, which is abundant 351 
in eucalyptus oils (Samaté et al. 1998). Furthermore, several polymethyl-substituted 352 
polycyclic compounds (U3-U6), also detected in the aforementioned fresh eucalyptus-353 
litter pyrolyzate, probably derived from Eucalyptus sp. Finally, a methylated 354 
cyclohexane (U2) of unknown origin was tentatively identified. 355 

356 
3.2. Py-GC/MS: quantification and interpretation 357 
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Pyrograms of chemical oxidation resistant SOM fractions and non-oxidized 358 
samples are represented in Fig. 1. The relative contributions to TQPA for identified 359 
groups in the different soil horizons studied are presented in Table 2. In NO-1, 360 
carbohydrate-derived pyrolysis products accounted for 30% of TQPA, with 361 
levoglucosan (Ps13) from intact polysaccharide (Stuczynski et al. 1997; Poirier et al. 362 
2005) being dominant. The presence of 4-hydroxy-5,6-dihydro-(2H)-pyranone (Ps6) 363 
and dianhydrorhamnose (Ps7) confirms the existence of fresh (or well-preserved) 364 
polysaccharides in NO-1 (Nierop et al. 2005). Of the samples studied, these compounds 365 
showed the largest contribution to sample NO-1. The same pattern was observed for 366 
many other indicators of fresh plant material, including the aliphatic compound 367 
producing m/z 83+280, diketodipyrrole, and the lignin-derived products (Suárez-368 
Abelenda et al. 2011). The large proportion of phenols in the pyrolyzate of this sample 369 
may be explained by the abundance of lignin. Samples NO-1 and MN-1 had the highest 370 
contributions of probably eucalyptus-derived moieties (C5:0-, C5:1-alkylnaphthalenes and 371 
α-phellandrene and C3- naphthalenes). It is concluded that the SOM of NO-1 is 372 
characterized by a large fraction of well-preserved polysaccharides and lignin, with an 373 
additional contribution of specific eucalyptus-derived substances, and relatively small 374 
proportions of microbial and pyrogenic SOM. The latter is supported by the low 375 
benzene/alkyl-benzenes and PAH/alkyl-PAHs ratios (Table 2), which are indicative of a 376 
low contribution of strongly charred BC to the MAHs and PAHs of these samples (Kaal 377 
and Rumpel 2009; Kaal et al. 2012a). 378 

Unsurprisingly, sample NO-2 (ca. 5,000 yr old), produced fewer pyrolysis 379 
products from fresh SOM than NO-1. More specifically, in comparison with NO-1, 380 
among the carbohydrate markers there was a strong increase of furans, furaldehydes, 381 
levoglucosenone and acetic acid, while levoglucosan, pyranones and 382 
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dianhydrorhamnose diminished, which is a clear indication of a shift of fresh 383 
polysaccharide to degraded/microbial carbohydrates (Sáiz-Jiménez and de Leeuw 1986; 384 
Buurman and Roscoe 2011). Lignin markers were virtually absent. NO-2 sample 385 
produced many N-compounds, including those from chitin (N3 and N22), pyridine (N1, 386 
often associated with microbial SOM; Buurman et al. 2007) and BN (e.g. aromatic 387 
carbonitriles and phenylpyridine). It also gave higher proportions of MAHs and BC-388 
derived PAHs than the NO-1 sample. It is concluded that the SOM of sample NO-2 was 389 
predominantly composed of degraded/microbial and pyrogenic material.  390 

The pyrolyzate of sample NO-3 was dominated by carbohydrate markers, with 391 

acetic acid, 3/2-furaldehyde, 5-methyl-2-furaldehyde, dianhydro-α-glucopyranose, a 392 
furanone and 4-acetylfuran accounting for 62% of TQPA (Table 2). These pyrolysis 393 
products are frequently ascribed to SOM with large proportions of microbial biomass 394 
(Sáiz-Jiménez and de Leeuw 1986; Buurman and Roscoe 2011). The small relative 395 
proportions of MAHs and PAHs suggest that BC accounts for only a minor portion of 396 
the SOM in NO-3. This is supported by the low ratios of benzene/alkyl-benzenes and 397 
PAH/alkyl-PAH (Table 2). 398 

In general, the differences in pyrolyzate compositions between NO-samples and 399 
MN-samples were small, yet some are worth mentioning. For sample S1, oxidation with 400 
KMnO4 (which promoted a decreased of 2.3 mg g–1 of OC; Table1) caused an increase 401 
in MAHs (from 16.4% in NO-1 to 30.0% in MN-1) and decrease in carbohydrates (from 402 
30.4% to 18.4%) and lignin (from 7.4% to 3.0 %) (Table 2). These results can be 403 
explained by the partial oxidation of fresh SOM (van Soest and Wine 1986; Tirol-Padre 404 
and Ladha 2004) and the relative enrichment of pyrogenic (Almendros et al. 1990) and 405 
aliphatic SOM (González-Vila and Martín 1985; Almendros et al. 1989). Besides, 406 
permanganate oxidation concentrates pyrolysis products from aromatic structures 407 
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present in humic acids in general (Polvillo et al. 2009), even though cyclization of 408 
aliphatic precursors may play a role as well (González-Vila and Martín 1985). In 409 
sample S2, KMnO4 oxidation (MN-2) (with a smaller decrease of OC; 1.3 mg g–1) 410 
caused a strong decline in carbohydrate products (from 31.5% to 17.4% of TQPA in 411 
NO-2 and MN-2, respectively) and an increase in aliphatic pyrolysis products (sum of 412 
n-alkanes, n-alkenes and other aliphatic compounds from 5.3% in NO-2 to 23.1% in 413 
MN-2). These changes are indicative of selective oxidation of (an unknown proportion 414 
of) the degraded/microbial SOM and the relative enrichment of aliphatic precursors 415 
probably from degraded root components (Kaal and van Mourik 2008). In addition, 416 
MN-2 produced higher amounts of N-containing BC markers, as BC and BN are 417 
relatively resistant against oxidation with this reagent. Skjemstad et al. (2006) found 418 
that KMnO4 may react significantly with BC, but no evidence of this was found here. 419 
Finally, sample MN-3 (with a decrease of 1.7 mg g–1 of its OC content) contains a 420 
smaller proportion of carbohydrates than NO-3 (17.7% vs. 62.2% of TQPA), 421 
confirming that the degraded/microbial carbohydrate fraction is relatively susceptible to 422 
this oxidation agent. 423 

The pyrolyzates obtained from the residues after dichromate oxidation were very 424 
different from those of NO- and MN-samples. The CR-1 sample (27.5 mg g–1 of its OC 425 
was oxidized by dichromate; Table 1) was strongly enriched in aliphatic pyrolysis 426 
products (34% of TQPA), particularly of short-chain (<C18) n-alkanes/n-alkenes 427 
(located on the right side of the broken line in the aliphatic cluster; SE quadrant, Fig. 2) 428 
and branched alkenes, and depleted in lignin-, carbohydrate- and eucalyptus-derived 429 
pyrolysis products in comparison with NO-1 and MN-1. CR-1 also produced the highest 430 
proportions of 3-ring PAHs and higher ratios of benzene/alkyl-benzenes and 431 
PAH/alkyl-PAHs ratios (Table 2), suggesting that a large proportion of the MAHs and 432 
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PAHs from the CR-1 is pyrogenic. These results are indicative of the enrichment of 433 
pyrogenic SOM in the fraction resistant to K2Cr2O7- oxidation. Indeed, the partial 434 
resistance of BC to K2Cr2O7 oxidation is well-documented (Knicker et al. 2007, 2008). 435 
The same studies showed the existence of a K2Cr2O7-resistant alkyl fraction (Knicker et 436 
al. 2007, 2008), which was also supported by the pyrolyzate composition of CR-1. The 437 
increase was also observed for the n-fatty acids (data not shown), which are not 438 
considered part of structural aliphatic plant material. These results support the 439 
hypothesis that the enrichment of aliphatic material in the residual fraction of the 440 
K2Cr2O7 oxidation residues is produced by the hydrophobic nature of these constituents 441 
(Knicker et al. 2007), possibly in combination with chemical recalcitrance of C-C bonds 442 
in methylene chains. Finally, a decrease was observed for the intact terpene-like plant-443 
derived PAHs, clearly showing different origin for the un- and methyl-substituted PAHs 444 
(mainly from BC) and the polyalkyl-substituted PAHs from eucalyptus litter. For 445 
sample CR-2, dichromate oxidation oxidized less OC (12.3 mg g–1 for CR-2) than for 446 
CR-1. It produced a further decrease in the proportion of lignin markers in comparison 447 
with MN-2, and of microbial products such as acetamide and furans, while the BC and 448 
BN fingerprints were relatively intense (e.g. benzene, unsubstituted PAHs, benzene 449 
carbonitriles, isoquinoline and dibenzofuran). The largest proportion of these BC-450 
derived pyrolysis products coincides with the highest macroscopic charcoal content of 451 
sample S2 (Table 1). These results confirm the accumulation of BC and BN in the 452 
residues after K2Cr2O7 oxidation. Similar to CR-1, sample CR-2 was enriched in 453 
aliphatic pyrolysis products. Unexpectedly, significant amounts of the markers of well- 454 
preserved polysaccharides such as levoglucosan, were detected in the pyrolyzates of 455 
CR-2 and CR-3. With the information available at this moment, our best explanation to 456 
this observation is the presence of an uncharred cellulose-containing core (Knicker et al. 457 
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2005) in incompletely charred particles and thereby protected against K2Cr2O7458 
oxidation. Sample CR-3 (in which dichromate caused a loss of 14.3 mg g–1 of OC) was 459 
also enriched in pyrogenic SOM with a high contribution of BN markers, and in an 460 
aliphatic component with particularly high contributions of branched alkenes from an 461 
aliphatic SOM fraction, possibly in part pyrogenic. 462 

463 
3.3. Py-GC/MS: factor analysis 464 

The first four factors (F1-F4) explained 81% of the variation in the Py-GC/MS 465 
dataset, with F1 and F2 combined accounting for 61%. The loadings of the pyrolysis 466 
products, and the scores of the samples analyzed, are shown in F1-F2 factor space (Fig. 467 
2). 468 

n-Alkanes/ n-alkenes are predominantly represented in the SE quadrant with high 469 
positive loadings on F1. Lower loadings on F1 were observed for the n-alkenes >C20470 
than for C10-C20 n-alkenes. Branched alkenes plot between their straight-chain 471 
analogues and the pyrogenic SOM markers, supporting the hypothesis that these 472 
branched alkenes are associated with charred aliphatic precursors (Eckmeier and 473 
Wiesenberg 2009; Kaal and Rumpel 2009). 474 

The N-containing compounds are spread throughout the F1-F2 factor space, 475 
which is a result of the diverse origin of the members of this group. One cluster of N-476 
containing compounds in the NE quadrant is composed of benzonitrile, C1-477 
benzonitriles, benzene dicarbonitriles, cyanobenzoic acid, pyridine, C1-pyridine and 478 
pyridinecarbonitrile, clearly reflecting a pyrogenic origin. Indeed, many non-alkyl-479 
substituted PAHs and dibenzofuran, also associated with BC (Pastorova et al. 1994), 480 
plot in the same region. Chitin-derived N compounds (chitin markers such as 481 
acetamide) and 4-acetylfuran are spread out in the NW quadrant together with microbial 482 
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polysaccharides whilst diketodipyrrole denotes the presence of fresh SOM in the SW 483 
quadrant (see below). Indoles are spread throughout the SW and SE quadrants, which 484 
may be indicative of a mixed origin. 485 

The lignin-derived products (including free phenolic acids), i.e. 4-vinylphenol, 486 
guaiacols and syringols), and catechol occur in the SW quadrant together with an 487 
aliphatic marker of fresh plant material (Al13). Most of the remaining pyrolysis 488 
products in this region are associated with fresh or well-preserved SOM components as 489 
well: phenol and alkylphenols (in this case from lignin), C5:0 and C5:1 alkylnaphthalenes 490 
(from eucalyptus litter), dianhydrorhamnose (from polysaccharides) and diketodipyrrole 491 
and indoles (typical N-containing pyrolysis products of fresh proteinaceous biomass; 492 
Buurman and Roscoe 2011). Levoglucosan plots between fresh OM and charred 493 
material; this may be attributed to the aforementioned protection of cellulose in interior 494 
parts of charcoal particles in dichromate oxidation residues or an unknown alternative 495 
levoglucosan source. The other carbohydrate products are spread along F2 because they 496 
have multiple sources, most of which corresponding to degraded/microbial SOM. The 497 
carbohydrate products of degraded/microbial SOM are probably those that plot in the 498 
NW quadrant: furans (4-acetylfuran, 3/2-furaldehyde and 5-methyl-2-furaldehyde), 499 
glucopyranose, which is microbial marker (Nierop et al. 2005), and acetic acid. This 500 
interpretation is consistent with the presence of the markers of chitin in this region of 501 
factor space. 502 

In summary, F1-F2 separates the pyrolysis products according to their principal 503 
origin. Factor 1 separates the pyrogenic and aliphatic oxidation-resistant SOM fractions 504 
(chemically stable) from the fresh and degraded SOM fractions (chemically labile), 505 
while decomposed and pyrogenic SOM (strongly altered) are separated from fresh and 506 
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oxidation-resistant aliphatics (resembling plant material) according to their loadings on 507 
F2. 508 

The factor scores of the samples can be used to identify the main differences 509 
between the samples analyzed (Fig. 2). As such, the samples with a large fraction of 510 
fresh biomass (NO-1 and MN-1) plot in the SW quadrant. Sample CR-1 plots in the SE 511 
quadrant, as dichromate oxidation eliminated most of the fresh SOM causing the 512 
relative accumulation of aliphatic SOM and weakly charred material. Sample S2 is a 513 
mixture of mainly degraded SOM and BC (with small contributions of fresh and 514 
aliphatic material), which is why NO-2 plots in the NW region, dominated by 515 
degraded/microbial markers, while MN-2 and CR-2 plot in the NE quadrant because of 516 
relative enrichment of BC after chemical treatment. Sample S3 was also rich in 517 
microbial SOM but has a lower content of chemically recalcitrant/hydrophobic aliphatic 518 
SOM and BC, and higher proportion of degraded/microbial SOM; this explains why 519 
NO-3 has a high F2 score while MN-3 and CR-3 plot in the NE quadrant reflecting BC 520 
enrichment after the selective depletion of degraded/microbial SOM. The short distance 521 
in factorial space between MN-3 and CR-3, and the large distance between these 522 
samples and NO-3, suggests a that the abundant degraded/microbial biomass 523 
(carbohydrates, chitin) in this sample is highly susceptible to permanganate and 524 
dichromate treatment. 525 

From these results some inferences on the effects of the oxidation agents on SOM 526 
composition can be made. First, the minor differences between NO-1 and MN-1 can be 527 
explained by the relatively small microbial contribution to sample S1. In contrast, 528 
K2Cr2O7 thoroughly modified the pyrolysis fingerprint obtained from the residues of S1 529 
by eliminating lignin, polysaccharides and terpenes, and relative enrichment of aliphatic 530 
and pyrogenic structures. In the older samples, where the aliphatic fraction is less 531 
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dominant while that of degraded/microbial and pyrogenic SOM prevail, chemically 532 
oxidized samples (MN-2, MN-3, CR-2 and CR-3) had positive scores on F1 and F2 533 
mainly because both oxidants concentrate BC, with K2Cr2O7 being the stronger oxidant. 534 

535 
3.4. Solid- state 13C NMR spectroscopy: results and comparison with Py-GC/MS 536 

Samples are compared by relative intensity of the chemical shift regions. The 537 
spectrum of NO-1 (Fig. 3) was characterized by a dominant signal at 21 ppm and a 538 
shoulder at 29 ppm (combined 29%, Table 3) from alkyl C, which can be ascribed to 539 
aliphatic structures in fatty acids, lipids, waxes, cutan, suberan, cutin and suberin 540 
(Tegelaar et al. 1989) but also peptide structures and short alkyl side-chains. In the O-541 
alkyl C region (45–110 ppm) a broad peak at 75 ppm (with a contribution of 29%) was 542 
detected, which is generally attributed to cellulose, hemicelluloses and pectins (Gramble 543 
et al. 1994; Kögel-Knabner 1997). The peak at 55 ppm probably corresponds to 544 
methoxyl groups in lignin structures (Kögel-Knabner 1997) but can also have 545 
contributions of N-alkyl from amino sugars and peptides. The O-substituted aromatic C 546 
between 140- 160 ppm may derive from lignin and oxidized BC (Knicker et al. 2005). 547 
Resonance lines of aromatic C-H groups are detected in the chemical shift region 548 
between 110 ppm and 140 ppm (14%) (Knicker and Lüdemann 1995). The chemical 549 
shifts of carbon in carboxylic acids, esters and amides fall within the range between 160 550 
ppm and 220 ppm and represents 15% of the total 13C intensity. There are minor 551 
contributions of carbonyl or aldehydes, giving signals between 220- 245 ppm. 552 

The NMR spectra of NO-2 and NO-3 differ considerably from that of NO-1. In 553 
NO-2, the O-alkyl C fraction has the highest values (26%), followed by alkyl C, 554 
carboxyl/amide C and aromatic C. Considering that there is no clear signal in the O-555 
substituted C region (from 140– 160 ppm), this spectrum can be best explained with a 556 
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considerable contribution of oxidized charcoal. NO-3 presented the highest contribution 557 
of non-lignin aromatic fraction, probably BC-derived (31%) and a large signal of 558 
carboxyl/amide C (26%), which likely originates from microbial compounds. 559 

The chemical oxidants had several effects on the NMR signal obtained from 560 
sample S1. After the KMnO4 treatment (MN-1), and comparable to results from Py-GC-561 
MS, a spectrum similar to that of NO-1 but with slightly higher relative intensities in the 562 
alkyl C (34%) region was acquired, confirming other 13C NMR studies (Tirol-Padre and 563 
Ladha 2004) in that cellulose is largely resistant to permanganate oxidation. Dichromate 564 
oxidation of sample S1 caused an increase of the relative contribution of aromatic C 565 
(sum of aromatic C-H and aromatic C-O-R) (from 17% in NO-1 to 25% in CR-1) with a 566 
concomitant depletion of methoxyl C/N-alkyl C and O-alkyl C (see Table 3). Note that 567 
differences between NO-1 and CR-1 by NMR are smaller than observed by Py-GC/MS. 568 
This indicates that, as Py-GC/MS data seem to be best supported, NMR results must be 569 
taken carefully. 570 

The spectrum of CR-2 showed the highest intensity in the chemical shift region of 571 
aromatic C (45%). Considering the absence of methoxyl C signal, the width of the 572 
signal band (from 90 to 140 ppm) and the composition of the pyrolysis fingerprint, this 573 
aromatic signal originates from BC (see also Skjemstad et al. 1996; Knicker et al. 574 
2005). Moreover, the contribution of alkyl C was strongly reduced upon K2Cr2O7575 
oxidation (10% in CR-2). 576 

In summary, in NO samples, 13C NMR spectroscopy shows a relative decrease 577 
with depth of aliphatic C, carbohydrates and lignin moieties and a relative increase with 578 
depth of a non-lignin aromatic fraction (probably BC) and carboxyl/amide C (possibly 579 
oxidized BC in combination with N-rich microbial SOM), which is in agreement with 580 
Py-GC/MS data. With regard to the effects of chemical oxidation, both Py-GC/MS and 581 

Page 24 of 48

http://mc.manuscriptcentral.com/csiro-sr

Soil Research



For Review Only

25

13C NMR spectroscopy showed a decrease of easily degradable SOM (mainly composed 582 
of fresh lignin and polysaccharides) and an increase of the aromatic fraction. Besides, 583 
lignin was slightly oxidized by KMnO4 contrary to that observed by previous studies 584 
(van Soest and Wine 1986; Tyrol-Padre and Ladha 2004; Skjemstad et al. 2006) where 585 
lignin was strongly degraded. The increase of aliphatic moieties upon chemical 586 
oxidation, as suggested by Py-GC/MS, was also observed by NMR spectroscopy in the 587 
superficial sample S1 although it strongly decreased in S2. However here one has to 588 
bear in mind that the alkyl C region does not only contain intensity of lipids but have 589 
considerable contributions of peptide structures or short alkyl side-chains (such as C3-590 
side chains in lignin). Those moieties may be expected to be relatively susceptible to 591 
oxidation resulting in a relative depletion of the signal intensity in the alkyl C region 592 
even though longer chain aliphatic components may have experienced a relative 593 
enrichment. 594 

595 
4. Conclusions 596 

The molecular study of SOM fractions of three horizons of a colluvial soil 597 
representing ages of 100, 5,000 and 9,700 yr, before and after treatment with KMnO4598 
and K2Cr2O7, provided detailed information on SOM composition (with regard to 599 
source and degradation/preservation state) and the behaviour of different SOM fractions 600 
towards these oxidation agents. Eucalyptus-derived terpenes and sesquiterpenes were 601 
only present in the youngest sample and resisted KMnO4 but not K2Cr2O7 oxidation. 602 
Microbial/degraded SOM, mostly composed of carbohydrates and chitin, was especially 603 
abundant in the deeper layers of the soil and appeared highly susceptible to both 604 
KMnO4 and K2Cr2O7 oxidation. As such, KMnO4 could be used as an indication of the 605 
abundance of microbial biomass. Both oxidants, K2CR2O7 in particular, concentrated 606 
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two other SOM fractions abundant in this soil: aliphatic and pyrogenic material (BC), 607 
the latter having a significant amount of N-containing functional groups (BN). These 608 
fractions probably survived K2Cr2O7 oxidation because of the chemical stability of 609 
polyaromatic moieties (BC) and resistant C-C bonds in methylene chains and/or 610 
hydrophobicity of the aliphatic fraction (which is probably root-derived). It appeared 611 
that especially K2Cr2O7 oxidation efficiently concentrates BC and oxidation-resistant 612 
aliphatic structures from other SOM sources, and that in combination with Py-GC/MS it 613 
is possible to distinguish between these sources (yet not quantitatively) while 13C NMR 614 
may assist in obtaining estimations of their relative proportions. Finally, BC isolation by 615 
dichromate oxidation and posterior quantification through total digestion (Knicker et al., 616 
2007) is discouraged as a significant aliphatic fraction resists dichromate producing an 617 
overestimation of its contents. 618 
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Figure captions 855 
Fig. 1. Example of pyrograms from permanganate- and dichromate-oxidation resistant 856 
soil organic matter, and that from non-oxidized samples. 857 
Fig. 2. Projection of the factor loadings of the pyrolysis products and sample scores in 858 
F1-F2 space. The corresponding pyrolysis product codes are given in Appendix A. 859 
Fig. 3. Solid- state 13C NMR spectra of the NaOH-extracts of untreated samples (NO-1, 860 
NO-2 and NO-3) and the NaOH-extracts of potassium permanganate and dichromate 861 
oxidized residues of S1 sample (MN-1 and CR-1) and the NaOH-extract of the 862 
potassium dichromate oxidized residues of S2 sample (CR-2). 863 
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Fig. 1 

NO-1: toluene, guaiacol, 4-vinyl guaiacol, C4:1 naphthalene compound, C4-naphthalene, hexadecanoic acid (C16 n-fatty acid) and octadecanoic acid (C18 n-fatty acid), and 
branched alkene. MN-1: toluene, methyl phenol, 2-ethyl 3,4-dimethyl phenol, C4:1 naphthalene compound, levoglucosan, C3-naphthalene, C16 n-fatty acid and C18 n-fatty acid, 
and series of pairs of n-alkanes/alkenes (*). CR-1: benzonitrile, ethyl phenol, naphthalene, biphenyl, fluorene and regular series of pairs of n-alkanes/alkenes (*) and n-fatty 
acids (†). NO-2: acetic acid, methyl furaldehyde, phenol, methyl phenol, methyl benzonitrile, methyl indene, biphenyl, cyanobenzoic acid, diketodipyrrole and sterol 
compound (preg-4-ene 3,20-dione compound). MN-2: branched alkenes, resorcinol, benzonitrile, phenyl pyridine, C2 naphthalene, C16 n-fatty acid and C18 n-fatty acid and 
regular series of pairs of n-alkanes/alkenes (*). CR-2: pyridine carbonitrile, methyl benzonitrile, benzenedicarbodinitrile, picolinamide, anthracene, methyl fluorene, 
cyanobenzoic acid, isoquinoline, C16 n-fatty acid and C18 n-fatty acid and regular series of pairs of n-alkanes/alkenes (*). NO-3: acetic acid, furaldehyde, methyl furaldehyde, 
levoglucosenone, dianhydro-alpha, D-glucopyranose, C4-naphthalene and C16 n-fatty acid. MN-3: pyridine, pyrrole, styrene, benzonitrile, benzenedicarbodinitrile, 
cyanobenzoic acid and C16 n-fatty acid and C18 n-fatty acid. CR-3: methyl pyridine, picolinamide, biphenyl, C16 n-fatty acid and C18 n-fatty acid and a set of unidentified 
compounds. 
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Fig.3 
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Table 1. General information of samples studied from soil PRD-4. OCper = 

permanganate-oxidizable organic C, OCdichro = dichromate-oxidizable C. 

Sample S1 S2 S3 
depth 5-10 cm 95-100 cm 190-195 cm 
conventional 14C age BP 104.3 ± 0.4 pMC (present) 4090 ± 30 9760 ± 50 
radiocarbon sample code Ua-34719 β-299230 β-240963 
C [mg g-1 soil] 62.3 ± 0.6 36.7 ± 0.3 42.9 ± 0.4 
OCper [mg g-1 soil] 2.3 ± 0.1 1.3 ± 0.1 1.7 ± 0.1 
OCdichro [mg g-1 soil] 27.5 ± 0.6 12.3 ± 0.3 14.3 ± 0.1 
C/N (atomic) [-] 15.9 24.4 23.9
pH-H2O [-] 4.6 5.0 5.2 
charcoal >2 mm [mg g-1 soil] 0.03 1.97 0.07 
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Table 2. Relative contributions of pyrolysis product groups and benzene/alkylbenzenes and PAH/alkyl-PAHs ratios of total quantified peak area 

(% TQPA). 

total 
n-enes

n-
enes 
>C

18

n-enes 
C

18
-C

10

total 
n-

anes

n-anes 
>C

18

n-anes 
C

18
-

C
10

other 
aliph

+ phs
C

2
-

ph
total 
Lg

total 
MAHs

alkyl-
B

total 
PAHs

ITPB-
PAHs

BC-
PAHs

total 
N BN total 

Ps

well 
pres 
Ps

degr 
Ps U

benz/ 
alkyl-
benz

PAH/ 
alkyl-
PAHs

NO-1 TQPA 
% 1.7 0.9 0.8 1.9 0.8 1.1 1.4 16.6 1.8 7.4 16.4 6.6 10.6 10.1 0.5 10.7 3.6 30.4 17.8 12.4 2.5 0.2 0.02

%* 51.4 48.6 40.1 59.9 40.0 95.6 4.4 33.2 58.4 40.7
MN-
1

TQPA 
% 1.6 0.5 1.1 2.0 0.3 1.7 4.1 14.1 1.9 3.0 30.0 13.4 12.3 11.4 1.0 11.7 4.8 18.4 10.4 7.7 2.7 0.2 0.04

%* 33.6 66.4 13.4 86.6 44.7 92.2 7.8 40.7 56.6 41.7

CR-1 TQPA 
% 9.3 3.0 6.3 10.2 3.3 6.9 14.6 10.9 1.4 1.0 26.3 4.6 4.8 2.2 2.6 15.8 7.4 6.4 0.8 5.4 0.7 1.2 0.60

%* 32.2 67.8 32.2 67.8 17.5 45.7 54.3 47.0 12.4 84.7

NO-2 TQPA 
% 1.8 0.6 1.2 1.8 0.6 1.2 1.7 13.7 0.8 1.8 20.4 4.9 5.7 4.2 1.5 20.9 11.9 31.5 4.0 27.1 0.7 0.9 0.21

%* 34.2 65.8 34.1 65.9 23.8 73.0 27.0 57.1 12.6 86.3
MN-
2

TQPA 
% 2.5 0.7 1.9 3.2 0.5 2.7 17.4 11.6 0.9 1.4 20.4 3.6 3.3 2.2 1.2 22.2 13.9 17.4 3.3 13.6 0.5 1.3 0.26

%* 26.0 74.0 16.7 83.3 17.5 65.0 35.0 62.6 18.7 77.9

CR-2 TQPA 
% 4.6 1.6 3.0 2.5 0.9 1.5 7.0 4.8 0.5 0.8 16.9 2.0 3.4 0.9 2.5 32.2 23.8 27.6 15.7 11.5 0.2 3.9 1.31

%* 35.3 64.7 37.7 62.3 11.6 25.3 74.7 74.1 57.0 41.8

NO-3 TQPA 
% 0.9 0.3 0.5 1.0 0.5 0.5 1.5 6.6 0.0 0.7 10.3 2.5 1.4 0.9 0.5 15.0 9.0 62.2 2.7 59.2 0.3 1.3 0.35

%* 36.6 63.4 47.3 52.7 24.0 65.0 35.0 60.2 4.4 95.2
MN-
3

TQPA 
% 2.7 0.8 1.9 2.9 1.2 1.7 9.2 7.7 0.0 1.2 17.5 4.1 2.4 1.4 1.0 38.3 28.9 17.7 1.1 16.0 0.4 0.8 0.34

%* 30.2 69.8 42.0 58.0 23.2 57.9 42.1 75.5 6.5 90.7

CR-3 TQPA 
% 3.5 1.2 2.3 2.6 1.1 1.5 10.7 5.0 0.0 2.2 22.3 2.7 2.5 0.7 1.7 22.1 16.5 28.8 16.5 11.4 0.3 2.7 0.89

%* 35.0 65.0 41.1 58.9 11.9 30.0 70.0 74.8 57.5 39.6
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*relative proportions within main group (n-alkanes/ enes, fatty acids, MAHs, PAHs, nitrogen compounds and polysaccharides). In bold the main groups.

+the aliphatic compound with mass 83+280 (likely associated to fresh OM) was not added because is not indicative of the charring effect. 

Total n-enes: total n-alkenes; n-enes >C18: long-chain n-alkenes (>C18); n-enes C18-C10: short-chain n-alkenes (C18-C10); total n-anes: total n-alkanes; n-anes >C18: long-chain 
n-alkanes (>C18); n-anes C18-C10: short-chain n-alkanes (C18-C10); other aliph: other aliphatic compounds (predominantly branched alkenes); phs: phenols; total Lg: total lignin 
markers; total MAHs: total Monocyclic Aromatics Hydrocarbons; alkyl-B: alkyl-benzenes; total PAHs: total Polycyclic Aromatic Hydrocarbons; ITPB-PAHs: intact terpene-
like plant biomass Polycyclic Aromatic Hydrocarbons; BC-PAHs: black carbon derived Polycyclic Aromatic Hydrocarbons; total N: total nitrogen compounds; BN: black 
carbon derived nitrogen compounds; total Ps: total polysaccharides; well pres Ps: well preserved polysaccharides; degr Ps: degraded polysaccharides; U: unidentified 
compounds; benz/alkyl-benz: benzene/alkyl-benzenes ratio and PAHs/alkyl-PAHs: total Polycyclic Aromatic Hydrocarbons/ alkylated Polycyclic Aromatic Hydrocarbons 
ratio. 
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Table 3. Chemical shift region distribution (relative proportions, %) obtained 

from solid-state 
13

C NMR. 

Alkyl C  

(0-45 ppm) 

N-alkyl C,  

methoxyl C  

(45-60 ppm) 

O-alkyl C 

(60-110 ppm) 

 C-H Aromatic C 

(110-140 ppm) 

COR Aromatic C 

(140-160 ppm) 

Carboxyl C, 

amide C 

(160-220 ppm)

Ketone C, 

aldehyde C 

(220-245 ppm) 

NO-1 29 9 29 14 3 15 1 

MN-1 34 8 26 11 2 17 1 

CR-1 29 4 22 19 6 20 0 

NO-2 23 5 26 19 1 21 4 

CR-2 10 2 16 42 3 23 4 

NO-3 19 5 11 31 5 26 3 
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Appendix A. Pyrolysis product list, molecular mass (M+), fragment ions used for 

quantification and retention times relative to guaiacol (RT). 

code Name M+ mass RT/guaiacol 

10:1 - 28:1 C10-28 alkene 140 - 392 55+69 0.832 - 3.965 

10:0 - 28:0 C10-28 alkane 142 - 394 57+71 0.857 - 3.969 

Al1 aliphatic compound n.d. 55+70 0.549 

Al2 alkane/anal or methylated alkanol n.d. 57+69+70 1.157 

Al3 branched alkene n.d. 55+69 1.160 

Al4 branched alkene n.d. 55+69 1.573 

Al5 branched alkene n.d. 55+69 1.590 

Al6 branched alkene n.d. 55+69 1.610 

Al7 alkene n.d. 55+69 1.901 

Al8 alkene n.d. 55+69 2.301 

Al9 branched alkene n.d. 55+69 2.428 

Al10 branched alkene n.d. 55+69 2.941 

Al11 alkene n.d. 55+69 3.069 

Al12 branched alkene n.d. 55+69 3.272 

Al13 aliphatic compound 83+280 83+280 3.342 

Al14 branched alkene n.d. 55+69 3.565 

Al15 branched alkene n.d. 55+69 3.799 

Ph1 phenol 94 66+94 0.782 

Ph2 acetophenone 120 77+105 0.937 

Ph3 C1-phenol 108 107+108 0.941 

Ph4 C1-phenol 108 107+108 0.991 

Ph5 C2-phenol 122 107+122 1.158 

Ph6 C2-phenol 122 107+122 1.202 

Ph7 catechol 110 110+64 1.348 

Lg1 guaiacol 124 109+124 1.000 

Lg2 4-methylguaiacol 138 123+138 1.245 

Lg3 4-vinylphenol 120 120+91 1.326 

Lg4 4-vinylguaiacol 150 135+150 1.519 

Lg5 syringol 154 154+139 1.585 

Lg6 4-methylsyringol 168 153+168 1.798 

Lg7 C3-guaiacol 196 149+164 1.815 

Lg8 Propenoic acid, 3-(4-methoxyphenol) 178 161+178 3.296 

Ar1 benzene 78 78 0.347 

Ar2 toluene 92 91+92 0.431 

Ar3 C2-benzene ethyl benzene 106 91+106 0.559 

Ar4 C2-benzene dimethyl benzene 106 91+106 0.574 

Ar5 styrene 104 78+104 0.605 

Ar6 C2-benzene dimethyl benzene 106 91+106 0.612 

Ar7 C3-benzene 120 105+120 0.815 

Ar8 C4-benzene 134 91+119 0.887 

Ar9 C5-benzene (dimethyl-methylethyl) 148 133 1.160 

Ar10 C4:1-benzene (α-dimethylstyrene) 132 132+117 1.026 

Ar11 C7-benzene 176 91+92 1.662 

Ar12 branched alkyl-benzene 148 91+119 1.194 
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Pa1 C1-indene 130 130+115 1.146 

Pa2 naphthalene 128 128 1.231 

Pa3 C1-naphathalene 142 141+142 1.491 

Pa4 C1-naphathalene 142 141+142 1.523 

Pa5 biphenyl 154 154 1.668 

Pa6 C3-indene 158 143+158 1.723 

Pa7 C2-naphthalene 156 141+156 1.772 

Pa8 C3-naphthalene 170 155+170 2.052 

Pa9 C3-naphthalene 170 155+170 2.056 

Pa10 Fluorene 166 165+166 2.090 

Pa11 C3-naphthalene 170 155+170 2.103 

Pa12 C1-Fluorene 180 165+180 2.314 

Pa13 9H-Fluoren-9-one 180 152+180 2.353 

Pa14 C4-naphthalene 184 169+184 2.382 

Pa15 phenanthrene 178 178 2.442 

Pa16 anthracene 178 178 2.461 

Pa17 C5-naphthalene 198 183+198 2.470 

Pa18 C5-naphthalene (or C2-azulene) 198 183+198 2.643 

Pa19 C5:1-naphtalene 202 159+145 1.649 

Pa20 C5-naphtalene 204 147+162 1.739 

Pa21 C5:1-naphtalene 202 159+202 1.767 

Pa22 C5-naphtalene 204 91+105 1.801 

Pa23 C5-naphtalene 204 105+133 1.850 

Pa24 C5-naphtalene 204 91+105 1.853 

Pa25 C5-naphtalene 204 91+105 1.928 

Pa26 C5-naphtalene 204 91+105 1.974 

Pa27 C5-naphtalene 204 173+189 1.987 

Pa28 C4-naphtalene 186 143+171 2.000 

Pa29 C5:1-naphtalene 202 159+180 2.037 

Pa30 C5:1-naphtalene 202 146+133 2.143 

Pa31 C5:1-naphtalene 202 159+202 2.211 

N1 pyridine 79 52+79 0.396 

N2 pyrrole 67 67 0.402 

N3 acetamide n.d 59 0.421 

N4 C1-pyrrole 81 80+81 0.501 

N5 C1-pyrrole 81 80+81 0.521 

N6 C1-pyridine 93 66+93 0.543 

N7 benzonitrile 103 76+103 0.749 

N8 pyridinecarbonitrile 104 104+77 0.887 

N9 C1-benzonitrile 117 90+117 1.011 

N10 C1-benzonitrile 117 90+117 1.067 

N11 1,3-benzenedicarbonitrile 128 101+128 1.302 

N12 picolinamide 122 79+122 1.320 

N13 1,3-benzenedicarbonitrile 128 101+128 1.322 

N14 isoquinoline 129 129 1.334 

N15 indole 117 90+117 1.457 

N16 phthalamic acid 104 104+76 1.457 

N17 1,3-benzenedicarbonitrile 128 101+128 1.463 

N18 C1-indole 131 130+131 1.664 

N19 C1-pthalimide 161 161+76 1.719 
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N20 cyanobenzoic acid 147 76+147 1.827 

N21 phenylpyridine 155 154+155 1.833 

N22 chitin-derived compound 167 125+167 1.883 

N23 diketodipyrrole 186 93+186 2.280 

N24 diketopiperazine compound 194 70+194 2.646 

Ps1 acetic acid 60 60 0.203 

Ps2 furanone compound 84 54+84 0.434 

Ps3 3/2-furaldehyde 96 95+96 0.483 

Ps4 acetylfuran 110 95+110 0.613 

Ps5 5-methyl-2-furaldehyde 110 109+110 0.686 

Ps6 4-hydroxy-5,6-dihydro-(2H)-pyranone 114 58+114 0.755 

Ps7 dianhydrorhamnose  128 113+128 0.861 

Ps8 cyclopentenedione compound 112  69+112 0.869 

Ps9 levoglucosenone 126 68+98 0.989 

Ps10 3-hydroxy-2-methyl-4H-pyran-4-one 126 71+126 1.046 

Ps11 dianhydro-α,D-glucopyranose 144 57+69 1.263 

Ps12 dibenzofuran 168 168+139 1.953 

Ps13 levoglucosan 162 60+73 2.123 

U1 alpha phellandrene 136 91+93+136 0.827 

U2 U2 (possibly methylcyclohexane) 96 67+96 0.710 

U3 U3 157 117+157 1.871 

U4 U4 200 185+200 2.186 

U5 U5 212 197+202 2.247 

U6 U6 203 203 3.152 
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