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A quantum point contact (QPC) is a very basic nano-electronic device: a

short and narrow transport channel between two electron reservoirs. In clean

channels electron transport is ballistic and the conductance G is then quantised

as a function of channel width1,2 with plateaus at integer multiples of 2e2/h (e

is the electron charge and h Planck’s constant). This can be understood in a

picture where the electron states are propagating waves, without need to ac-

count for electron-electron interactions. Quantised conductance could thus be

the signature of ultimate control over nanoscale electron transport. However,

even studies with the cleanest QPCs generically show significant anomalies on

the quantised conductance traces and there is consensus that these result from

electron many-body effects3,4. Despite extensive experimental and theoretical

studies4–11 understanding of these anomalies is an open problem. We report

evidence that the many-body effects have their origin in one or more sponta-

neously localised states that emerge from Friedel oscillations in the QPC chan-

nel. Kondo physics will then also contribute to the formation of the many-body

state with Kondo signatures that reflect the parity of the number of localised

states. Evidence comes from experiments with length-tunable QPCs that show

a periodic modulation of the many-body physics with Kondo signatures of al-

ternating parity. Our results are of importance for assessing the role of QPCs

in more complex hybrid devices12,13 and proposals for spintronic and quantum

information applications14,15. In addition, our results show that tunable QPCs

offer a rich platform for investigating many-body effects in nanoscale systems,

with the ability to probe such physics at the level of a single site.

There are two signatures of many-body physics that are generically observed for a wide

variety of QPCs, which includes systems in GaAs3,9, Si16, graphene17, and both for electron

and hole transport9,16. First, the quantised conductance traces often show the so-called

0.7 anomaly: an additional small plateau at about 0.7 · (2e2/h). Second, as a function of

bias voltage across the channel G typically shows a peak around zero bias (hence named

Zero-Bias Anomaly, ZBA), mostly below the first quantised plateau. The experimental

observation5 that the ZBA and the 0.7 anomaly had similarities with the Kondo effect for

quantum dots (transport through a single localised electron state18,19), inspired theoretical

work6,7 that proposed that electron many-body physics could lead to localised electrons in
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the centre of the QPC. This is a remarkable phenomenon since a QPC is a fully open quantum

system. To avoid confusion with localisation by an atomic impurity or disordered potential

these many-body states are coined self-consistent or emergent localised states (ELSs).

This theoretical work6,7 developed the picture that the many-body effects in QPC chan-

nels are intimately related with the occurrence of a Friedel oscillation –an oscillation in the

electron charge density that occurs when electron waves get reflected in a partially open QPC

channel– which gets enhanced into an ELS with about one electron of charge due to Coulomb

repulsion and exchange interactions between electrons. This reduces the conductance and

can explain the 0.7 anomaly6. However, transport through such a state can be enhanced

by the Kondo effect at temperatures below a typical Kondo temperature TK . This appears

as a ZBA and also moves the 0.7 plateau towards unity (in units of 2e2/h), consistent with

experiments. This theoretical work6,7 also predicted that, depending on parameters, a pair

of such ELSs may emerge in the channel, resulting in a double-peak ZBA (as observed in

double quantum dots20 due to the two-impurity Kondo effect21–26). To date no such double-

peak ZBAs were reported for QPCs (Supplementary Information Sec. 3). We report here

the observation of such double-peak ZBAs in a large number of conventinal QPCs (with 2

gate fingers as in Fig. 1a, denoted as QPC2F). We also introduce a new type of QPC which

has a tunable channel length (with 6 gate fingers as in Fig. 2a, denoted as QPC6F). In

these devices the 0.7 anomaly and ZBA show a periodic modulation as a function of QPC

length, which we attribute to an increasing number of ELSs. Thus, as the number of ELSs

increases with QPC length, its parity alternates, giving rise to modulation between odd

and even-impurity Kondo effects, and, as a result, between single- and double-peak ZBA.

In addition, the 0.7 anomaly shows a periodic modulation because the enhancement of the

0.7 feature towards unity conductance depends on both the parity and the parameters of

the Kondo system such as TK , and these are both modulated as a function of QPC length.

The QPCs were realised by locally depleting the two-dimensional electron gas (2DEG)

below the surface of a GaAs/AlGaAs heterostructure (for details see below, Methods). In

the standard approach, applying negative voltage to two metallic gate fingers on the surface

of such material (Fig. 1a) induces an electrostatic potential barrier between a source and

drain reservoir in the 2DEG, with a small tunable opening in the form of a saddle-point

potential (Fig. 2b). Such devices with two gate fingers (QPC2F) have a fixed channel length

L. The novel devices with six gate fingers (QPC6F, see Fig. 2a) have a channel with tunable
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length Leff . We focus on the differential conductance G, which is obtained by applying and

measuring voltage and current signals as in the simplified scheme in Fig. 1a (for details see

below, Methods). Results for G at zero bias voltage Vsd will be called linear conductance,

while results for G as a function of Vsd (bias spectroscopy) will be called nonlinear conduc-

tance. Unless stated otherwise, we present data taken at a temperature T of 80 mK and

zero magnetic field.

The signatures of a pair of ELSs are more likely to be observed on shorter QPCs7. We

thus focussed on QPC2F of lithographic length L = 200 nm (and width W = 350 nm),

shorter than most QPCs in the literature. We searched for double-peak ZBAs in a set

of 80 QPC2F (realised in two different wafer materials, different fabrication runs, different

cool-downs, and with or without gate-biased cool-down, see Methods) and found them in

about half the studied devices. The ubiquity of the phenomenon, and the fact that such

double-peak ZBAs were persistently observed in the same devices over different cool-downs,

implies that it is a generic effect and not due to a fortuitous impurity nearby. Figure 1

presents data from two QPC2F to illustrate that the signatures of many-body physics show

qualitatively similar features, though with significant device-to-device variation (while there

is no strong variation in the manifestation of non-interacting electron physics such as the

quantised conductance8,10). Figures 1b,c present measurements of the linear conductance.

In addition to the quantised conductance plateaus at integer multiples of 2e2/h, the trace

in panel c shows an additional shoulder at G ≈ 0.7 · (2e2/h) (the 0.7 anomaly, also observed

for the device of panel b at higher temperatures). Results for the nonlinear conductance for

these same devices are presented in Fig. 1d,e. Most traces between 0 and 1 · (2e2/h) show

a single-peak ZBA (the enhancement of conductance within ±0.5 mV around Vsd = 0 mV).

However, the red traces mark examples where the ZBA appears with double-peak character

(the asymmetric character of these nonlinear conductance traces will be discussed below).

For double-peak ZBAs just below 1 · (2e2/h) we typically observe a peak splitting that

increases with conductance.

The theoretical work7 predicted that the Friedel oscillation from screening the QPC

potential creates two electron puddles on the two sides of the QPC. For most QPC geometries

it showed that lowering the potential by gate voltage gives a single ELS in the center of

the QPC since the Friedel oscillations from both sides connect. However, for short QPCs

(for L similar to the Fermi wavelength) the two ELSs remain intact as the potential is
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lowered. This gives the physics of a two-impurity Kondo system and, as the coupling between

them gets stronger with increasing conductance the ZBA splits22–26. At lower conductance

values, the ZBA may appear as single- or double-peak depending on the ratio between the

Kondo temperature of the two ELSs and the strength of interaction between them. While

this is fully consistent with our observations (Fig. 1d,e), the coupling between these ELSs

and the resulting splitting of the ZBA depends very sensitively on parameters and the

always present remote imperfections (Supplementary Information Sec. 4), and this leads to

significant variability among devices. Thus, a more stringent test of this picture is possible

with QPCs whose parameters can be modified continuously.

We addressed this by measuring a set of 8 QPC6F devices, for which we could gradu-

ally change the effective length Leff of the saddle-point potential. These devices showed

qualitatively identical behavior with oscillatory signature of the 0.7 anomaly and regular

modulation between single- and double-peak ZBAs with increasing Leff (Fig. 3b,c). These

reproducible observations on 8 QPC6F (and for different cool-downs of one QPC6F, Supple-

mentary Information Sec. 10) are consistent with the emergence of an increasing number of

ELSs due to many-body physics that generically occurs, also in ultra-clean QPC channels.

Figure 2a depicts the QPC6F devices, for which the channel length Leff could be tuned

continuously. These were operated with the central gate voltage Vg1 more negative than

the side gate voltage Vg2 to avoid quantum dot formation. We analyzed that in this regime

the gates induce a smooth saddle-point potential, despite the narrow gaps between the

gate fingers. The effective length Leff is set by Vg2/Vg1 (short for Vg2/Vg1 near 0, long for

Vg2/Vg1 near 1, see Supplementary Information Sec. 5 for details). Our devices could thus

be controlled to have Leff from about 186 nm to 608 nm. Making Vg1 less negative, at fixed

ratio Vg2/Vg1, opens the QPC while keeping the length unchanged.

All QPC6F showed clear quantised conductance plateaus. Figure 2c shows for one device

how the “0.7 anomaly” appears as a smaller plateau in the range 0.7 to 0.9 · (2e2/h), which

shows a dependence on Leff with 3 periods of modulation for the range Leff = 186 nm to

608 nm. The nonlinear conductance measurements from this device in Fig. 3a show how the

ZBAs appear for Leff = 286 nm. At fixed length, the ZBAs alternate between single-peak

and double-peak character when opening the QPC, again with increased splitting for the

double-peak ZBA as the conductance approaches 1 · (2e2/h). The overall appearance of the

ZBAs is very similar that of fixed-length QPC2F (Fig. 1d,e). Figure 3b shows that there
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is also a modulation between single- and double-peak character when increasing Leff at a

fixed conductance level (as evaluated immediately next to the ZBA). Figure 3c plots again

the data of Fig. 2c, with colored symbols on the traces that mark whether the ZBA at

that point has single- or double-peak character (in some cases we find ZBAs that are best

described as triple-peak). The modulation between single-peak and double-peak ZBA as a

function of Leff also shows about 3 periods, and is clearly correlated with the modulation

of the 0.7 anomaly.

To critically check the relevance of two-impurity Kondo physics for our observations we

measured the temperature and magnetic-field dependence of double-peak ZBAs and compare

this with theory for this system. We obtained the theoretical results from calculating the

current through a two-impurity Anderson model. For this model one expects22–26 a current

that gets enhanced by the Kondo effect when lowering the temperature from above to below

the Kondo temperature. Depending on the strength of the effective coupling between the

impurities relative to the Kondo temperature the associated ZBA has either single- or double-

peak character.

Figure 4a depicts how the nonlinear conductance develops from a background conductance

of 0.75 · (2e2/h) at 3000 mK into a double-peak ZBA with peak values up to about 0.90 ·
(2e2/h) as the temperature is decreased (device of Fig. 3, Supplementary Fig. S9 shows

temperature dependence of the linear conductance). The conductance between the peaks

(the linear conductance) has a nonmonotonic temperature dependence (Fig. 4b) that is

characteristic for two-impurity Anderson physics27. Insets in Fig. 4a,b depict for comparison

results of the theoretical calculations and show good qualitative agreement. (Note that

this description only calculates the Kondo contribution to the current which yields zero

current at high temperatures due to Coulomb blockade, while the ELSs in QPCs are not

expected to show strong Coulomb blockade at high temperatures but a finite background

conductance, as observed.) The theoretical traces are calculated for two impurity sites

with unequal coupling strength Γ to a neighboring electron reservoir, and accordingly an

unequal Kondo temperature TK (the plots are presented on the energy scale given by the

highest Kondo temperature of the two sites). The asymmetry between the two Γ parameters

gives asymmetric double-peak ZBAs, with the minimum conductance between the peaks

not exactly at Vsd = 0, very similar to the experimentally observed double-peak ZBAs. We

should expect such asymmetries between the two Γ parameters since the Γ values depend
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exponentially on the coupling between the ELSs and the electron reservoirs (Supplementary

Information Sec. 4).

Figure 4c presents magnetic-field dependence of this double-peak ZBA. Theoretically,

one expects different evolutions with magnetic field depending on the relative magnitude

of parameters, such as the Kondo temperature of each impurity, the coupling between the

impurities, the asymmetry between the impurities and temperature. The possibilities in-

clude: each peak splits into two sub-peaks, the peaks get closer and merge, the peaks move

closer and cross each other, etc. We see such diverse dependence on magnetic field for the

different operation points of a device, and for different devices. Figure 4c shows one exam-

ple with a comparison to the theoretical expectations (other examples are in Supplementary

Information Sec. 8). We see again good qualitative agreement between the theory of the

two-impurity model and the experimental observations.

From the width of the peaks in Fig. 4a one can estimate the Kondo temperature TK ,

while the splitting between the peaks is then equal to twice the effective coupling between

the two ELSs. This coupling is here ∼0.2 meV (typical value for the larger data set behind

Fig. 3c). This should be consistent with the temperature where the double-peak character of

the ZBA is no longer resolved (and the temperature where the nonmonotonic temperature

dependence of conductance has a maximum27). In Fig. 4a this occurs for ∼800 mK (i.e.

∼0.1 meV). This is in reasonable agreement with the distance between the peaks. The fact

that it is on the low side is probably because TK is here at the same energy scale as the

splitting (∼0.15 meV when estimated as half the peak widths in Fig. 4a). We also analyzed

ZBAs with pronounced single-peak character in the same manner as Cronenwett et al.5 and

found agreement with the single-impurity Kondo model to the same extent.

The increase of Leff that induces one period of modulation for the 0.7 anomaly and the

split-peak character of the ZBA in Fig. 3 (∼100 nm to ∼150 nm) matches with the Fermi

wavelength in the QPC channel (Supplementary Information Sec. 6). This supports the

hypothesis that the periodicity is linked to Friedel oscillations in the channel which gradu-

ally develop additional periods as it gets longer. (That such Friedel oscillations occur upon

scattering in a 2DEG has been observed directly in a different setting28.) The increasing

number of ELSs with channel length leads to alternation between odd and even-impurity

Kondo effects, and to modulation between single-peak and double-peak ZBAs, respectively

(the three-impurity case was studied in ref. 29 and can show ZBAs with triple- or predomi-

7



nantly single-peak character).

To support this picture we carried out numerical Spin-Density-Functional-Theory (SDFT)

calculations, generalizing earlier work7 (Supplementary Information Sec. 2). The length of

the channel was determined by a gate of variable length. We studied whether the SDFT

yields localised states with about one electron of charge as the state with lowest energy. The

results (an example is in Supplementary Fig. S1) show an increasing number of ELSs as the

channel gets longer, as well as for opening the QPC. These calculations support the picture

we have presented here: The number of ELSs increases by one each time when the QPC

length increases over a range that allows for one additional period of the Friedel oscillation

in the QPC channel. Interestingly, the SDFT results suggest that, depending on the overlap

of the ELSs, higher spin states (S=1 or S=3/2) may develop in the QPC, making it possible

to study Kondo effects for higher spin, and transport through such exotic states.

The emergence of a ZBA for a hybrid device with a semiconductor channel was recently

reported as a signature of Majorana fermions12. The fact that similar ZBAs occur with rich

behavior in plain semiconductor QPCs suggest that one should be cautious when ruling out

alternative explanations for these Majorana signatures13. Evidently, basic understanding

of the physics in QPCs is a crucial step in understanding more complex hybrid structures.

Tunable QPCs offer an excellent new test ground for studies to this end, while they are also

suited for detailed studies of Friedel oscillations30 and strongly correlated electrons in low

dimensions, at the level of a single site.

METHODS

Materials and device fabrication

QPC devices were fabricated with two different GaAs/AlGaAs heterostructures containing

a two-dimensional electron gas (2DEG) in a heterojunction quantum well. They had similar

parameters for the molecular-beam-epitaxy growth and properties of the 2DEG. We obtained

very similar results with both materials. Most of the results presented in this report come

from Material 2, only the data in Fig. 1b,d comes from Material 1.

Material 1 was a GaAs/Al0.32Ga0.68As heterostructure with a 2DEG at 114 nm below the

surface from modulation doping with Si at about 1 · 1024 m−3. At 4.2 K, the mobility of the

2DEG was µ = 159 m2/Vs, and the electron density ns = 1.5 · 1015 m−2 after cooling down
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in the dark. The layer with modulation doping started at 37 nm distance from the 2DEG

position towards the wafer surface (this material was uniquely used in the related results

presented in ref. 8 of the main text).

Material 2 was a GaAs/Al0.35Ga0.65As heterostructure with a 2DEG at 110 nm below the

surface from modulation doping with Si at about 1 · 1024 m−3. At 4.2 K, the mobility of the

2DEG was µ = 118 m2/Vs, and the electron density ns = 1.60 · 1015 m−2. Here the layer

with modulation doping started at 45 nm distance from the 2DEG position.

QPCs were realised by locally depleting the 2DEG below the surface of the GaAs/AlGaAs

heterostructures. In the standard approach, applying negative voltage Vg to two metallic

gate fingers on the surface of such material (Fig. 1a) induces an electrostatic potential barrier

between a source and drain reservoir in the 2DEG, with a small tunable opening in the form

of a saddle-point potential (Fig. 2b). Such devices with two gate fingers are denoted as

QPC2F and these have a fixed channel length L. We also studied novel devices with six

gate fingers (Fig. 2a), denoted as QPC6F, which have a channel with tunable length Leff .

Tuning of Vg on the gates allows for controlling the effective QPC shape (for details see

Supplementary Information Sec. 5).

The depletion gates were defined with standard electron-beam lithography and lift-off

techniques and by depositing 15 nm of Au with a Ti sticking layer. The reservoirs were

connected to macroscopic leads via ohmic contacts, which were realized by annealing a thin

Au/Ge/Ni layer that was deposited on the surface. Part of our data (including all the results

presented in the main text, except for the data in Fig. 1b,d) was obtained after cooling down

with about +0.3 V on the gates for suppressing 1/f and telegraph noise in the conductance

signals due to charge instabilities in the doping layer (Supplementary Information Sec. 4).

We obtained (besides the change in noise properties) similar results for the cases with and

without biased cool-down.

Measurement techniques and setup

The measurements focus on the differential conductance G, which is obtained by applying

and measuring voltage and current signals as in the simplified scheme in Fig. 1a. Results

for G at zero bias voltage Vsd are called linear conductance, while results for G as a function

of Vsd (bias spectroscopy) are called nonlinear conductance. Unless stated otherwise, the
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presented data was taken at a temperature T of 80 mK and zero magnetic field.

The presented results of linear and nonlinear conductance measurements all concern

the differential conductance G = dI/dVsd (where I is the measured current). For linear

conductance measurement we used standard lock-in techniques (typically at 387 Hz), with

an ac voltage bias Vsd = Vac = 10 µV. For the nonlinear conductance measurements we

superimposed an ac and a dc voltage bias, Vsd = Vdc + Vac. We used an effective 4-terminal

measurement where we locally measured the source-drain voltage drop Vsd across the QPC,

such that we can present results without significant contributions from series resistance.

Only one of the source-drain contacts was connected to the grounded shielding of our setup,

and all gate voltages were applied with respect to this ground.

Measurements were performed in a dilution refrigerator with the sample at temperatures

from ∼ 5 mK to 4.2 K. For all our data the temperature dependence saturated when cooling

below ∼ 80 mK. This is consistent with independent measurements of the lowest effective

electron temperature that could be achieved with this setup. The electron temperature

of 80 mK allows for probing peak structures in nonlinear conductance traces as narrow as

4kBT/e = 0.03 mV (kB is Boltzmann’s constant).

The in-plane magnetic field was applied both parallel and perpendicular to the current

direction and we measured devices both with the current along the [110] and [−110] di-

rections of the crystal, but the results did not depend significantly on these orientations.

Alignment of the sample with the magnetic field was within 1◦, as determined from Hall

voltage measurements on the 2DEG.

Kondo transport calculations

We obtained the theoretical results from calculating the current through a two-impurity

Anderson model within the slave-boson noncrossing approximation26 (detailed in Supple-

mentary Information Sec. 1).

SDFT calculations

We obtained the SDFT results by extending the work of ref. 7 (detailed in Supplementary

Information Sec. 2).
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FIG. 1: Conductance of Quantum Point Contacts (QPC). a, Electron microscope image

of a conventional QPC with 2 gate fingers (QPC2F). These gates are on the surface of a wafer

with a two-dimensional electron gas (2DEG) at 110 nm or 114 nm depth. Applying voltages

Vg to these gates induces a narrow transport channel between source and drain regions of the

2DEG. The conductance of the QPCs is studied by applying and measuring voltage and current

signals on contacts to the 2DEG. For QPC2F the length of the transport channel is fixed by

the lithographic length L. b,c, Linear conductance G measured on two different QPC2F with

L = 200 nm. The traces show clear quantised conductance plateaus at integer multiples of 2e2/h

(the shift in dependence on Vg for c as compared to b is due to a different cool-down procedure,

see Methods). The plateaus and transitions between plateaus show small deviations from clean

quantised conductance behavior, as for example an additional shoulder at G ≈ 0.7 ·(2e2/h) in panel

c (red arrow). d, Nonlinear conductance G as a function of source-drain voltage Vsd at various Vg

settings, for the device of panel b. The Zero-Bias Anomaly (ZBA, enhanced conductance around

Vsd = 0) has mostly single-peak character, but has double-peak character for G ≈ 0.9 · (2e2/h) (for

example the red trace). e, Similar results as panel d for the device of panel c. In this device ZBAs

with double-peak character appear at G ≈ 0.1 · (2e2/h) and G ≈ 0.95 · (2e2/h).
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at a fixed ratio Vg2/Vg1. b, Saddle-point potential that illustrates the electron potential energy

U (without many-body interactions) in the 2DEG plane in a QPC region. c, Linear conductance

G as a function of Vg1 (while co-sweeping Vg2 at fixed Vg2/Vg1) measured on a QPC6F for Leff

tuned from 186 nm to 608 nm (traces not offset). Besides the quantised conductance plateau at

1 · (2e2/h), most traces show a smaller plateau in the range 0.7 to 0.9 · (2e2/h) due to many-body

effects. For this signature 3 periods of modulation can be observed in its dependence on Vg2/Vg1

(i.e. Leff ) .
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conductance data of Fig. 2c.
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FIG. 4: Comparison between experiments and theory of the Anderson model for a

two-impurity Kondo system. a, Evolution of the nonlinear conductance (with double-peak

ZBA) as a function of temperature for a QPC6F operated with fixed Vg1 = −0.528 V and fixed

Vg2/Vg1 = 0.3 (traces not offset). The inset presents calculated nonlinear-conductance traces from

a two-impurity Kondo model (see main text). b, The conductance level of panel a near zero

bias (between the two ZBA peaks, evaluated at Vsd = −0.02 mV) as a function of temperature

(logarithmic axis). The inset presents the same analysis applied to the theoretical results in the

inset of panel a. c, Evolution of the nonlinear conductance (same device and operation point as

panel a) as a function of applied in-plane magnetic field Bext (traces offset −0.01 · (2e2/h)). The

inset presents again calculated nonlinear-conductance traces from a two-impurity Kondo model.
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1. NONLINEAR CONDUCTANCE TRACES FOR A TWO-IMPURITY KONDO

SYSTEM: MODELING ASYMMETRIC DOUBLE-PEAK ZBAs

This section summarizes the approach that we used for calculating the nonlinear

differential-conductance traces of Fig. 4 in the main text. The experimental results show

nonlinear conductance traces with highly asymmetric double peak ZBAs: the peak height

and width of the two peaks can differ significantly, and the minimum between the two peaks

can appear at positions that differ significantly from Vsd = 0. The purpose of the theoret-

ical modeling that is presented in this Section is to investigate whether such asymmetric

double-peak ZBAs are consistent with the physics of the two-impurity Kondo system. The

theoretical traces of Fig. 4 are calculated for such a two-impurity Kondo system, and show

behavior that is for a large part consistent with the behavior of the experimentally observed

asymmetric double-peak ZBAs. In addition, several devices showed rather symmetric single-

peak ZBAs that had a position that differed significantly from Vsd = 0. This behavior also

comes forward from the two-impurity Kondo modeling for parameters where the two impu-

rity spins have unequal coupling to their reservoir and for a spin-spin coupling that is weaker

than temperature (traces not shown here).

The main challenge for this theoretical modeling is to extend the two-impurity Anderson

Hamiltonian to calculations of the differential conductance for transport through two series-

coupled impurities at nonzero bias voltage and nonzero temperatures. The approach that

we use here directly builds on refs. 1,2. The model parameters that were used for calculating

the traces in Fig. 4 of the main text are summarized at the end of this Section.

Theoretical model

The system is modeled as a two-impurity Anderson Hamiltonian with an extra term ac-

counting for inter-impurity coupling. Each impurity is connected to a different Fermi sea

with chemical potential µL = eVsd
2

and µR = − eVsd
2

, respectively. The full Hamiltonian reads

H =
∑

kα∈{L,R},σ

εkαc
†
kα,σ

ckα,σ +
∑

α∈{L,R},σ

εασd
†
ασdασ + V0

∑
kα∈{L,R},σ

(c†kα,σdασ + d†ασckα,σ)

+ VI
∑
σ

(d†LσdRσ + d†RσdLσ) + ULnL,↑nL,↓ + URnR,↑nR,↓. (1)

The first two terms in Eq. (1) represent the electrons in the leads and in the impurities, re-
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spectively. In these terms, c†kL/R,σ (ckL/R,σ) creates (annihilates) an electron with momentum

kL/R and spin σ in the left/right lead, and d†L/Rσ (dL/Rσ) creates (annihilates) an electron

with spin σ in the left/right impurity. εkL/R = εk + µL/R = εk ± eVsd
2

are the energies in

the leads, while εασ are the bare energies at each impurity. The third term describes the

coupling between each impurity and its corresponding lead, and determines the coupling

strength ∆L,R(ε) = πV 2
0

∑
kα∈{L,R}

δ(ε− εkα) (we neglect the k dependency of the tunneling

matrix element for simplicity). Each lead is described by a parabolic density of states (en-

ergy bandwidth W = 2D) centered at the chemical potential, such that we can define the

function

∆α(ε) = πV 2
0

∑
kα

δ(ε− εkα) =

 ∆0[1− ( ε−µα
D

)2] if −D ≤ ε− µα ≤ D,

0 otherwise.

The fourth term describes inter-impurity coupling. In the absence of such coupling, this

Hamiltonian describes two independent Anderson impurities each of them coupled to differ-

ent Fermi seas. In the limit of UL, UR → ∞ we can write the Hamiltonian (1) in terms of

auxiliary pseudo-fermions and slave boson (SB) operators plus constraints:

H =
∑

kα∈{L,R},σ

εkαc
†
kα,σ

ckα,σ +
∑

α∈{L,R},σ

εασf
†
ασfασ +

tI
N

∑
σ

(f †LσbLb
†
RfRσ + f †RσbRb

†
LfLσ)

+
Vsd√
N

∑
kα∈{L,R},σ

(c†kα,σb
†
αfασ + f †ασbαckα,σ). (2)

In the slave boson representation, the annihilation operator for electrons at the impurity

sites, dασ is decomposed into the SB operator b†α which creates an empty state and a pseudo

fermion operator fασ which annihilates the singly occupied state with spin σ in the impurity

α: dασ → b†αfασ (d†ασ → f †ασbα). Note that we have scaled the hopping parameters V0 = Vsd√
N

and VI = tI
N

, N being the degeneracy of the level on each impurity. This scaling is done in

such a way that the parameters Γ = N∆0 and ∆0/VI = N∆0/tI = Γ/tI appearing in the

expression of the Kondo temperature have a well defined N → ∞ limit, namely there is a

well defined 1/N expansion of the physical quantities. At the end of the calculation, the

physical limit N = 2 is, of course, taken. Finally, the physical constraint is that we must

work in a subspace of the Hilbert space where the number of auxiliary particles (on each
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impurity) is one, namely:

Q̂L =
∑
σ

f †LσfLσ + b†LbL = 1,

Q̂R =
∑
σ

f †RσfRσ + b†RbR = 1. (3)

These two constraints come from the physical condition that each impurity has to be in one

of the three states |0〉, | ↑〉 or | ↓〉.
At this point, we have reduced the original problem described by the Hamiltonian in

Eq. (1) to a problem of fermions and bosons interacting through tunneling terms and subject

to the constraints in Eq. (3). Properties of the physical electrons can be build up from

the Green’s functions of the pseudo-fermions and slave bosons. These Green’s functions

for the auxiliary fermions and bosons constitute the basic building blocks of the theory.

Furthermore, our aim is to study the out-of-equilibrium properties of the system; we need,

then, a fully non-equilibrium description of the dynamics of the Green’s functions of these

auxiliary particles. The appropriate starting point is to derive equations-of-motion for the

time-ordered double-time Green’s function of the auxiliary fermion and boson fields on a

complex contour. In order to do this we employ the so-called non-crossing approximation

(NCA)3–6 generalized to a two-impurity Anderson Hamiltonian2. Without entering into

much detail of the theory, we just mention that the boson fields are treated as fluctuating

operators such that both thermal and charge fluctuations are included in a self-consistent

manner to order O( 1
N

). In particular, one has to derive self-consistent equations-of-motion

for the time-ordered double-time Green’s function (sub-indexes are omitted here):

iG(t, t′) ≡ 〈Tcf(t)f †(t′)〉 ,

iB(t, t′) ≡ 〈Tcb(t)b†(t′)〉, (4)

or in terms of their analytic pieces:

iG(t, t′) = G>(t, t′)θ(t− t′)−G<(t, t′)θ(t′ − t) ,

iB(t, t′) = B>(t, t′)θ(t− t′) +B<(t, t′)θ(t′ − t). (5)

A rigorous and well established way to derive these equations-of-motion was first intro-

duced by Kadanoff and Baym7, and has been related to other non-equilibrium methods (like
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the Keldysh method) by Langreth, see ref. 8 for a review. In the paper, we just show nu-

merical results of the coupled set of integral NCA equations for our problem and refer the

interested reader to refs. 2–6 for details. In particular, the density of states is given by

ρ(ω) = − 1

π

∑
σ

Im[Arσ(ω)], (6)

where Arσ(ε) is the Fourier transform of the retarded Green’s function Arσ(t) =

Gr
σ(t)B<(−t) − G<

σ (t)Ba(−t). Note that this decoupling neglects vertex corrections and,

as a result, the NCA fails in describing the low-energy Fermi-liquid regime. Nevertheless,

the NCA has proven to give reliable results even at temperatures well below the Kondo

temperature (of the order of T = 10−2 TK)9. Following Meir and Wingreen in ref. 10, the

current is given by

Iα∈{L,R} = −2e

h

∑
σ

∫
dεΓα(ε)[2ImArσ(ε)fα(ε) + A<σ (ε)],

with A<σ (ε) the Fourier transform of A<σ (t) = iG<
σ (t)[Br(−t)−Ba(−t)] and fα(ε) = 1

1+e
(ε−µα)
kT

the Fermi-Dirac function at each reservoir held at a chemical potential µα such that the

applied bias voltage is defined as eVsd = µR − µL.

In practice, we self-consistently solve the NCA integral equations for each isolated An-

derson impurity until good numerical convergence is reached. In a second self-consistent

step, we obtain the self-energies coming from inter-impurity coupling2.

Parameters used for the theoretical traces in Fig. 4

The theoretical traces in Fig. 4 of the main text are calculated as follows and for the following

parameters. The inset of Fig. 4a presents traces of dI/dVsd calculated with the theory above

here. The numerics are performed by discretizing the Fourier space in a finite mesh of size

Nω = 218 with cutoff D = 20. The asymmetry primarily arises from taking unequal coupling

strengths ΓL and ΓR between the impurities and their respective reservoirs. Further reference

to a value for Γ assumes the relation Γ = ΓL+ΓR
2

. The traces in the inset of Fig. 4a are for

ΓL
ΓR

= 1.5, and inter-impurity coupling ti = 1.2 Γ. For the presentation in the main text all

energy scales are with respect to the highest Kondo temperature TK of the two-impurities.

We define it by using the following estimate for TK of each impurity,

TK = D

√
1

π|εi|
· exp

(−π|εi|
Γi

)
,
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where εi is the energy of the Anderson impurity level i = L,R, and Γi should be filled

in as ΓL or ΓR for the interaction of impurity L,R with its respective reservoir. (Note

that for the single-impurity case with coupling to two reservoirs on two sides, one must use

Γi = ΓL + ΓR, which yields a Kondo temperature that is significantly higher than the values

for the two-impurity case.) The bias voltage Vsd is thus expressed in units of kBTK/e (kB is

Boltzmann’s constant). The traces are for increasing temperature from T = 0.76 TK (black

trace) to T = 1.33 TK (red trace), see also the colored dots in the inset of Fig. 4b. The

inset Fig. 4b is derived from these traces in the same manner as for the experimental traces,

simply by extracting the conductance between the two peaks. We used here for all traces

the conductance level at Vsd = −0.88 kBTK/e.

For calculations of magnetic field dependence, as presented in the inset of Fig. 4c, we

simply added a Zeeman energy term for each of the localized spins, namely ±∆Z/2. The

traces are for (top to bottom) Zeeman energies of ∆Z = 0 to ∆Z = 11 kBTK . It is well

known that NCA (since it is a high-N method) shows unphysical zero bias features at finite

magnetic fields at low temperatures. Indeed, running the NCA for the single-impurity case

reveals such a spurious anomaly. However, as one increases the temperature this feature

goes away much faster than the physical features coming from Zeeman-split Kondo peaks.

In order to avoid such spurious features, while obtaining good numerical convergence, we

had to work with a better mesh resolution (Nω = 220) and more stringent convergence

parameters (as a criterium for good convergence, the iteration stops when the relative error

between successive occupations, as calculated from lesser Green’s functions, in the iteration

loop is less than 10−6). Also, we use slightly different parameters (a bit larger inter-impurity

coupling ti = 1.3 Γ and a bit smaller asymmetry ΓL
ΓR

= 1.1
0.9

) in order to resolve the Zeeman-

split peaks without the need of going to lower temperatures that might be on the verge

of reliability. This explains the slightly higher conductance values in Fig. 4c as compared

to Fig. 4a (and it is known that this method can yield dI/dV values that are slightly too

high on the scale of 2e2/h4). Hence, these plots at finite magnetic fields are meant to show

qualitative agreement. Quantitative agreement in such dI/dV calculations at finite magnetic

field and temperature is beyond this technique (or any other technique that we know of).
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2. SDFT SIMULATIONS

Summary of approach and main findings

To support the picture for the many-body effects that was presented in the main text we

present numerical SDFT results for QPCs, generalizing earlier calculations11,12, to allow for

QPCs of changing length. The length of the channel was determined by a gate of variable

length. Opening the QPC is controlled with a single gate-voltage parameter Vg. We studied

whether the SDFT yields localised states with about one electron of charge as the state with

lowest energy. For the true ground state, these states should have spin-singlet character, but

this cannot be addressed with SDFT in the present approximation. SDFT can still be used

for checking whether a spin-polarised solution (in an arbitrary direction) has a lower energy

than an unpolarised solution. Since the polarisation direction is arbitrary, the SDFT then

admits two degenerate ground states and the true ground state is a superposition of these

two cases with spins in a singlet state. The electron density, though, is the same for the

two degenerate SDFT ground states, and thus also for their linear superposition. To allow

for a spin-polarised solution, we started the iterative procedure with a finite magnetic field

in arbitrary direction that breaks the spin-symmetry, which was turned off in subsequent

iterations. For most of the values of gate voltage below the first plateau, the polarised

solution had lower energy than the unpolarised solution (Fig. S4). An example of such

SDFT results is presented in the Fig. S1 (but similar results are found for a wide range of

parameters). Figure S1a displays the electron density for one of the ground states, for both

spins, with increasing QPC length, demonstrating an increasing number of ELSs, denoted

by circles (the number of ELSs was determined from the total density in the QPC, by fitting

the density to a sum of two-dimensional Gaussians, each of total density e). Figure S1b

depicts the number of ELSs in the gate voltage-length plane, demonstrating the changing

number of ELSs with these two parameters. This supports the picture we have presented

in the main text: The number of ELSs increases by one each time when the QPC length

increases over a range that allows for one additional period of the Friedel oscillation in the

QPC channel.
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FIG. S1: Results of Spin-Density-Functional-Theory calculations (SDFT). a, Spin-

polarised electron density in QPC channels (top view on 2DEG plane) for spin-up (right panels)

and spin-down (left panels) at constant gate voltage Vg = −6 (arb. units, giving a conductance just

below 1 · (2e2/h)) for three different lengths (540 nm, 680 nm and 830 nm). The number of ELSs

(marked with white dotted circles) inside the QPC channel is 2, 3 and 4 respectively. The number

of ELSs increases by one each time when the QPC length increases over a range that allows for

one additional period of the Friedel oscillation in the QPC channel (the Fermi wavelength in the

plane 2DEG area was for these calculations 150 nm). The color scale extends from 0 (black) to

2 · 1014 m−2 (yellow). b, The number of ELSs inside the QPC as a function of gate voltage Vg

(parameter for opening the QPC channel) and QPC channel length.
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SDFT approach and methods

The SDFT simulations were carried out in a rectangular box (representing a piece of 2DEG),

shown in Fig. S2, with along the x-axis (horizontal in Fig. S2) periodic boundary conditions.

The external potential is composed of a harmonic part 1
2
ω2
yy

2 that represents the wire and

the QPC potential which is calculated by placing two negatively charged gate electrodes at

height z0 = 100 nm above the 2DEG in the middle, we are using the Yukawa potential

v(x0,y0) =

∫
ρg
e−|r−r0|/γ

|r− r0|
dr (7)

where r0 =
√
x2

0 + y2
0 + z2

0 , γ = 110 nm and the integration is over the two-dimensional

electrodes. The charge density of the electrodes ρg, is a function of the gate voltage on the

electrodes Vg. In our simulation we set ρg, nevertheless, in order to present the results as in

the experimental results, we regard it as gate voltage Vg with arbitrary units.

For the Hartree term we use the appropriate two-dimensional system with one-

dimensional periodic boundary conditions13. In addition, we add a positive image charge

plane at height 100 nm above the 2DEG as the contribution from the donor layer11.

For the exchange and correlation functionals we use the local-density approximation, for

the exchange we use slater exchange14 and the correlation functional is taken from quantum

Monte-Carlo simulations of uniform electron gas15. The total number of electrons is N =

108 and the temperature is 300 mK. Though we have repeated some of the calculations

with temperatures down to 60 mK, with very little change in the results. We used the

Octopus code16 for solving the equations. For all the simulations the electron effective mass

m∗e = 0.067me and the dielectric constant κ = 12.9. The actual 2DEG electron density is

taken slightly lower than in the experiments to keep the computational time of a simulation

at a reasonable level, but we work in a regime where we capture the relevant physics. As

a result, the relevant length scales (which are relative to the Fermi wavelength) are for the

simulations also slightly longer than the experimental values.

The simulation steps are as follows:

• Set an external potential for a given QPC gate length (parameterized by giving the

gate electrodes a length L along the channel) and given gate voltage of the electrodes.

In this simulation, opening the QPC is thus controlled with a single gate-voltage

parameter Vg (in arbitrary units).
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• Find the unpolarized ground state of the system by solving self-consistently the Kohn-

Sham equations.

• Then we polarize the solution by applying a magnetic field perpendicular to the sample

(only the Zeeman term) for a few iterations, turning it off and letting the system flow

to its ground state again (in this procedure we are basically giving an educated initial

guess for the density). In principle the field can be applied in any direction as it yields

degenerate solutions.

• Repeat these steps for different QPC lengths and gate voltages.

Figure S3 shows two examples of the resulting densities, the left column is spin-down

density while the right column in spin-up density. The top row presents the unpolarized

solution, the middle row the spatially-symmetric polarized solution, and the bottom row

the spatially-anti-symmetric polarized solution. The spatial symmetry of the magnetic field

determines the symmetry of the solution.

Figure S4 presents the Free energy difference ∆E between the polarized solutions relative

to the unpolarized solution. If there exists a polarized solution it has a lower energy than

the unpolarized solution. Moreover, the spatially-symmetric solution has a region Vg =

−[6.5− 5.5] where it is the ground state of the system. In the following we will concentrate

on this region which is below the first plateau.

To determine the number of emergent localized states (ELSs) that are in the effective QPC

channel we cannot use that they appear in the region that is determined by the lithographic

gate length L. Instead, the effective QPC channel appears as a saddle-point potential that

has an effective length that is typically shorter than L. We used the following approach to

define whether localized maxima in the charge density can be interpreted as an ELS within

the effective QPC channel. We study the unpolarized solution, and define that the effective

QPC channel is located between the two points at a density of 80% of the maximum density,

along a QPC cross section as depicted in Fig. S5.

As was discussed in the main text, the ELSs inside the QPC originate from Friedel

oscillations and as the QPC gets longer the Friedel oscillations have more periods in the

QPC channel. We use two complimentary procedures in order to determine the number of

ELSs inside the QPC. First we look at the cross section of the density across the middle of
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the sample (this is done separately for spin-up density and spin-down density). The criteria

for the definition of a peaked feature that represents an ELS is given by

nσ(rmax) ∗ P ≥ nσ(rmin), (8)

nσ is the density of spin σ, and rmin is the closest minimum toward the outside of the QPC.

This procedure is shown in Fig. S6 for P = 0.32. As can be seen in Fig. S6d, this procedure

may be problematic when the solution is ferromagnetic, and the peaks overlap significantly.

In such cases we use a second procedure: An example is given in Fig. S7. The total two-

dimensional density for the up spin (panel b) can be fit to a sum of five Gaussians (only

three of them inside the actual QPC channel), each of the total unit weight (e), even though

the cross section reveals only two peaks inside the QPC.
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FIG. S2: a, Schematic of the simulation box, the blue rectangles represent the gate electrodes

above the 2DEG. b, Example of the external saddle-point and wire potential for a QPC (blue is

lowest, red is highest potential).

Spin down density Spin up density

FIG. S3: Spin-down (left) and spin-up (right) densities. Top row: unpolarized solution. Mid-

dle row: spatially-symmetric polarized solution. Bottom row: spatially-anti-symmetric polarized

solution. The color scale extends from zero (black) to 2 · 1014 m−2 (yellow).
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unpolarized solution as a function of gate voltage, for a QPC length of 680 nm.
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FIG. S5: Determination of the effective length of the channel in the QPC saddle-point potential

(typically shorter than the lithographic gate length L). The blue line is a cross section of the total

density across the middle of the QPC channel. Above is the total electron density zero (black) to

3.5 · 1014 m−2 (yellow). The red dots mark the density at 80% of the maximum density, and the

distance between these points is used as the effective QPC channel length.
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FIG. S6: Example for counting ELSs - first method. a,b, Electron density and its cross section for

spin up (a) and spin down (b) at Vg = −6 and for L = 540 nm. The red crosses mark the Friedel

oscillations that are counted as ELSs. Here we have a total of two ELSs in the QPC, each one has

a density very close to one electron density. c,d,Cross section of spin-up (c) and spin-down (d)

densities at Vg = −6 and for L = 830 nm. In this case there are four ELSs, as can be seen from

the cross section.
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FIG. S7: Example for counting ELSs - second method. a,b, Electron density and its cross section

for spin up (a) and spin down (b) at Vg = −6 and for L = 680 nm. Here the integration of the

density inside the QPC gives a total of three electrons, though there are only two peaks in the

cross section. The two dimensional density can be fitted to a sum of 5 unit weight (e) Gaussians

(all 5 Gaussians have weight e when accounting for their transverse dimension). Three of these

Gaussian are within the effective QPC channel (Fig. S5). c, We show how the five Gaussians give

the corresponding SDFT density. From top to bottom (and with reference to traces in panel b):

Center Gaussian (corresponds to green dashed line in the cross section), two nearest Gaussians (red

dashed line), two next nearest Gaussians (cyan dashed line), all five Gaussians together (purple

line), SDFT density (blue line). Hence we conclude that there are three localized ELSs inside the

QPC.
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3. EARLIER REPORTS SHOWING MODULATED 0.7 ANOMALIES AND

DOUBLE-PEAK ZBAs

A remarkable aspect of our observations of double-peak ZBAs in many different QPC

devices is that such observations were to our knowledge never explicitly reported before,

despite about 20 years of research into many-body effects in QPCs (with a few hundred

publications reporting on the topic). Similarly, our observations of a periodic modulation

of the 0.7 anomaly as a function of QPC channel length is a phenomenon that -to our

knowledge- has not been reported before. It is therefore justified to ask why this is the case,

and to question whether our -seemingly unique- observations result from an irregularity that

is unique to our devices. The main text already reported that we observed double-peak ZBAs

in many conventional QPC2F devices from two different wafer materials and in 8 different

QPC6F devices (and for both cases for multiple cool-downs and for different gate settings

during cool-down), which all together provides convincing evidence that the new phenomena

are not due to a particular device irregularity.

We noticed in our studies on many QPC2F that a strong expression of the many-body

effects that we report here appears as quantized conductance plateaus that are not flat, and

a 0.7 anomaly that appears as a peaked resonance instead of only a shoulder on the step

from G = 0 to 1 · (2e2/h) (see for example also Fig. S9a near Vg1 = −0.35 V). These two

signatures can then also show replicas at and just below the second and third quantized

conductance plateau. In such cases, the ZBA often has double or triple-peak character with

strong asymmetries and smaller side peaks. Such QPC results were in fact observed long

before by our group, but such results (and further studies of the devices) were discarded

because a device imperfection was suspected. We know that most groups in the field had the

same practice (see for example ref. 17). Also, such imperfections on quantized conductance

traces were often removed by applying a small (typically 25 mT) perpendicular magnetic field

during the QPC studies, or by measuring at about 600 mK instead of the lowest available

temperature (see also ref. 17, not applied in any of our studies). Only our recent study on

a large number of QPC2F showed us that such strong deviations on quantized conductance

traces fall in fact on a regular trend from weak to strong expression of the 0.7 anomaly

and the ZBA. Nevertheless, it remains difficult to investigate this systematically since the

appearance is very diverse, and for results from one particular QPC2F it remains a challenge
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to rule out a (partial) role for an actual material or device defect.

In the remainder of this Section we report that several signatures of double-peak ZBAs

and periodic modulation of the 0.7 anomalies can in fact be recognized in the experimental

data of earlier publications (but they were never discussed or systematically investigated).

Below here we review the literature on this, first for modulation of the 0.7 anomaly and

subsequently for double-peak ZBAs. For both phenomena it is also illustrative to inspect

all experimental data in the extensive review ref. 18.

Reports showing modulated 0.7 anomalies

Several publications report a very regular modulation of the 0.7 anomaly over about 1 period

as a function of back(top)-gate voltage in experiments that have a large-area back(top) gate

in addition to the split-gate structure of the QPC. A deviation from our experiment is

that such a back-gate modulates at the same time the QPC saddle-point potential and the

electron density of the reservoirs. A regular modulation of the 0.7 anomaly over about 1

period with a fixed density for the reservoirs was also reported before, in experiments with

split-gate QPCs that have an additional side gate or narrow top gate. Examples are ref. 19

(Fig. 2), ref. 17 (Fig. 6-17, left panel on QPC2 on p. 105), ref. 20 (Figs. 2, 3a and 3b), ref. 21

(Fig. 2), and ref. 22 (Fig. 1). The latter three references show in fact modulation over about

1.5 period, with an anomaly at a conductance level of about 0.9 · (2e2/h) that disappears

while a new one appears at about 0.6 · (2e2/h) (as in our data). Similar modulation is

observed in ref. 23 (Fig. 1).

Reports showing double-peak ZBAs

We also found several publications that report double-peak ZBAs for data taken at zero

magnetic field. An example that looks much like our data is in ref. 17, Fig. 6-19a on p. 107.

Other examples can be found in ref. 24 (Fig. 4) and ref. 25 (Figs. 1a, 1c, 3b and 3d). A

very recent publication by Zhang et al. (ref. 23) presents a few examples of double- and

triple-peak ZBAs (Fig. 3).
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4. REMOTE IMPERFECTIONS AND REDUCING CHARGE NOISE IN QPC DE-

VICES

Very weak static fluctuations on the QPC saddle-point potentials are to be expected.

They can, for example, result from the small device-to-device varation that is inherent to

the nanofabrication process. In addition, our devices have a doping layer at about 40 nm

distance from the QPC channel. In this doping layer ionized doping centers are at random

positions with an average inter-dopant distance of about 10 nm.

Such weak static fluctuations on the QPC saddle-point potentials can have a strong

influence on the expression of many-body effects. For example, the parameter Γ that was

introduced in the main text for the coupling strength between a localized electron and a

neighboring reservoir depends exponentially on weak potential fluctuations that are present

between the localized state and the reservoir.

For most of our measurements, we stabilized the dynamical character of the (non)ionized

doping centers by cooling down with a small positive voltage on the gates26 (see also Methods

of the main text).
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5. DEFINING AND CALIBRATING Leff FOR LENGTH-TUNABLE QPCs

As introduced in the main text, operating the QPC6F devices induces a smooth saddle-

point potential (as in Fig. 2b) for which the length along the transport direction is controlled

by operating at a particular ratio Vg2/Vg1. For such a smooth saddle-point potential it is not

obvious what the value is of the channel length. We characterize this channel length with

the parameter Leff , which corresponds to the value of the lithographic length of a QPC2F

type device (the length L in Fig. 1a) that gives effectively the same saddle-point potential.

The results of calibrating the relation between Leff and Vg2/Vg1 are presented in Fig. S8.

A detailed account of this calibration can be found in a separate publication by our team27.

This work also investigated whether there is significant structure on the saddle point po-

tential from the narrow gaps (44 nm wide) between the three gate fingers on each side of

the QPC channel. The results show that we operate the QPC6F under conditions far away

from the point where such structure would become significant. The electron flow is 200 nm

away from the gate electrodes such that effective electrostatic potential only reflects the gate

geometry in a highly rounded manner.

Opening or closing the transport channel for QPC6F at a particular value for Leff requires

co-sweeping of Vg1 and Vg2 at a fixed ratio Vg2/Vg1. Notably, in the case of cooling down with

about +0.3 V bias on the gates (see Methods of the main text, and ref. 26), co-sweeping of

Vg1 and Vg2 was carried out with respect to Vg1 = Vg2 = +0.3 V instead of Vg1 = Vg2 = 0 V

(for details see ref. 27).
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FIG. S8: Result of calibrating the dependence of Leff on Vg2/Vg1.
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6. FRIEDEL OSCILLATIONS AND FERMI WAVELENGTH IN THE QPC

The approximate form of a Friedel oscillation for screening of a charged scatter center at

position x = 0 (valid for positions not too close to x = 0) is

ρdevi ∝
sin(2kFx+ φ)

xd
,

where ρdevi is the deviation in electron charge density, d is the dimensionality of the Fermi

liquid, kF is the Fermi wavenumber, and φ is a phase parameter that depends on the details

of the scattering28. The factor 2 before kF shows that the wavelength of Friedel oscillations

is half the Fermi wavelength.

The electron reservoirs in our experiment had a density n2D = 1.6 · 1015 m−2, which

corresponds to a Fermi wavelength λF = 2π/kF = 62 nm. In the QPC channel the electron

kinetic energy is reduced. For an estimate we assume that the kinetic energy (EF = 5.7 meV

for the reservoir) gets reduced in the QPC entries to a value of about 1 meV, which is

estimated by taking half the 1D subband energy spacing of our type of QPCs (value taken

from our analysis in ref. 29). This yields that λF increases here to about 150 nm, which

corresponds to about 75 nm for the Friedel oscillation wavelength in the QPC channel.

When increasing the length of the QPC, the number of Friedel oscillations in the channel

increases at the same time (more or less symmetrically) in both entries of the QPC. Thus,

a length dependence that relies on the number of Friedel oscillations in the channel should

show a modulation with a periodicity of about 150 nm, or a bit smaller (∼100 nm) if

the effective Fermi wavelength in the QPC entries is still a bit closer to the value for the

reservoirs. Figure S12 shows that this is well in the range of the observed periodicity. The

fact that the modulation occurs faster around Leff = 250 nm than around Leff = 500 nm

is consistent with the fact that the latter case corresponds to a longer shallow channel (less

abrupt saddle-point potential) where the Fermi wavelength is extended over a longer range.
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7. TEMPERATURE DEPENDENCE OF LINEAR CONDUCTANCE

Figure S9 presents for the same device as used for Fig. 2, 3 and 4 in the main text results

for the temperature dependence of the 0.7 anomaly in linear conductance traces. At the

highest temperature (4000 mK), the linear conductance traces no longer show quantized

conductance plateaus (Fig. S9a) and the only remaining feature is the 0.7 anomaly, which

no longer shows a modulation as a function of Leff . For the following discussion we focus on

gate settings that give G ≈ 0.7 · (2e2/h) at 4000 mK. At these points, the linear conductance

increases from 0.7 towards 1 · (2e2/h) when lowering the temperature. Notably, the increase

in conductance is for all Leff for the largest part due to a growing height of the ZBA

(observed in the corresponding nonlinear conductance results). Also, subtracting 4000 mK

traces from 80 mK traces (defining the traces ∆GT in Fig. S9b) shows that the conductance

increase is largest around these points. However, some ∆GT traces show a suppression (for

Vg2/Vg1 = 0.3, 0.6 and 1.0 in Fig. S9b) and these points coincide with a strong 0.7 anomaly

at the lowest temperatures and pronounced double-peak character for the ZBA. That is,

the ∆GT curves show that the enhancement of G due to many-body effects is strongest

where the linear conductance is about 0.7 · (2e2/h) at high temperatures, but that there is

a range within each Leff period where exactly at this point the strongest expression of a

new effect causes in fact a dip in ∆GT . Further analysis shows that this coincides with the

points where the double-peak ZBA shows behavior that is characteristic for the two-impurity

Kondo model, and that the energy scale for the coupling between the two spins in this model

appears maximum at this point.
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FIG. S9: Temperature dependence of the linear conductance. a, Evolution of the linear conductance

traces of Fig. 2c as a function of temperature. Traces are displayed for gate ratios Vg2/Vg1 = 0.0,

0.1, 0.2 . . . 1.0, as labeled in b. b, The difference in linear conductance ∆GT between the 80 mK and

4000 mK traces of panel a. These traces directly reflect the enhancement of the linear conductance

around the 0.7 anomaly with decreasing temperature.
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8. MAGNETIC-FIELD DEPENDENCE OF DOUBLE-PEAK ZBAs

Three additional examples for the magnetic-field dependence of double-peak ZBAs are

presented in Fig. S10. The dependence on field shows diverse behavior that includes the

merging of the two peaks into a single broad peak, after which in some cases a revival of

the double-peak character can be observed at higher fields (panels a,b). Panel c presents

an example where one of the peaks of the double-peak ZBA at zero field develops a splitting

before the full ZBA evolves into a single broad peak.
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FIG. S10: Magnetic-field dependence of nonlinear conductance with double-peak ZBAs. a, Evo-

lution of the nonlinear conductance as a function of applied in-plane magnetic field Bext, for

the QPC6F of Fig. 3c and Fig. 4, operated at fixed Vg1 = −0.646 V and Vg2/Vg1 = 0.1 (giving

Leff ≈ 220 nm). Subsequent traces (offset −0.01·(2e2/h)) are for increasing Bext from 0 to 2.2 T in

steps of 0.1 T, with additional traces for an increase in Bext in larger steps as labeled. b, As panel a,

for the device operated at fixed Vg1 = −0.403 V and Vg2/Vg1 = 0.6 (giving Leff ≈ 377 nm). c, As

panel a, for the device operated at fixed Vg1 = −0.398 V and Vg2/Vg1 = 0.6 (giving Leff ≈ 377 nm).
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9. ANALYSIS OF ZBA PEAK POSITIONS AT G = 0.4, 0.6, 0.7 AND 0.85 · (2e2/h)

A detailed analysis of the number of ZBA peaks in nonlinear conductance traces that

also quantifies the positions, widths and amplitudes of these peaks is presented in Fig. S12.

This analysis was carried out on the data that underlies Fig. 3c. Figure S12 presents results

for 4 different conductance levels, as labeled. The symbol size in Fig. S12 is proportional

to peak area, which was obtained from fitting Gaussian peak shapes to the ZBA peaks, see

Fig. S11 (a phenomenological ansatz suited for extracting values for peak position, width

and height). The largest symbols correspond to a peak area of 50 µV · (2e2/h). We mostly

observe that the peak width roughly correlates with peak amplitude, such that similar plots

with the symbol size proportional to peak width or peak amplitude roughly give the same

picture. For the Full-Width at Half-Maximum (FWHM) of ZBA peaks we mainly find values

in the range 0.1 to 0.4 mV (or meV for energy scale) for the conductance levels between 0.4

and 0.85 · (2e2/h).
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FIG. S11: Analysis of ZBA peaks. An example of results from fitting two Gaussian peak shapes

on a double-peak ZBA. Fits are carried out on peak traces ∆GP , that are obtained by subtracting

a background conductance level (linear, or parabolic where needed).
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FIG. S12: Analysis of ZBA peak positions at G = 0.4, 0.6, 0.7 and 0.85 · (2e2/h) (as labeled). The

graphs present results of fitting ZBA peaks, displayed as peak positions (in Vsd units) as a function

of Leff . The area of the symbols is proportional to the peak area (obtained as the product of peak

height and FWHM from peak fitting).
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10. LINEAR CONDUCTANCE RESULTS FOR DIFFERENT QPC6F DEVICES

Figure S13 presents linear conductance traces for a range of Leff values from 4 different

devices (similar results for again another device were presented in Fig. 2c of the main text).

These results illustrate that the periodic modulation of the 0.7 anomaly as a function of

Leff was observed in all QPC6F that we measured. The results in Fig. S13a-c were obtained

on devices where a gate voltage of +0.3 V was applied during cool down. The results in

Fig. S13d are from a device that had 0 V on the gates during cool down.
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FIG. S13: Linear conductance G traces as a function of Vg1 for Leff tuned from a short to a long

QPC. The results in a-d are for 4 different devices.
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11. FULL DATA SET FOR A QPC6F DEVICE

A full data set of linear and nonlinear conductance for a QPC6F device as a function of

Leff is presented in Fig. S14, as a sequence of 51 paired graphs. Here Leff is tuned by

adjusting Vg2/Vg1 from 0 to 1 in steps of 0.02. This data set is the basis for the (zero-field,

80 mK traces in the) results that are presented in Figs. 2, 3, 4, S9, S10 and S12.

FIG. S14: (figure over next 13 pages) Linear and nonlinear conductance data for a QPC6F device,

for Leff tuned from short to long by adjusting Vg2/Vg1 from 0 to 1 in steps of 0.02.
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