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La técnica era complicada, pero permitía introducir cada palabra pronunciada, 
en una gotita de agua. Cuando había su cientes como para llenar un vaso, se 
arrojaban al mar. Por esa razón cada mañana el olor de la bruma les hacía 
más sabios y precisos.

Jesús Lana. 
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Resumen
Los aerosoles marinos tienen un gran potencial para in uir en el clima de la Tierra a través de sus efectos
en las propiedades de las nubes. La hipótesis de CLAW va más allá y sugiere que los aerosoles marinos 
formados por el ciclo del azufre en océanos y atmósfera actúan como un mecanismo para la regulación
del clima de la Tierra. Este efecto se produce a través de la in uencia de las emisiones de plancton de
compuestos de azufre en la formación de nubes. El toplancton produce sulfuro de dimetilo (DMS), un
compuesto de azufre altamente volátil. Una vez en la atmósfera, el DMS se oxida y se convierte en la
principal fuente de sulfatos naturales atmosféricos. Estos sulfatos actúan como núcleos de condensación,
partículas esenciales para la formación de nubes. Estas partículas presentes en la atmósfera marina juegan 
un papel importante en el ciclo radiativo de la Tierra. Indirectamente,  producen una mayor cantidad 
de gotas de las nubes. Mayor número de núcleos de condensación en las nubes implica gotas de nubes
más pequeñas. La e cacia de las pequeñas gotas en re ejar la radiación solar incidente es mayor, lo que
resulta en un aumento del albedo de las nubes, produciendo un efecto de enfriamiento en la super cie de
la Tierra.

Para estudiar adecuadamente los aerosoles marinos necesitamos tener un correcto conocimiento de 
la distribución oceánica global de los precursores de aerosoles. Nuestro trabajo se ha centrado en las 
emisiones del océano a la atmósfera de DMS y otros gases biogénicos que puede tener un impacto en
la microfísica de nubes. Durante la tesis se ha actualizado la climatología mensual global de DMS, 
aprovechando el aumento en tres veces del número de observaciones y una mejor distribución global
de las mismas, en la base de datos de DMS. Los patrones emergentes encontrados con las versiones 
anteriores de la base de datos y de la climatología se han re-evaluado con la versión actualizada. Las 
relaciones estadísticas encontradas entre la evolución temporal de las concentraciones de DMS y las 
dosis de radiación solar y concentraciones de cloro la han sido re-examinadas. Los análisis de nueve
años de datos de satélite sugieren que existe una correlación inversa entre la cubierta espacial de nubes
marinas bajas y el tamaño de las gotas de nubes, relacionado con la presencia de aerosoles pequeños. 
Esta estacionalidad acoplada conduce al albedo de las nubes a contribuir a un forzamiento radiativo 
negativo superior en verano, y más bajo en invierno. Esta relación se interrumpe en las regiones de 
la atmósfera marina con un alto impacto de los aerosoles antropogénicos. En consecuencia, la posible
in uencia de los precursores de aerosoles marinos en las nubes se ha analizado en una atmósfera marina
limpia y contaminada, por separado. Los 9 años de datos satelitales globales y climatologías oceánicas 
se han utilizado para derivar las parametrizaciones de los ujos de producción de aerosoles secundarios,
formados por la oxidación de DMS, y otros compuestos volátiles orgánicos biogénicos. Además, los
ujos de emisiones biogénicas de aerosoles primarios orgánicos y aerosoles de sal marina expulsados

por acción del viento sobre la super cie del mar se ha estudiado también a nivel global. Las series
semanales de las estimaciones de estos ujos se han correlacionado con las series temporales de los
radios de las gotas de nubes. El resultado de los análisis estadísticos ha indicado que el azufre orgánico 
y otros aerosoles secundarios pueden ser importantes en la nucleación y la activación de sus gotas sobre 
las regiones oceánicas no contaminadas en latitudes medias y altas. Por el contrario, aerosoles primarios 
(orgánico y la sal del mar) han mostrado que, a pesar de que contribuyen a una gran proporción de la masa 
de aerosol marino, no parecen ser los principales motores de la variabilidad de la microfísica de nubes.

Nuestros resultados proporcionan un apoyo parcial a la viabilidad de la hipótesis de CLAW a escala 
estacional. A pesar de que el DMS ha llamado mucho la atención sobre los vínculos entre la biota marina 
y la regulación del clima, la implicación de otros precursores biogénicos en la formación de nubes ofrece
y sugiere un mayor alcance en la formulación de esta hipótesis.
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Summary

Marine aerosols have a large potential to in uence the Earth’s climate through their effects on cloud
properties. The CLAW hypothesis goes further, and suggests that marine aerosols formed by the sulphur 
cycle of the ocean and the atmosphere act as a mechanism for regulating the Earth's climate. This effect 
is produced through the in uence of plankton emissions of sulphur compounds on cloud formation.
Phytoplankton produces dimethylsulphide (DMS), a highly volatile sulphur compound. Once in the 
atmosphere, DMS is oxidized and becomes the main source of natural atmospheric sulphates. These
sulphates act as condensation nuclei, particles that are essential for the formation of clouds. Those marine 
particles in the atmosphere play an important role in the Earth's radiation budget. Indirectly they produce 
a greater amount of cloud droplets. Higher cloud condensation nuclei imply smaller cloud droplets. The 
ef ciency of smaller droplets in re ecting incident solar radiation is greater, resulting in an increase in
cloud albedo, producing a cooling effect on the Earth's surface. 

To properly study the marine aerosols we need accurate knowledge of the global seawater distribution 
of the aerosol precursors. Our work focused on the ocean-to-atmosphere emissions of DMS and other 
biogenic gases that can have an impact on cloud microphysics. During the thesis we updated the 
monthly global DMS climatology taking advantage of the three-fold increased size and better resolved 
distribution of the observations available in the DMS database. The emerging patterns found with the 
previous versions of the database and climatology were explored with the updated version. The statistical
relationships between the seasonalities of DMS concentrations and solar radiation doses and chlorophyll 
a concentrations were here re-examined. Analyses of nine years of satellite data suggested that there
is a natural inverse correlation between the spatial cover of low marine clouds and the cloud droplet 
size, which is related to the presence of small aerosols. This coupled seasonality pushes cloud albedo to 
contribute higher negative radiative forcing in summer and lower in winter. This relation is disrupted in 
the marine atmosphere regions heavily impacted by anthropogenic aerosols. Consequently, the potential 
in uence the aerosol precursors have on marine clouds was next analysed over unpolluted and polluted
ocean, separately. The 9 years of global satellite data and ocean climatologies were used to derive 
parameterizations of the production uxes of secondary aerosols formed by oxidation of DMS and other
biogenic organic volatiles. Further, the emission uxes of biogenic primary organic and sea salt aerosols
ejected by wind action on sea surface were also globally studied. Series of weekly estimates of these 
uxes were correlated to series of cloud droplet effective radius. The outcome of the statistical analyses

indicated that sulphur and organic secondary aerosols might be important in seeding cloud nucleation and 
droplet activation over mid and high latitude unpolluted oceanic regions. Conversely, primary aerosols 
(organic and sea salt) showed that, despite contributing to large shares of the marine aerosol mass, they 
do not seem to be major drivers of the variability of cloud microphysics. 

Our results provide partial support for the feasibility of the CLAW hypothesis at the seasonal scale. Despite 
that DMS has drawn much of the attention on the links between marine biota and climate regulation, the 
implication of other biogenic precursors on cloud formation provides and suggests a wider scope on the 
formulation of such hypothesis. 
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The self-regulating Earth

The Earth’s atmosphere is completely unstable, continuously consuming and replacing gases 
and particles that coexist within it. Its composition is surprisingly anomalous compared with 
the atmosphere expected for a planet located between Mars and Venus. Despite the changes 
occurred since the Earth was formed, the atmosphere has been kept appropriate for life for most 
of the time. And in turn, most of the chemical changes produced in the atmosphere over the 
Earth’s history, in direction and/or amplitude, were a direct or indirect result of the developing 
biosphere. Apparently, the Earth maintains a stable and homeostatic system through all the 
processes among its components (upper lithosphere, hydrosphere, cryosphere, atmosphere and 
biosphere), with biosphere playing a pivotal role. This idea of the Earth as a self-regulating 
system was the premise of the Gaia hypothesis [Lovelock and Margulis, 1974], which later 
became theory. According to this theory, the Earth is a self-regulating system comprised of 
physical, chemical and biological components, all conforming a whole entity called Gaia. James 
Lovelock, the father of this theory, suggested that Gaia has developed the ability to regulate the 
chemical composition of its components, the surface pH and possibly, the climate [Lovelock and 
Margulis, 1974]. 

Gaia became an intuitive theory, dif cult to prove in many aspects. However, for an increasing 
part of the scienti c community, it became a trigger for a different –more holistic- view of 
the Earth system, and has been a valuable seed for modern biogeochemical and environmental 
sciences [Lovelock, 2003]. 

The understanding of this complex system begins with the knowledge of all the biogeochemical 
cycles that take place in it, which involve the physical, chemical, geological and biological 
processes among all the components of the Earth. Since the oceans cover the 70% of the 
Earth’s surface, the processes and exchanges of particles and gases between the oceans and the 
atmosphere play an important role in the biogeochemical cycles of the Earth, and on its self-
regulating behavior.
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Aerosols

The particles suspended in the atmosphere are called aerosols. The aerosols play an important 
role on the physical and chemical characteristics of the Earth’s atmosphere, and hence, on the 
Earth’s radiation budget. 

There are two different ways through which aerosols can be formed:

Directly - as particles, injected to the atmosphere from the land or surface ocean. These 
aerosols are called primary aerosols.  

Indirectly - by chemical gas transformation into particles through nucleation or 
coalescence, in which case they are called secondary aerosols.

The aerosols found in the marine atmosphere can also be classi ed according to their origin. 
They can be continental aerosols, transported into the marine atmosphere by wind speed or 
atmospheric currents, and marine aerosols, originally formed at the sea surface, either directly or 
from gaseous precursors. 

Continents are a large source of aerosols to the marine atmosphere. The continental aerosols 
are mainly formed by dust, biological (fungi, spores, seeds), biomass burning and urban and 
suburban particles, and secondary aerosols formed by gas-to-particle conversion processes 
[Kinne et al., 2003], see Figure 1 for a scheme of natural aerosols. The human activity has a 
very important impact in the amount of these aerosols. The deserti cation of the continents, the 
increase of human population, and industry are just a few examples of the immediate causes that 
would in uence the amount of continental aerosols in the atmosphere. 

Dust is composed by mineral aerosols ejected from the land into the atmosphere, where they 
remain suspended. Dust is dominated by coarse (large sized) aerosols and it is the major continental 
aerosol contributor to aerosol optical depth (the satellite-derived metrics that serves as a proxy of 
aerosol abundance), followed by biomass burning. Biomass burning is produced by the burn of 
vegetation, mostly due to human agricultural activity, and less to natural res. The purpose of this 
burn is the elimination of dry vegetation to prepare the elds to cultivation, or other agricultural 

nalities. This activity is particularly widespread in Centre and South Africa, Southern Asia and 
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Figure 1. Scheme of primary and secondary aerosol sources (modi ed from Andreae, 2007).   

Central America. Biomass burning aerosols are dominated by ne particles.  Urban and suburban 
aerosols, mainly produced by the combustion of fossil fuels, have a very variable in uence in the 
aerosol optical depth. They are also dominated by ne sizes, with a consequent impact on human 
health. Marine aerosols mainly consist of sea salt crystals in all size ranges, yet dominant among 
coarse particles, small secondary or semi-secondary particles formed from gaseous precursors 
and biogenic polymers, and biological particles of all sizes, such as virus, bacteria and protists. 
The aerosol size and its proximity to potential continental sources are properties that can be used 
to distinguish continental and marine aerosols over the ocean by remote sensing.  However, 
complete segregation is dif cult to achieve, because, as mentioned above, both coarse and 

ne particles concur in both continental and marine aerosols. Also anthropogenic (continental) 
aerosols are dif cult to distinguish from biogenic aerosols from either continental or marine 
origin. Anthropogenic contributions to aerosols are mainly sulfate, organic carbon, black carbon, 
nitrate, and dust from land mobilization and some industrial activities like concrete production. 
The amount of anthropogenic aerosols has largely increased since the Industrial Revolution, 
and with the land-use change associated with the increase in human population. Since most 

Figure 1. Scheme of primary and secondary aerosol sources (modi ed from Andreae, 2007).   
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anthropogenic aerosols are characterized by their small dimension, their localized sources and 
their pulsed emission, one can base their remote sensing characterization upon observations of 
size, connectivity to source points, and temporal variability [Kaufman, 2005]

Over the vast areas of the ocean far away from land, low particle numbers occur in the atmosphere. 
Even though aerosols are scarce in the pristine marine air compared with continental air, the 
oceanic atmosphere comprises an area two fold larger than that over land. Hence, marine aerosols 
have a larger impact in the Earth’s atmosphere than the ones from continental origin.

In 1830 Ehrenberg published the rst study of microscopic objects found in the marine atmosphere 
[Ehrenberg, 1830]. In 1846 Charles Darwin wrote: “Professor Ehrenberg has examined dust 
collected by L. James and myself, and he nds that it is in considerable part composed by 
infusoria, including no less than sixty-seven different forms” [Darwin, 1846]. Infusoria was a 
term, now obsolete, used to designate aquatic creatures like ciliates, euglenoids, protozoa, and 
unicellular algae. The aerosols recollected by Darwin and colleagues were from the African side 
of the Atlantic Ocean, a region heavily in uenced by continental sources. Almost a hundred years 
had to pass before the pristine marine atmosphere started to be studied. In 1935 Meier and other 
scientists made simultaneous measurements from ship and airplane in the North Atlantic Ocean, 
visiting areas never studied before. Surprisingly, they found similar results to those obtained by 
Darwin [Meier, 1935]. They found a wide variety of micro-organisms present in the atmosphere 
– fungi, unicellular algae, diatoms, volcanic ash and glass, and other microscopic debris over 
the coast of Greenland, above the Arctic Circle, at 3,000 feet (914.4 m) above the sea level – see 
Figure 2. 

The study of aerosols had scienti c importance since the rst studies, either because of their 
in uence on human health, their interest for agriculture, or their key role in the physical and 
chemical characteristics of the atmosphere. Recently, aerosols have deserved further interest 
because of their ability to affect the climate through a wide variety of paths that will be explained 
below.



Introduction

19

Figure 2. Plate with examples of particles found in the Arctic atmosphere 
[Meier, 1935]. Photomicrographs by F.C. Meier. 
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Figure 3. Apparatus used by P.J. Coulier for his studies 
on water vapour condensation [Coulier, 1875].

Aerosols and clouds

Cloud formation

Aerosols are needed to form clouds since water molecules in the atmosphere need somewhere 
to condense. Without aerosols, normal thermodynamic conditions in the atmosphere are too 
unfavorable for water to condense and clouds to form. There must be particles that act as cloud 
condensation nuclei. 

The requirement of particles in the process of cloud formation was discovered by P.J. Coulier in 
1875. He was, by then, a professor at a Parisian hospital, interested in the behavior of clouds. He 
made a few experiments to form clouds in a crystal ask – see Figure 3. By regulating the pressure 
inside the ask, which had some water, he observed that he was able to form clouds. Initially, the 

ask was lled with room air. When  negative pressure was applied at the outlet of the ask, the 
air from the laboratory was drawn inside the ask, where it got saturated with water vapor. By 
closing the inlet to build up vacuum, the air expanded and cooled, forming a dense visible fog, a 
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kind of arti cial cloud. By contrast, if he ltered the air as it was drawn into the ask, he could 
not nd cloud generation. This observation pointed to the existence of something in the air that 
enabled clouds to condense [Coulier, 1875]. A few years later, the Scottish researcher J. Aitken 
conducted the same experiment, with much more repercussion of his ndings. Aitken, a brilliant 
scientist interested in a wide variety of atmospheric subjects, condensed in three af rmations the 
results of his rst, of so many, experiments in cloud formation [Aitken, 1880]:

- when water vapor condenses in the atmosphere, it always does so on some solid 
nucleus;

- the dust particles in the air form the nuclei on which it condenses;
- if there was no dust in the air there would be no fogs, no clouds, no mists, and 

probably no rain. 

Aerosols and cloud albedo

What Coulier and Aitken called dust, nowadays are called aerosols. Aerosols have a great impact 
on the Earth’s radiation budget mainly in two ways [Penner et al., 2001] (see Figure 4): 

Directly: The aerosols interfere with the incoming solar radiation. They can either absorb part 
of it, thus heating the troposphere, or scatter it, thus re ecting it back to space and cooling the 
troposphere. 

Indirectly: Through the big in uence they have on cloud formation. The physical and chemical 
characteristics of the aerosols modify cloud microphysics, producing changes in cloud optical 
properties (albedo) and lifetime.

C l o u d  a l b e d o  a n d  a e r o s o l  i n d i r e c t  e �e c t s

The albedo is a measure of the fraction of the solar radiation re ected back by a surface. Surfaces 
with high albedo re ect most of the solar radiation. The planetary albedo is the fraction of solar 
radiation re ected back to space by all components of a planet’s surface and atmosphere. Most 
of the surfaces that cover the Earth have very low albedo, which means that they absorb most of 
the incident radiation and dissipate it as heat, thus causing warming. The darker the surface is, 
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Figure 4. Scheme modi ed from Haywood and Boucher, 2000. It represents indirect radiative mechanisms 
associated with signi cant liquid clouds effects in relation to aerosols. Small black dots: aerosols. Open circles: 
cloud droplets. [Forster et al., 2007]. 

the lower its albedo, the larger its warming effect. Forests have different albedos according to the 
kind of trees they harbor; while coniferous forests have albedos between 0.05-0.15, deciduous 
forests re ect more radiation, with values ranging between 0.15-0.20. Other dry surfaces like 
sand or soil have a large variability with values varying between 0.1-0.4. The surface that covers 
most of the Earth, the dark ocean, has very low albedo, ranging from 0.06 to 0.1. Therefore, an 
Earth without clouds would have an average albedo of 0.15 and would absorb on average 85% of 
the incident radiation. However, since clouds have albedos between 0.4 and 0.8, and about half 
of the Earth is covered by clouds, our planet has an actual overall albedo of 0.30. This means that 
clouds have a very important role in the regulation of the amount of shortwave solar radiation 
that reaches the Earth’s surface, acting as a parasol during the day and producing a cooling effect. 
Clouds also retain longwave radiation that leaves the Earth’s surface during the night but their 
net effect is to cool the planet [Ramanathan et al., 1989, Harrison et al., 1990]. 

The net radiative behavior of clouds depends on the cloud type.  Cloud type distributions differ 
over land and ocean. Water vapor and cloud nuclei supply have much to say in that distribution 
[Sassen and Wang, 2008], but essentially it is cloud altitude and thickness that determines the 
radiative properties of a cloud. High altitude clouds transmit large part of the short-wave incoming 
radiation (have low albedo), and retain the outgoing low-wave radiation – the one re ected by 
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the Earth’s surface. So, their net balance is to warm the Earth, letting the solar radiation going 
in and not letting it going back to space. Deep convective (storm) clouds are as ef cient at 
re ecting short-wave radiation as at retaining long-wave radiation, and their net effect on the 
radiative budget is virtually null. On the other hand, low clouds, and particularly layer clouds 
(stratiform clouds such as stratus and stratocumulus) have very high albedo. They re ect much 
of the incident shortwave radiation and are less ef cient at retaining the long-wave radiation, so 
they cool the surface underneath. Solely low stratiform clouds are present 39.4% of the time over 
the ocean [Sassen and Wang, 2008]; therefore, these clouds largely reduce the amount of solar 
radiation absorbed by the dark oceans, that otherwise would have been 90% all over. 

The cooling effect that low clouds have on Earth might play a fundamental role in a global 
warming scenario should cloud cover change signi cantly with warming. This will depend on 
changes in the water evaporation rates and the mobilization of water vapor, but also on changes 
in the amount of aerosols available for cloud condensation. The knowledge of the impact that 
the primary and secondary aerosols from the oceans have on cloud formation is therefore very 
important to the understanding of the Earth’s radiation budget and its biogeochemical cycles. 

The chemical composition of the aerosols (proportions of organic and inorganic components, 
water solubility, acidity) and the physical characteristics (size, surface tension...) are key 
parameters to take into account in the study of their role as potential cloud condensation nuclei. 
However, aerosol properties are highly variable. The aerosol size distribution can be classi ed 
in three main modes, as a function of their diameter size (d): Aitken (d<0.1 μm), accumulation 
(0.1-1 μm) and coarse (d>1 μm). Figure 5 shows examples of marine aerosols classi ed into 
the major size classes by columns. Aitken mode aerosols are mainly formed upon growth of 
nanoparticles evolved through particle nucleation; these serve as nuclei for the condensation of 
volatile substances until they reach the Aitken mode diamenter [Hoppel et al., 1994; Weber et 
al., 1998]. Aitken particles move in the atmosphere by Brownian motion. Coagulation caused by 
the continuous collision between the particles is the most usual scavenging process for these ne 
particles, which thus evolve into larger (accumulation mode) aerosols. Coarse mode particles, 
mostly of primary origin, are highly affected by gravitational settling, hence, their residence 
in the atmosphere is shorter compared with the other aerosols [Kreidenweis et al., 1999].  The 
accumulation mode aerosols have the proper size to stay long in the atmosphere with a low 
number of collisions between particles [Saltzman, 2009a]. These aerosols tend to accumulate 
in the atmosphere, having an important role in the cloud formation, being potentially activated 
as cloud droplets with the proper humidity conditions. However, the understanding of cloud 
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Figure 5. Examples of different aerosols from the marine atmosphere, classi ed by columns in the three 
main size modes: Aitken (left), accumulation (middle) and coarse (right). Modi ed from Brasseur et al., 
2003.  

formation also requires information about the aerosol number concentration, their size, their 
vertical velocity and their chemical composition. The prediction of the evolution of these aerosol 
characteristics is one of the largest sources of uncertainty in global warming models [Roesler 
and Penner, 2010]. 
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Two main effects of aerosols on cloud formation constitute the aerosol indirect effect outline 
above [Lohmann, 2005]: 

- Cloud albedo effect: Twomey’s effect (also called rst indirect effect).

Cloud microphysical properties are altered by aerosols. The size of the cloud droplets has a 
signi cant role in the Earth’s albedo. The solar radiation re ected back to the space by a cloud 
depends greatly on the size and concentration of the cloud droplets. The smaller cloud droplets 
are, the higher is the amount of solar radiation re ected (higher albedo). With the same amount 
of liquid water, if there is an increase in the number of cloud droplets, these will be smaller, and 
the cloud albedo will increase [Twomey, 1974]. The presence of aerosols suited to act as cloud 
condensation nuclei will modify the amount of cloud droplets in the atmosphere. With a higher 
amount of aerosols, there will be a potential increase in the number of cloud droplets; hence they 
will have smaller size, and consequently higher albedo. This effect, called the Twomey’s indirect 
effect, can be easily shown in the ship tracks – see Figure 6. The increase of the pollution injected 
by the ship into the atmosphere (primary and secondary aerosols) affects the cloud properties, 
producing brighter cloudy track. 

- Cloud lifetime effect: Albrecht’s effect (also called second indirect effect).

The clouds modi ed by an increase in the number of aerosols are more persistent because their 
smaller droplets will take longer to grow up to precipitable (raindrop) sizes [Albrech 1989]. The 
amount of cloudiness due to the increase of aerosols has a large effect on the solar radiation 
re ected, not only producing clouds with higher albedo, but also extending their presence in the 
atmosphere. 
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Figure 6. Ship tracks in the coast of 
California, USA. Along the tracks 
the number of aerosols are higher, 
producing an increase in the number 
of cloud droplets, and hence smaller 
droplets, for a given liquid water 
content. Smaller droplets produce 
clouds with higher albedo, as it 
can be observed by the bright ship 
tracks. 

Ma r i n e  A e r o s o l s  

Pr i m a r y m a r i n e  a e r o s o l s

At the sea surface, wind friction causes the entrance of air bubbles into the water. Bubble bursting 
produces the ejection of particles from the ocean directly into the atmosphere. The aerosols 
that compose the so-called sea spray are formed by organic and inorganic compounds. Marine 
primary organic aerosols are formed by virus and bacteria [Christner et al., 2008], plus polymeric 
organic material of biological origin [Leck and Bigg, 2005]. The inorganic fraction of the sea 
spray is composed by sea salt, which dominates the mass of primary aerosols in the marine 
atmosphere. Despite the importance of wind speed in sea-spray ux estimation [Geever, 2005], 
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Figure 7. Size distribution of the mass of various 
marine aerosol components [Saltzman, 2009].

sea-spray aerosol parameterization should also require the understanding of wave breaking, bubble 
formation, bubble bursting, aerosol ejection, deposition, and entrainment into the boundary layer 
[Saltzman, 2009a]. 

Marine organic sea-spray has not been incorporated in the large-scale models until very recently 
[O’Dowd et al., 2008], due to the dif culties to obtain a proper parameterization. It has been 
observed that the organic matter content of the sea-spray correlate with wind speed and the 
organic matter of surface seawater [O’Dowd et al., 2004]. Organic compounds have the largest 
contribution during high biological activity, while sea salt dominates the sea-spray during the 
periods of low biological activity [O’Dowd et al., 2008]. The global emission of organic matter 
in the submicron size range of sea-spray has been estimated at 8.2 Tg/yr, much lower than that of 

ne sea-salt, which accounts for 24 Tg/yr [Vignati et al., 2010]. 

Sea salt accounts for the largest mass emission of all the marine aerosols. Most of its mass 
corresponds to supermicron particles (see Figure 7), but its highest number concentration occurs 
in the submicron range [O’Dowd and De Leeuw, 2007, Andreae and Rosenfeld, 2008]. They 
seem to have an important role in the growth of sulfate aerosols [Pirjola et al., 2000]. 
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Se c o n d a r y m a r i n e  a e r o s o l s

There are gases which have been suggested to play a role in cloud formation over the marine 
atmosphere.  Gases emitted from the ocean are converted in the atmosphere - after some chemical 
processes - into aerosols. There are two ways this conversion can occur: a) via the nucleation of 
stable clusters or b) via heterogeneous reactions and aqueous phase oxidation of dissolved gases 
in existing aerosol particles [O’Dowd and Leeuw, 2007]. 

Sulfate aerosols have an important impact on the radiation budget, because they have large single-
particle scattering and they are very ef cient as CCN. The oceans are the main natural source 
of volatile sulfur [Simó, 2001, Gondwe et al., 2003], which enters in the atmosphere mainly 
through the emissions of dimethylsul de (DMS). DMS is a gas generated by marine plankton. Its 
emission accounts for >90% of the oceanic emission of volatile sulfur. It is also the most studied 
marine aerosol precursor as it will be explained in the next section.

Marine algae also emit biogenic iodocarbons, which are suggested to play an important role in 
the formation of new particles over the coastal ocean [O’Dowd et al., 2002, Hughes et al., 2008]. 
Photolysis products of these biogenic iodocarbons, iodine-containing vapors, are responsible 
for new particle formation. Also ammonia and ammonium are produced in the sea surface, by 
the biological reduction of nitrate. There is an exchange of their gas form (ammonia) between 
ocean and atmosphere that can go in both directions depending on the water temperature and 
productivity [Johnson et al., 2008]. Part of the ammonia emitted to the atmosphere is incorporated 
into particles, generally as ammonium that neutralizes sulfuric acid into sulfate, which has an 
effect in the sulfur cycle and cloud formation [Quinn et al., 1988, Liss and Galloway, 1993]. 
Volatile organic compounds, such as isoprene, terpenes, and short-chained non-methane 
hydrocarbons, are also suggested to be a potential precursor to secondary organic aerosols. 
Recent studies [Saiz-Lopez et al., 2004, Greenberg et al., 2005, Palmer and Shaw, 2005] estimate 
that the organic volatile uxes from marine biota seem to account for a signi cant share of the 
marine aerosol sources. However, it is still unclear if the oxidation products of volatile organics 
actually contribute signi cantly to nucleation of new particles [Vattovaara et al., 2006], or to 
the growth of recently formed aerosols. The potential role of biogenic volatiles, once emitted 
and oxidized in the atmosphere, in the formation of secondary organic aerosols was studied by 
Meskhidez and Nenes [2006] in an area characterized by an intense and recurrent chlorophyll a
bloom in the Southern Ocean. Using remote-sensing and model simulations they concluded that 
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plankton-associated emissions may have a considerable role in Earth’s radiation budget through 
their formation of secondary organic aerosols that can act as CCN, and subsequent effects on 
cloud albedo.

The linkages between marine aerosol precursors and their in uence on cloud formation remain 
unclear. Deciphering the sources, chemical composition, chemical processes and formation and 
growth of marine aerosols are formidable challenges that require a whole lot of interdisciplinary 
and multiple-scale studies.    

DMS: t h e  g a s  i n  t h e  s po t l i g h t

Hitherto, DMS has been the most deeply studied among marine organic volatiles, and particularly 
among secondary aerosol precursors. One reason for this interest lies on the fact that it occurs 
at concentrations 10 to 100 as high as those of other individual aerosol-forming volatiles [Simó, 
2011]. But the most important reason is to be found in the hypothesis, released 24 years ago, that 
DMS could be a key piece of a gear by which biosphere-atmosphere interactions contribute to 
regulate the Earth’s climate. 

The  C LA W hypo t he s i s

In 1987 James Lovelock, together with Robert Charlson, Meinrat Andreae and Stephen Warren, 
hypothesized about a biological control of the Earth’s climate, propounding the widely studied 
CLAW hypothesis (the acronym is based on the initials of the author’s surnames; Charlson et al., 
1987]. According to this hypothesis, DMS emitted by the ocean acts as the main gaseous precursor 
of cloud condensation nuclei in the remote unpolluted marine atmosphere. Atmospheric DMS 
oxidation gives rise to sulfuric acid, among other products. Sulfuric acid nucleates to form new 
particles in the marine boundary layer. Actually, biogenic sulfate is ubiquitous as a component of 
the marine aerosol, usually neutralized with ammonium [Froyd et al. 2009], and at the time the 
CLAW hypothesis was released it was thought to be the main source of new CCN.  Therefore, 
any increase in the oceanic DMS concentration and its emission ux, would produce an increase 
in the number of condensation nuclei of marine stratiform clouds, which would lead to smaller 
cloud droplets according to the Twomey’s effect. This change would cause an increase in the cloud 
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Figure 8. Schematic loop of the postulated DMS role in climate, according to the CLAW 
hypothesis. 

albedo, reducing the input of light and heat into the oceans. Shading and cooling of the oceans 
could reduce biological DMS production and its emission to the atmosphere, thus completing a 
negative feedback [Charlson et al., 1987], see Figure 8. 
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DMS pr o d u c t i o n  a n d  e m i s s i o n

DMS is a biogenic gas naturally produced as a sub-product of food-web processes and as a 
product of stressed phytoplankton. The main precursor of DMS is the microalgal metabolite 
dimethylsulfoniopropionate (DMSP). Dissolved DMSP in the ocean can be transformed into 
DMS by extracellular and bacterial enzymes [Stefels et al. 2007, Vila-Costa et al., 2007, Howard 
et al., 2008]. There are multiple interactions among phytoplankton, zooplankton, bacteria and 
environmental forcing such as sunlight involved in the transformation of DMSP into DMS and 
the subsequent transformation of the latter. Eventually, only a small fraction of the DMS produced 
in the ocean escapes into the atmosphere [Simó, 2001, Vila-Costa et al., 2006].

The sea-air transfer of DMS is extremely dif cult to measure in situ. There are many mechanisms 
to take into account, related to kinetic and thermodynamic constraints. One of the algorithms 
widely used to calculate DMS emission uxes to the atmosphere is a function of sea surface 
temperature, wind speed and DMS seawater concentration [Nightingale et al., 2000]. Before this 
thesis, global oceanic DMS emissions had been estimated at approximately 15 – 21 TgS/year, 
depending on the parameterization used [Kettle and Andreae, 2000]. 

Gl o b a l  DMS d i s t r i b u t i o n  

The global distribution of seawater DMS concentrations is not accurately known, despite the 
multiple efforts invested so far. In 1999 A.J. Kettle and M.O. Andreae compiled the existing DMS 
measurements since 1972 with the aim to construct a database, and subsequently a climatology. 
Such database, still maintained at the NOAA-PMEL (http://saga.pmelnoaa.gov/dms), is widely 
used, and currently contains more than 48,000 DMS data. The DMS measurements, added to 
the database by individual contributors, are obtained from oceanographic cruises and time series 
stations over the ocean. The data are mainly collected in the top ten meters of the water column, 
where DMS occurs at nanomolar concentrations, i.e., about two orders of magnitude higher than 
most of other individual trace gases. The DMS data coverage of the ocean is not enough to derive 
a reliable global distribution by direct spatial interpolation/extrapolation, because there is a total 
lack of measurements in many areas of the ocean – see Figure 9. Also the temporal coverage in 
many regions is too poor to derive DMS seasonality by direct temporal interpolation.
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Figure 9. Distribution of 1ºx1º latitude-longitude pixels with seawater DMS data (orange dots). 

To be able to construct a climatology from the existing data, some kinds of mapping criteria 
and objective analysis techniques have to be applied. The original climatology was constructed 
initially with approximately 15,000 DMS concentration measurements [Kettle et al., 1999]. 
That climatology was updated one year later with the inclusion of approximately 1,500 new 
measurements [Kettle and Andreae, 2000]. Since then, the number of measurements available in 
the database has increased considerably. The scienti c community has worked with the SOLAS 
(Surface Ocean Lower Atmosphere Study) Integration Project with the aim to further update the 
database and to create an updated climatology that better represents the current DMS distribution 
over the global ocean. The effort for the construction of the new climatology has been part of this 
thesis and will be reported here.
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In spite of the existing uncertainties in the detailed spatial and temporal DMS distribution, the 
original DMS climatology [Kettle et al. 1999] and subsequent work [e.g., Vallina et al. 2007] 
revealed some emerging patterns. DMS concentration follows a strong seasonal pattern at 
high latitudes, with higher values during each hemispheric summer. During the winter DMS 
concentration is low, re ecting low levels of biological activity. At low latitudes the seasonality 
is less pronounced and the maximum spring-summer concentrations are lower (generally < 5nM). 
At low temperate and subtropical latitudes, interestingly, DMS follows more closely the monthly 
variation of sunlight than that of plankton biomass. 

A t m o s phe r i c  DMS c he m i s t r y

Once in the atmosphere after emission across the air-sea interface, DMS is oxidized by free 
radicals. The atmospheric chemistry of DMS is more complicated than originally proposed by 
the CLAW hypothesis. There are two main reaction pathways in the atmospheric DMS oxidation. 
The ‘addition pathway’ is initialized by an added O atom. After chemical transformations into 
water soluble products (dimethl sufoxide (DMSO), dimethyl sulfone (DMSO2), methylsul nic 
acid (MSIA) and methanesulfonic acid (MSA)), these seem to have a key role in the growth 
of existing particles. The ‘abstraction pathway’ begins with the abstraction of a H atom. After 
that rst step, chemical transformations lead to the formation of H2SO4 or MSA [von Glasow, 
2007]. 

The OH radical is the main DMS oxidant; it acts through both the addition and the abstraction 
pathways [von Glasow and Crutzen, 2004]. According to laboratory and model studies [Barnes, 
1991; Bedjanian et al., 1996; Ingham et al., 1999; Nakano et al., 2001] BrO also seems to play 
a role in the oxidation of DMS. The in uence of NO3, Cl, and O3,aq in the atmospheric chemical 
processes have been also studied based on chemical models outputs [von Glasow and Crutzen, 
2004]. After the OH, and in the absence of halogens, NO3 is the major oxidant of DMS. The 
reaction with NO3 proceeds via abstraction and occurs in polluted regions and during night time 
when the concentrations of NO3 are high. However, the impact of those atmospheric components 
on DMS oxidation is still poorly quanti ed [von Glasow, 2007]. 

For the sake of this thesis and its global perspective, we adapt our study to some simpli cations, 
and omit some unclear details that should be important for quantifying the production of aerosols, 
but probably not for studying their seasonal variability. Our rst simpli cation is to consider OH 



Marine aerosols on clouds

34

as the only DMS oxidant. 

The main products of DMS oxidation are MSA, an exclusive product of DMS, and sulfuric acid 
and non-sea-salt-SO4

-2 particles that can act as cloud condensation nuclei. Other products include 
dimethylsulfoxide and dimethylsulfone. DMS oxidation can hardly be explained by gas-phase 
reactions exclusively, and multiphase chemistry has to be considered [Barnes, 2006]. 

The knowledge of the chemical DMS transformations in the atmosphere and its end products 
still holds a lot of uncertainties. Transport processes, aerosol-cloud interactions, and atmospheric 
conditions such as temperature, pressure, air humidity and the presence of other molecules, all 
suppose serious dif culties to obtain in situ data to validate laboratory and modeling results. 
Increasing our understanding of the atmospheric chemistry of DMS is however essential to 
ascertain its role in the formation of new particles and the growth of existing particles, which is 
largely relevant to cloudiness over, and insolation into the oceans. 

On  t he  wa y t o  d e c i phe r i n g t he  C LA W hypo t he s i s

Despite the uncertainties in the global distribution and the atmospheric chemistry of DMS, a 
number of results, particularly from the last decade, have provided evidence in support of the 
involvement of this gas in a CLAW-like feedback mechanism. These are just some of the most 
signi cant:

A recent study using global DMS observations and satellite-derived data suggest that biogenic 
sulfur from the oceans represents a major source of cloud-forming aerosols over much of the 
pristine southern hemisphere oceans [Vallina et al., 2006; 2007]. According to this study, oxidation 
of biogenic DMS seems to largely contribute to the CCN numbers but more importantly to 
drive their seasonal variability over the remote ocean.  Regional positive correlation between 
climatological seawater DMS concentration, its emission to the atmosphere, and satellite-
derived cloud condensation nuclei agree with in situ measurements [Andreae et al., 1995].  This 
is compatible with one of the postulates of the CLAW hypothesis, by which changes in DMS 
emission cause changes in CCN numbers over the ocean.

Model simulations [Thomas et al., 2010] and satellite-derived data [Meskhidze and Nenes, 2006] 
reproduce an increased number of smaller sized cloud droplets during high biological surface 
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ocean activity. Emissions of DMS (and potentially other biogenic trace gases and primary 
aerosols) seem to affect cloud microphysics over pristine areas of the marine atmosphere not 
affected by continental aerosols. This supports another postulate of the CLAW hypothesis by 
which marine biogenic emissions have an in uence on cloud microphysics and optics. 

A global study by Vallina and Simó [2007a] concluded that regional monthly DMS concentrations 
are positively correlated with the daily amount of solar radiation received in the upper mixed 
layer of the open ocean, irrespectively of the latitude, plankton biomass or temperature. This is a 
necessary condition for the CLAW negative feedback to occur, as it implies that changes in the 
amount of solar radiation reaching the surface ocean have a consequence on the amount of DMS 
produced and emitted.

The lack of DMS data in some areas of the ocean, the parameterizations needed to estimate 
the biogenic aerosols emissions to the atmosphere, our incapacity to measure some chemical 
processes in the atmosphere, and our virtual ignorance of the potential quantitative contribution 
of other trace gases and primary particles to aerosol production and cloud microphysics, are all 
uncertainty sources that are dif cult to overcome. There is still much to improve in the knowledge 
of the involvement that marine aerosols have on the biogeochemical cycles of the Earth. In the 
words of a scientist that deeply studied the rst steps of this subject, Aitken: “Much, very much, 
still remains to be done. Like a traveler who has landed in an unknown country, I am conscious 
my latering steps have extended but little beyond the starting point”.
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A n n e x I. Da t a  s o u r c e s .

The four studies presented in this thesis are based mainly, yet not only, on the use of satellite data. 
Orbital satellites provide physical and radiative global cloud properties for the last decade, as 
well as some sea surface properties. However, not all the desired variables are measurable from 
satellite on a global scale. Sometimes it is useful to turn to climatologies, or to reanalyse in situ
and satellite data through models. 

The variables used in the four chapters of the thesis are summarised in the table below, with the 
source they were obtained from, the time span and the temporal resolution used in each study. 

Variable Source Years Temporal 
Resolution

Chapter 1 Chapter 2 Chapter 3 Chapter 4

DMS GSS DMS database 
(1)

1972-2009 Monthly-Annual

1972-2009 Climatology

Simó and Dachs 
2002

Climatology

Sea Ice CERSAT/Ifremer (2) 1992-2009 Climatology

Sea Surface 
Temperature

NCEP/NCAR 
Reanalysis (3)

1978-2008 Climatology

2001-2009 Monthly

Wind Speed NCEP/NCAR 
reanalysis (3)

1978-2008 Climatology

2001-2009 Monthly

Chlorophyll a SeaWiFS (4)

1997-2009 Climatology
2001-2009 Monthly

Nitrate WOA 2009 (5) 2009 Climatology

Phosphate WOA 2009 (5) 2009 Climatology

Mixed Layer 
Depth

Modi ed from
de Boyer Montégut 

et al. (2004)
Climatology
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Solar Radiation 
Dose

Calculated as in
Vallina and Simó 

(2006)

Climatology

Cloud 
Condensation 

Nuclei

MODIS-Terra (6)

2001-2009 Weekly

2001-2009 Monthly

Cloud Effective 
Radius

MODIS-Terra (6)

2001-2009 Weekly

2001-2009 Monthly

Cloud Fraction 
Liquid MODIS-Terra (6) 2001-2009 Weekly

Aerosol Optical 
Thickness MODIS-Terra (6) 2001-2009 Monthly

Aerosol Optical 
Thickness 
Standard 
Deviation 

MODIS-Terra (6) 2001-2009 Monthly

Fraction 
Optical Depth 

Submicron 
Aerosol

MODIS-Terra (6) 2001-2009 Monthly

Firecounts
World Fire Atlas 

ATSR (7)

2001-2009 Monthly

Land Cover
IGBP  land cover 
classi cation (8) Climatology

Albedo CERES (9)

2001-2009 Weekly

2001-2009 Daily

Angstrom 
Exponent Ocean

MODIS-Terra (6) 2001-2009 Monthly

OH GEOS-Chem (10) 2001 Monthly

MSA
UMAG network (11)

plus other stations Monthly
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(1) The GSS DMS database

The GSS DMS (Global Sea Surface Dimethylsul de) database of surface seawater DMS 
concentrations was constructed initially in 1999 by Dr. Jamie Kettle and has been updated ever 
since. The data contributed by individual researchers have been collected between March 1972 
and June 2010 (mostly since April 1980). The data used in our studies (47,313 DMS seawater 
concentration measurements) consist of DMS measurements, reported in nanomolar (nM) 
concentrations, from depths of 0–10 meters.

The database is today maintained at NOAA-PMEL (National Oceanic and Atmospheric 
Administration-Paci c Marine Environmental Laboratory). 

For further information, visit: http://saga.pmel.noaa.gov/dms/

(2) CERSAT/Ifremer. 

CERSAT (Centre ERS d’Archivage et de Traitement - French ERS Processing and Archiving 
Facility) is part of IFREMER (French Research Institute for Exploitation of the Sea.

Sea Ice concentration products are obtained for both, North and South poles, with polar 
sterographic 12.5 km resolution grids, from the 85 GHz channel of SSM/I (Special Sensor 
Microwave/Imager) onboard DMSP (Defense Meteorological Satellite Program) satellite. The 
daily maps are processed from the daily brightness temperature maps from NSIDC (National 
Snow and Ice Data Center), using the Artist Sea Ice (ASI) algorithm developed at University of 
Bremen (Germany).

For further information, visit: http://www.ifremer.fr/cersat/en/index.htm

(3) NCEP reanalysis Model

The National Centers for Atmospheric Prediction (NCEP) and the National Center for Atmospheric 
Research (NCAR) have accomplished different re-analysis/forecast projects to perform data 
assimilation of global data sets for 1948 to present for atmospheric parameters. This model 
used to create the reanalysis is initialized with measured data from different sources, including 
observations from weather stations, ship, aircraft, radiosondes, and satellite. 
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Daily time series and monthly means of sea surface temperature and wind speed at 10 m over sea 
level are calculated with 2.5°x2.5° spatial resolution.  A subset of the NCEP/NCAR Reanalysis 
has been processed to create monthly means of the original data, and in some cases, derived 
variables or other statistics. 

The project development has been supported by the National Ocean and Atmospheric 
Administration’s (NOAA) Of ce of Global Programs. 

For further information, visit:  http://www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.
html

(4) SeaWiFS

Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the instrument on board the Orbview-2 
spacecraft. SeaWiFS is basically formed by a rotating optical scanner which measures radiances 
in 8 spectral bands (from 0.40 to 0.88 μm). 

Based in the strong absorption of chlorophyll a concentration on the blue (435 nm) band and a 
minimum absorption in the green (565 nm), the chlorophyll a concentration in the global surface 
ocean can be estimated from the water-leaving radiance near these two visible wavelengths. 

The data we use are Level 3, which has been statistically processed at 4 km and 9 km spatial 
resolution to produce global analyses.

For further information, visit: http://oceancolor.gsfc.nasa.gov/

(5) WOA 2009

The World Ocean Atlas 2009 (WOA 2009) is a set of objectively analyzed (1° grid) climatological 
elds based on in situ data at standard depth levels for annual, seasonal, and monthly compositing 

periods for the World Ocean.  

The global maps are obtained using an objective analysis scheme to produce global elds from 
one degree square means of data values at standard values. The pro le used is de ned as a set 



Introduction

41

of measurements for a single variable at discrete depths taken as an instrument drops or rises 
vertically in the water column. The nutrient data used in this atlas were typically obtained by 
means of analysis of serial (discrete) samples.

The global maps we used (surface nitrate and phosphate concentrations) are base on historical 
oceanographic nutrient data obtained from the NODC/WDC  (the U.S. National Oceanographic 
Data Center/World Data Center System) archives and include all data gathered as a result of the  
Intergovernmental Oceanographic Commission (IOC) GODAR (Global Oceanographic Data 
Archaeology and Rescue) project and WOD (World Ocean Database project). 

For further information, visit:  http://www.nodc.noaa.gov/OC5/WOA09/pr_woa09.html

(6) MODIS-Terra

The MODIS (Moderate-resolution imaging spectroradiometer) instrument is operating on the 
Terra and Aqua spacecraft. We used cloud and aerosol data provided by Terra. Its detectors 
measure 36 spectral bands between 0.405 and 14.385 µm, and it acquires data at three spatial 
resolutions -- 250m, 500m, and 1,000m. The MODIS is composed of two mutually supporting 
sensors that cover a swath width of 2,330 km to provide nearly complete two-day global coverage 
from a polar-orbiting, sun-synchronous, serviceable platform.

Along with all the data from other instruments on board the Terra spacecraft, 
MODIS data are transferred to ground and transformed into Level 3 data, produced 
by the MODIS Adaptive Processing System (MODAPS), and then are parceled 
out among three DAACs (Distributed Active Archive Centers) for distribution. 

For further information, visit: http://modis.gsfc.nasa.gov

(7) World Fire Atlas ATSR

The ATSR (Along Track Scanning Radiometer) World Fire Atlas (WFAA) provides global 
monthly maps of res. Maps are available for years since 1995. ATSR instruments produce 
infrared images of the Earth at a spatial resolution of one kilometre. The ATSR channels are at 
wavelengths of 1.6um (visible) and three thermal bands at 3.7um, 11um, and 12um. 
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Fire-counts are determined from nightime ATSR data as the record having a brightness temperature 
in the 3.7 micron channel above 308K. 

For further information, visit: http://dup.esrin.esa.it/ionia/wfa/index.asp 

(8) IGBP  land cover classi cation

The IGBP (International Geosphere Biosphere Programme) land cover classi cation maps are 
derived from 1 kilometer Advanced Very High Resolution Radiometer (AVHRR) data using all 
available bands and derived Normalized Difference Vegetation Index (NDVI). All 5 spectral 
bands of the AVHRR were used as inputs: channel 1 (visible red re ectance, 0.58-0.68 microns), 
channel 2 (near infrared re ectance, 0.725-1.1 microns), channel 3 (thermal infrared, 3.55-3.93 
microns), channel 4 (thermal, 10.3-11.3 microns), channel 5 (thermal, 11.5-12.5 microns) and 
the NDVI (channel 2- channel 1)/(channel 2 + channel 1). The multi-spectral measurements 
have been proven to be suitable for the quantitative measurement of a number of parameters that 
AVHRR was originally not designed for. 

The data sets of the obtained land cover classi cation are provided at three spatial resolutions of 
0.25, 0.5 and 1 degrees lat./long. For each spatial resolution there is a land cover type classi cation 
layer (with numbers from 0 to 14) and 15 associated layers that provide the fraction, from 0 to 
100, of each land cover type per cell.

For further information, visit: http://edcdaac.usgs.gov/modis/mod12q1v4.asp

(9) CERES

The CERES (Clouds and the Earth’s Radiant Energy System) is a key component of the Earth 
Observing System (EOS) program. CERES instruments were launched aboard the Tropical 
Rainfall Measuring Mission (TRMM) in November 1997 and on the EOS Terra satellite in 
December 1999, and two additional instruments are ying on the EOS Aqua spacecraft since 
2002. Multiple satellites are needed to provide adequate temporal sampling since clouds and 
radiative uxes vary throughout the day.

The CERES instruments provide radiometric measurements of the Earth’s atmosphere from three 
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broadband channels -- a shortwave channel to measure re ected sunlight, a longwave channel to 
measure Earth-emitted thermal radiation in the 8-12 μm “window” region, and a total channel to 
measure all wavelengths of radiation.

CERES products include both solar-re ected and Earth-emitted radiation from the top of 
the atmosphere to the Earth’s surface. Cloud properties are determined using simultaneous 
measurements by other EOS instruments such as the Moderate Resolution Imaging 
Spectroradiometer (MODIS).

Top-of-Atmosphere (TOA) and Surface Products use cloud imager data for scene classi cation 
and CERES measurements to provide radiative uxes for both cloudy and clear sky conditions.

For further information, visit: http://ceres.larc.nasa.gov/index.php

(10) GEOS-Chem

GEOS–Chem is a global 3-D chemical transport model (CTM) for atmospheric composition 
driven by meteorological input from the Goddard Earth Observing System (GEOS) of the NASA 
Global Modeling and Assimilation Of ce. It is applied by research groups around the world to a 
wide range of atmospheric composition problems.

The GEOS meteorological data archive has a temporal resolution of 6 hours (3 hours for surface 
quantities and mixing depths). Standard global GEOS–Chem simulations use 2°x2.5° or 4°x5° 
grid resolution by aggregating GEOS meteorological data.

GEOS–Chem includes detailed HOx–NOx–VOC-ozone tropospheric chemistry. Stratospheric 
chemistry in GEOS–Chem is based on climatological representation of species sources and 
sinks.

The model is managed by the GEOS–Chem Support Team, based at Harvard University and 
Dalhousie University with support from the US NASA Earth Science Division and the Canadian 
National and Engineering Research Council.

For further information, visit: http://acmg.seas.harvard.edu/geos/index.html
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(11) UMAG 

The UMAG (University of Miami Aerosol Group) began to develop networks of aerosol 
monitoring stations at various ocean sites beginning in the early 1980’s. Aerosols are collected 
by high-volume lter samplers. 

All samples are analyzed for the major aerosol species: nss-SO4=, NO3-, NH4+, sea-salt 
components. A large subset of the samples are also analyzed for methanesulfonate (MSA).

For further information, visit:  http://gacp.giss.nasa.gov/data_sets/Joseph_Prospero.html
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A i ms  a n d  o u t l i n e  o f  t he  t he s i s

The main objective of this thesis was to improve our knowledge of the in uence that the emissions 
of DMS and other marine aerosol precursors have on cloud microphysics over the ocean. This 
broad aim can be divided into four major questions that correspond to the four chapters of the 
thesis:

Wha t  i s  t he  s pa t i a l  a n d  t e mpo r a l  d i s t r i b u t i o n  o f  DMS c o n c e n t r a t i o n  
a n d  e mi s s i o n  �u x i n  t he  gl o b a l  o c e a n ?

C ha pt e r  1. A n  u pd a t e d  c l i ma t o l o gy o f  s u r f a c e  d i me t hyl s u l �d e  
c o n c e n t r a t i o n s  a n d  e mi s s i o n  �u xe s  i n  t he  gl o b a l  o c e a n .

A threefold increase in DMS data in the last decade prompted us to update the existing DMS 
climatology, created ten years ago by Kettle et al. [1999]. To this aim we used the Global Surface 
Seawater DMS Database contributed by researchers from all over the world. The objective analysis 
methodologies and interpolation schemes used in the original climatology had to be revised, with 
application of our current knowledge of ocean biogeochemistry and DMS variability. The new 
climatology should be instrumental to re-calculate the DMS emission uxes to the atmosphere, 
to explore the statistical relationship of DMS to other oceanic and environmental variables, 
and to rise awareness of those areas with sparse sampling coverage that deserve prioritized 
consideration in the planning of new eldwork efforts. 

Do e s  t he  gl o b a l  s e a s o n a l  d i s t r i b u t i o n  o f  DMS s u ppo r t  t he  C LA W 
hypo t he s i s ?

C ha pt e r  2. Re -e xa mi n a t i o n  o f  gl o b a l  e me r gi n g pa t t e r n s  o f  o c e a n  DMS 
c o n c e n t r a t i o n .

The construction of the updated climatology prompted us to revise the emerging patterns found 
with previous versions of the DMS database and climatology, and to revisit the statistical between 
DMS and environmental variables that could provide insights on the drivers of DMS production. 
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The proportionality previously found between DMS and the solar radiation dose over most to the 
global surface ocean [Vallina and Simó 2007a] warranted a critical and improved re-examination, 
and so did the match/mismatch connection between the DMS concentration and sea surface 
microbiota, represented by the chlorophyll a concentration.

Do  ma r i n e , c o n t i n e n t a l  a n d  a n t hr o po ge n i c  a e r o s o l s  ha ve  d i s t i n gu i s ha b l e  
i n �u e n c e s  o n  l o w c l o u d  mi c r o phys i c s  o ve r  t he  o c e a n ?

C ha pt e r  3. Na t u r a l  a n d  a n t hr o po ge n i c  d r i ve r s  o f  t he  s e a s o n a l i t y o f  
ma r i n e  a e r o s o l -c l o u d  i n t e r a c t i o n s . 

A key premise of the CLAW hypothesis lies on the aerosol indirect effect, that is, the in uence 
of aerosol numbers on cloud microphysics, particularly droplet size. We used nine years of 
weekly and monthly global satellite records of atmospheric variables, such as the cloud cover 
of the oceans, the cloud droplet effective radius, cloud albedo, and aerosol optical properties, to 
investigate if the footprint of aerosols on clouds occurs and is observable from space. We wanted 
also to investigate if such a footprint is different between continental and marine aerosols, and 
between biogenic marine and anthropogenic aerosols. For this purpose we updated a previously 
developed parameterization of aerosol types based on satellite observations.    

Wha t  a r e  t he  r e l a t i ve  i n �u e n c e s  o f  DMS-d e r i ve d  a e r o s o l s , s e c o n d a r y 
o r ga n i c  a e r o s o l s , pr i ma r y o r ga n i c  a e r o s o l s  a n d  s e a  s a l t  pa r t i c l e s  o n  
c l o u d  d r o pl e t  s i ze  o ve r  t he  o c e a n ?

C ha pt e r  4. Bi o ge n i c  i n �u e n c e  o n  c l o u d  mi c r o phys i c s  o ve r  t he  gl o b a l  
o c e a n .

With the aim to analyze the potential roles of aerosols of marine origin in controlling clouds 
microphysics, we took advantage of a wide array of data including the global DMS climatology, 
nine years of satellite records, model outputs, and local data from aerosol sampling stations. 
Parameterizations of proxies of the production of major marine cloud-forming aerosol types were 
taken from a search through the recent literature. The monthly and weekly variability of DMS-
derived aerosols was estimated from climatological seawater DMS concentrations and a simple 
atmospheric chemistry calculation. The variability of both secondary and primary aerosols was 
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estimated essentially from the seawater chlorophyll a concentration and the wind speed. And the 
variability of the small sea salt particle ux was derived from the wind speed.  A running-window 
correlation approach was used to investigate if there was a statistical relationship between the 
production of each marine aerosol type and the size of liquid clouddroplets.

Aims of the thesis 
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A bs t r a c t

The potentially signi cant role of the biogenic trace gas dimethylsulphuride (DMS) in 
determining the Earth’s radiation budget makes it necessary to accurately reproduce seawater 
DMS distribution and quantify its global ux across the sea/air interface. Following a threefold 
increase of data (from 15,000 to over 47,000) in the global surface ocean DMS database over 
the last decade, new global monthly climatologies of surface ocean DMS concentration and sea-
to-air emission ux are presented as updates of those constructed 10 years ago. Interpolation/
extrapolation techniques were applied to project the discrete concentration data onto a rst guess 

eld based on Longhurst’s biogeographic provinces. Further objective analysis allowed us to 
obtain the nal monthly maps. The new climatology projects DMS concentrations typically in 
the range of 1–7 nM, with higher levels occurring in the high latitudes, and with a general 
trend toward increasing concentration in summer. The increased size and distribution of the 
observations in the DMS database have produced in the new climatology substantially lower 
DMS concentrations in the polar latitudes and generally higher DMS concentrations in regions 
that were severely undersampled 10 years ago, such as the southern Indian Ocean. Using the new 
DMS concentration climatology in conjunction with state-of-the-art parameterizations for the 
sea/air gas transfer velocity and climatological wind elds, we estimate that 28.1 (17.6–34.4) Tg 
of sulphur are transferred from the oceans into the atmosphere annually in the form of DMS. This 
represents a global emission increase of 17% with respect to the equivalent calculation using the 
previous climatology. This new DMS climatology represents a valuable tool for atmospheric 
chemistry, climate, and Earth System models.
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In t r o d u c t i o n

The ocean surface plays an important role in the global biogeochemical cycle of sulphur. Oceanic 
dimethylsulphuride (DMS) emission is the main natural source of atmospheric sulphur [Bates 
et al., 1992; Simó, 2001]. Once in the atmosphere, DMS is oxidized to form sulphuric and 
methanesulphuronic acids, which contribute to new particle formation and growth to maintain 
the pool of cloud condensation nuclei (CCN) that is necessary for cloud formation [Andreae 
and Crutzen, 1997]. The number of these small-sized atmospheric particles affects the radiation 
budget of the Earth, directly by scattering solar radiation and indirectly by in uencing cloud 
microphysics and albedo [Andreae and Rosenfeld, 2008]. The CLAW hypothesis, acronym based 
on the initials of the authors surnames [Charlson et al., 1987], postulates a climate feedback loop 
between phytoplankton, DMS emissions, CCN, and cloudiness. The feasibility of such a feedback 
loop at the local scale has been challenged by stateof-the-art atmospheric model outcomes 
showing limited new particle formation in the marine boundary layer (MBL). According to these 
models, DMS contribution to CCN numbers would only occur at large supraregional scales alter 
long range transport in the free troposphere and reentrainment into the MBL [e.g., Carslaw et 
al., 2010]. 

The main precursor of DMS is the microalgal metabolite dimethylsulphuroniopropionate (DMSP). 
IntracellularDMSP breakdown leads to the production of DMS by phytoplankton [Stefels et al., 
2007]. Microalgae also release untransformed DMSP through exudation and mortality, and part 
of this dissolved DMSP is converted to DMS by extracellular and bacterial enzymes [Stefels and 
Dijkhuizen, 1996; Kiene et al., 2000; Yoch, 2002; Stefels et al., 2007; Vila-Costa et al., 2007; 
Howard et al., 2008]. DMS, in turn, is oxidized by photochemical reactions [Brimblecombe 
and Shooter, 1986; Toole et al., 2003] and metabolized by heterotrophic bacteria. Finally, only 
a small fraction of the DMS produced escapes to the atmosphere [Simó, 2001; Vila-Costa et al., 
2006]. The tight coupling between DMS production and loss makes it challenging to study the 
driving factors and the dynamics of DMS emission from the ocean surface. However, large-scale 
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observations of ocean surfaceDMS revealmacroscale patterns of variability such as a global 
proportionality between DMS concentration and average daily solar radiation in the surface mixed 
layer [Vallina and Simó, 2007a]. This provides parcial support for the CLAW hypothesis. 

The potentially signi cant role of DMS in climate regulation has encouraged the community to 
provide an accurate representation of both DMS seawater concentration and sea/air DMS ux 
distribution on a global scale. There have been multiple efforts to accurately represent the global 
DMS distribution. The main effort, initiated by A.J. Kettle and M.O. Andreae, was to compile a 
now freely available database using archived DMS measurements. The Global Surface Seawater 
DMS Database (GSSDD), currently maintained at the NOAA-PMEL, is constructed from data 
contributions by individual scientists and made available to the scienti c community (http://
saga.pmel.noaa.gov/dms/). The data are sparsely distributed in both space and time, as is shown 
in the DMS data footprint on the 1° × 1° annual global map (Figure S1). The map shows that the 
coverage is not enough to resolve the global distribution of DMS on a monthly basis, whereas 
the importance of global emissions maps for climate models necessitates the formulation of a 
gridding procedure by the best means possible. Therefore, extensive data treatment or modeling 
is required to produce global DMS and emission uxes climatologies from the database.

Several methods have been proposed to obtain realística global DMS distributions. Some of them 
rely on the relationship between the DMS concentration and other variables for which global 
distributions exist or can be modeled: Anderson et al. [2001] computed DMS from chlorophyll, 
light and nutrients; Simó and Dachs [2002] used a twoequation algorithm to derive surface 
DMS from surface chlorophyll a and the mixed layer depth; Aumont et al. [2002] and Belviso 
et al. [2004a] developed nonlinear parameterizations to compute DMS from chlorophyll a and 
an index representing the community structure of marine phytoplankton. Other approaches are 
totally or partially based on numerical models: Chu et al. [2003], Six and Maier-Reimer [2006], 
Kloster et al. [2006], Elliott [2009], Bopp et al. [2008] and Vogt et al. [2010] used prognostic 
biogeochemical formulations for DMS production and removal processes within global ocean 
circulation models. 

The most widely used global DMS climatology, derived exclusively from the database, was 
published a decade ago (Kettle et al. [1999] and Kettle and Andreae [2000]; hereafter referred 
to as K99 and K00, respectively). The number of data used was initially 15,617 (K99), to which 
approximately 1,500 extra seawater DMS concentration measurements from the period 1996–
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1998 were added to produce an updated climatology (K00). Since then, the scienti c community 
has worked with SOLAS Integration (Surface Ocean Lower Atmosphere Study, http://www.bodc.
ac.uk/solas_integration/) to update the database, increasing the number of DMS measurements 
in the ocean surface three fold (47,250 in April 2010). The aim of this work is to create an 
updated monthly DMS concentration climatology for the global ocean, and an associated DMS 
emission ux climatology. Objective data analysis and interpolation schemes in concert with 
current knowledge of ocean biogeochemistry and DMS dynamics have enabled the construction 
of a new climatology. Novel distribution patterns, differences with the original climatology, and 
the resulting reestimate of the global annual emission ux are discussed. 

Da t a  a n d  Me t ho d o l o gy

Da t a

The data used (47,313 DMS seawater concentration measurements) are entirely from the 
Global Surface Seawater DMS Database (http://saga.pmel.noaa.gov/dms/) plus 63 additional 
measurements in the South Paci c [Lee et al., 2010], not included in the database. The data 
contributed by individual researchers have been collected between March 1972 and February 
2009 (mostly since April 1980); see Table S1. The data consist of DMS measurements, reported 
in nM, from depths of 0–10 meters. 

There is no quality control in the database. This is worth stressing because there is no uni cation of 
the DMS measurement protocol, and very few intercalibration exercises have been conducted in 
the last 30 years. A number of sampling and analytical issues have been reported or communicated 
in recent years. For example, the use of HgCl2 as a sample preservative can result in anomalously 
high DMS values by transformation of DMSP into DMS [Curran et al., 1998]; or, in the presence 
of thick blooms of high DMSP producers like Phaeocystis sp., a lack of sample pre ltration may 
produce continuous and abundant DMS during purging [del Valle et al., 2009]. Despite these 
recognized concerns, information is still too sparse to provide robust criteria for the selection 
or elimination of historical data. Hence, no data from the database has been agged. However, 
to avoid the undesirable effects that potentially erroneous and very high values might produce 
during the objective analysis, data that were above the 99.9 percentile are removed. The 0.1% 
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eliminated were seawater DMS concentrations greater than 148 nM.
To create the climatology we rst strati ed data according to the sampling month, and averaged 
to 1° × 1° bins, which are the input to the objective analysis. If there was only one DMS datum 
within the 1° × 1° square, the pixel value would be the value of that datum. The objective análisis 
scheme used is described by Barnes [1964], which is the same employed by K99 for DMS. This 
method is used as well by other authors for temperature, salinity, oxygen and nutrients in the 
last version of the World Ocean Atlas [Locarnini et al., 2010] and previous editions (WOA94, 
WOA98, WOA01, WOA05). The purpose of this method is to create a gridded eld of a variable 
from sparse in situ data. A key element of the objective analysis is the rstguess eld, which is 
subsequently corrected with the help of the available observations.

Fi r s t -Gu e s s  Fi e l d s : pr o vi n c e s  a n d  s u bs t i t u t i o n s

As described by Daley [1993], there are several methods to obtain the continuous monthly 
background elds that will be subsequently reshaped with in situ data: an existing climatology, 
the short forecast of an assimilation model, or some optimum blend of the two. In our case, using 
the earlier K99 climatology was not appropriate because we were using all of those same data in 
the updated climatology, and also because we were aiming at improving the rst guess elds of 
K99. The authors of the World Ocean Atlas [Locarnini et al., 2010] used a single annual analysis 
based on zonal annual means as the rst guess eld for all of the seasonal climatologies. In our 
case, however, data are so spaced out in distance and time that direct interpolation between local 
annual means without consideration of physical and biological regionalization of the oceans would 
produce anomalous geographical representation. Furthermore, regional DMS concentrations 
vary so much among months that it was considered more appropriate to construct monthly rst 
guess elds. For this purpose we adopted K99’s use of the Longhurst’s division of the oceans 
into static biogeographic provinces [Longhurst, 1998], each representing an oceanic region with 
coherent biogeochemical characteristics (e.g., chlorophyll, nitrate, mixing, etc.) distinguishable 
from those of its neighbor regions. These, in their author’s words, offer the degree of formalism 
and partition in a constantly changing system that helps us to comprehend changes in such a 
vastly complex interacting whole [Longhurst, 2007]. 

The province approach, which has been helpful to partially overcome the problem of 
undersampling, also carries its own limitations. Provinces have been de ned as static features in 
the sea, with well de ned borders that do not shift from month to month. Satellite imagery reveals 
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that provinces, as recurrent coherent features, do exist, but also show that they are dynamic. In 
recent years there have been multiple efforts to de ne dynamic ocean provinces based on satellite 
measurements [e.g., Devred et al., 2007; Alvain et al., 2008; Hardman-Mountford et al., 2008; 
Oliver and Irwin, 2008]. However, because of the impossibility to attribute historical DMS data 
to their contemporary dynamic provinces, we decided to stay with the static provinces. 

Therefore, we divided the oceans into the 54 biogeographic provinces proposed by Longhurst 
[1998] (see Table 1). The monthly mean DMS concentration was calculated for each province 
(Figure 1). White regions indicate provinces with not enough data (<3). However, in order to 
create a complete climatology, these areas need to be given a rst-guess concentration. 

As in K99, temporal interpolation and substitution schemes were employed to ll the gaps 
and solve this problem. Firstly, an annual cycle was generated using the monthly means for 
each ocean province. Where a monthly gap occurred, it was lled by interpolating from the 
adjacent months. The interpolation method was a piecewise cubic Hermite technique [Fritsch 
and Carlson, 1980]. If there were three or fewer measurements per month per province, these 
values were not taken into account to generate the temporal evolution because they would 
have a disproportionate in uence on the creation of the rst-guess eld and, consequently, in 
the objective analysis. In provinces that lacked enough months with data to construct a robust 
annual mean, the temporal evolution of a similar province was used and scaled with the few 
data of the original province. Provinces with enough data to complete the annual cycle solely by 
interpolation were not substituted. We tried to ensure that as many provinces as possible in the 

rst guess eld represented the data from that province; substitution was applied to 10 provinces 
(18% of the total; see Table 1), whereas the provinieses substituted in K99 were 52% of the total. 
[14] The choice of each substitution province was a subjective process based on a combination 
of criteria: similarity of chlorophyll concentration patterns, latitude, geographical proximity, as 
well as the choice made by K99. The whole series of resulting annual cycles are shown in Figure 
2. The coastal Atlantic provinces GUIN and GUIA were substituted by the large provinces that 
are directly adjacent, ETRA and WTRA, respectively. The Indian Ocean Coastal Biome contains 
very little data despite its relative importance: EAFR, REDS and INDE all do not have enough 
data and were substituted by ARAB, with the exception of EAFR, which was substituted by 
ISSG. In the Paci c Ocean, PSAW was substituted by PSAE as both are part of the Paci c 
Westerly Wind Biome and have more similarities than differences in terms of the annual cycles 
of mixed layer and euphotic depths, surface chlorophyll and primary productivity [Longhurst, 
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Table 1. The Biogeochemical Provinces suggested by Longhurst [1998] (in order of decreasing areal extent) 
with their name, abbreviation, reference number in Figure 2, number of DMS data, number of months with 
DMS data and, where appropriate, the province used as a substitute (see text for details).
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Figure 1. Monthly maps of average DMS concentrations (nM) for each biogeochemical province. Note that provinces 
that are white contain zero data for that calendar month.



Updated DMS climatology

62

1998]. In equatorial regions, the coastal province CAMR was substituted by CCAL following 
K99. The provinces AUSE and SUND were merged together into a single region, which was then 
used to substitute for AUSW and NEWZ. TASM is substituted by SSTC. TASM is a very small 
province that has it own particularities [Longhurst, 1998] but is expected to be largely affected 
by the processes and characteristics of its neighbor SSTC. 

Obje c t i ve  a n a l ys i s

By lling the monthly gaps in the annual cycle for each province as described above, twelve 
global rst-guess maps with the monthly mean DMS were constructed in each province. 
Transitions across province borders were smoothed using an unweighted 11 point lter based on 
the work of Shuman [1957]. Cressman [1959] proposed an iterative application of this distance-
weighted interpolation method, with successive corrections. We tested several variants, based 
either on single-pass analysis [Barnes, 1964], or multiple-pass analysis for successive corrections 
[Cressman, 1959; Barnes, 1994; Koch et al., 1983], and with different weight functions, different 

lters, and different radius of in uence. The technique we found to be most appropriate was the 
one applied by K99, with a radius of in uence of 555 km and a single-pass correction.

Finally, the uniform-within-province global monthly maps (Figure S2) were updated with in situ 
data using the distance-weighted interpolation scheme of Barnes [1964]. This method determines 
the variable at grid points as the sum of the weighted values of the departures of individual in 
situ data to the rst-guess eld. The closer a data point is to a certain grid point, the greater the 
in uence the Batum exerts to the grid point (inversely proportional to the exponential of the 
square of the distance). The radius of in uence was chosen to be 555 km, so that data beyond that 
distance from the grid point were not taken into account. 

The resulting global map was once again smoothed by a 5 point median lter, and by a 11 point 
unweighted smoothing lter, with both lters applied following the methodology used in the 
World Ocean Atlas [Locarnini et al., 2010].
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Figure 2. Time series of sea surface DMS concentration (nM) for each biogeochemical province. Calculated average 
values (open diamonds) plus one standard deviation are overlain with the seasonal cycle (dots and solid line) used 
to construct the L10 climatology. See text for details of interpolation and substitution methods.
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Un c e r t a i n t y

An estimate of the uncertainty in DMS concentration for each 1° × 1° bin was made using the 
standard deviation (SD) of the log transformed monthly observations for each biogeographic 
province that contained data. The mean value plus/minus the SD of the log-transformed data 
is hereafter referred to as the upper/lower “bounds,” respectively. These DMS concentration 
bounds for each month in each province thus capture approximately 68% of the available data 
and are asymmetric about the mean, which accurately re ects the positive skew in the data set 
distribution. For each month, in each province, the upper and lower bounds were normalized to 
the monthly average concentration and the mean of all of these taken to represent global average 
upper and lower bounds. The normalized average bounds were then applied to all provinces 
with months that contained ≤3 data points and where a mean value had been interpolated or 
substituted. The interpolated or substituted mean value and the average normalized bounds were 
then used to convert back to an appropriately scaled upper and lower bound for that speci c 
month and province. 

In the substituted provinces, certain months still contained some data. Whenever processing these, 
the logtransformed SD was always applied to the substituted mean in preference to applying the 
global average bound values. After having produced bounds for all months in all provinieses 
including all those that had been interpolated or substituted, the relative con dence in the mean 
values was assessed using the number of data points contained within each province in each 
month. Each upper and lower bound value was divided by the square-root of the number of data 
points (n). Provinces with months containing ≤3 data points not used in the rst-guess used n 
= 3. We used these new climatologies of upper and lower bounds as a data based estimate of 
uncertainty in the climatology. The monthly maps and related data will be available along with 
the concentration climatology itself on the SOLAS Project Integration Web site (http://www.
bodc.ac.uk/solas_integration/implementation_products/group1/#dms).

Ot he r  o c e a n  va r i a bl e s

For the sake of statistical comparison with DMS distributions, state-of-the-art global climatologies 
of ocean variables were extracted and converted into 1° × 1° monthly elds. The chlorophyll a 
concentration climatology for the years 1997–2009 was obtained from the SeaWiFS Project 
(GSFC, NASA). Cumulative climatologies of phosphate and nitrate concentrations were obtained 
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from the World Ocean Atlas 2009 [Garcia et al., 2010]. The SST climatology (1978–2008) 
was taken from the NCEP/NCAR reanálisis project, as above. The solar radiation dose (SRD) 
climatology was that computed by Vallina and Simó [2007a]. The mixed layer depth (MLD) 
climatology was the same used by Vallina and Simó [2007a] after modi cation of that by
de Boyer-Montégut et al. [2004].  All data, including DMS, were log transformed before 
correlation to overcome nonnormal distribution. 

Re s u l t s  a n d  Di s c u s s i o n

Da t a  d i s t r i bu t i o n

The original data available to construct our revised DMS climatology (hereafter referred to as L10) 
were 47,313 surface seawater DMS concentration values, which were reduced to 47,266 after 
the data removal procedure described earlier. Although the time span of data collection is greater 
than three decades, more than half of the data are from the last 8 years. This is due to an obvious 
increase in the sampling effort, but also to the development of automatic and semiautomatic 
DMS analysis systems [e.g., Marandino et al., 2009; Saltzman et al., 2009; Archer et al., 2009]. 
The data are plotted in monthly 1° × 1° elds. Even though the overall data is distributed fairly 
well throughout most of the global oceans, monthly distribution shows a remarkable lack of data 
in some regions and months: see Figure 1 and Table 1. As much as 64% of the data have been 
collected in the Northern Hemisphere, half of them during the boreal late spring and summer 
months (May–August). The Southern Hemisphere, despite its larger contribution to the global 
ocean surface area, contains only one third of the total data, with almost half of them collected 
during austral spring/summer (November through February).

DMS c o r r e l a t i o n  t o  o t he r  va r i a bl e s

An attempt was made to compare climatological DMS concentrations with other oceanic variables 
by means of Pearson’s correlations of log transformed data. Due to the enormous number of data, 
all correlations were signi cant with probabilities >99.99%. Low negative correlations were 
found with surface nitrate and phosphate (r = −0.09 and −0.109, respectively, n = 491,460). Low 
positive correlations were obtained with SST (r = 0.181, n = 420,127) and chlorophyll a (r = 0.147, 
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n = 397,751), while much higher correlations were found with MLD (r = −0.47, n = 471,419) 
and SRD (r = 0.58, n = 452,269). Kettle et al. [1999] also attempted correlation analyses with 
global climatologies, and found a similar result with chlorophyll a. They also found a negative 
correlation, yet lower, with the MLD, and a positive correlation with light, although they used 
surface irradiance rather than radiation dose. A remarkable difference between K99 and our study 
was the correlations to nitrate and phosphate, which were positive. It has to be stressed, however, 
that the data used by Kettle et al. [1999] were not log transformed despite the lack of normal 
distribution. The results of our correlation analysis support the suggestion (challenged by some 
authors [e.g., Derevianko et al., 2009] that the MLD and the SRD play prominent roles in driving 
monthly surface DMS concentrations [Simó and Pedrós-Alió, 1999; Simó and Dachs, 2002; 
Vallina and Simó, 2007a; Miles et al., 2009].

Se a s o n a l  c yc l e s  by pr o vi n c e

The high-latitude provinces in the North Atlantic and North Paci c Oceans (e.g., SARC, NADR, 
BERS, PSAE) show a common pattern of high average DMS concentrations (>5 nM) during the 
boreal summer, with either unimodal or bimodal maxima between May and September (Figure 
2). The Arctic Ocean (BPLR) exhibits a similar seasonal cycle, but with lower average maxima 
in spring/summer (<4 nM). Moving South toward northern temperate and subtropical provinces 
(e.g., NASW, NASE, NPPF, NPTW, NPTE), the seasonal pattern becomes less pronounced and 
the average spring/summer maximum concentrations are lower (generally <5 nM). The seasonal 
cycle is almost lost in most of the tropical provinces around the equator in both hemispheres 
(e.g., NATR, WTRA, ETRA, MONS, NPTE, PNEC, PEQD, WARM), where average DMS 
concentrations are from moderate to low (1–4 nM) throughout the year. The southern subtropical 
provinces of the Atlantic, Paci c and Indian Oceans (SATL, ISSG, SPSG) recover a slight 
seasonality with austral summer maxima at concentrations generally below 5 nM. The same 
seasonal pattern is much more pronounced in the four provinces of the Southern Ocean (SSTC, 
SANT, ANTA, APLR), with summer maxima occurring at concentrations of 5 nM that peak most 
sharply in Antarctic waters (Figure 2).

Mo n t hl y gl o ba l  d i s t r i bu t i o n s

The annual patterns shown in Figure 2 are used to create the monthly rst-guess elds (see Figure 
S2). These are adjusted with real data at the local scale to obtain more realistic distributions. 



Chapter 1

67

After 5 point median and 11 point unweighted lter smoothing, the monthly global maps 
of the climatology were produced (Figure 3). The remarkable spottiness of the maps is due 
to the differences between the rst-guess background (which is the province monthly mean 
concentration) and the measurements made at the local scale. Spottiness must be regarded, hence, 
as a sign of delity to the measurements in the database. 

The monthly climatology maps (Figure 3) show the temporal (seasonal) and spatial variability of 
DMS concentrations. The salient features are (1) concentrations are in the range 1–7 nM for the 
global oceans most of the time; only 1% of the climatology’s values are >10 nM whereas 50% 
are <2 nM, paralleling data distribution in the original database; (2) higher concentrations are 
found at high latitudes (polar and subpolar) and in some regions close to continents; (3) existence 
of a general trend toward increasing concentrations in summer in both hemispheres. The global 
map of annually averaged concentrations (Figure 4) is fairly homogeneous, with few regions 
with values below 1 nM or above 5 nM.

Re gi o n a l  f e a t u r e s

In the high-latitude Northern Hemisphere, DMS concentrations follow a strong seasonal 
pattern. They increase in the warmer and more illuminated months from late spring through 
late summer, although the timing of the concentration peak varies among regions (Figures 2 and 
3). In the northern Gulf of Alaska and the Bering and Barents Seas, observed DMS is high in 
May, coinciding with documented blooms of strong DMS producers, Phaeocystis pouchetii and 
coccolithophores [Barnard et al., 1984; Iida et al., 2002; Matrai et al., 2007], and the summer 
maxima in June and July also accompanies the persistence of coccolithophores [Iida et al., 2002]. 
In the NW Atlantic and around the Iceland Basin, DMS concentrations are moderate in April-
May and September and peak in June–July, at the time of maximum development of recurrent 
coccolithophore and agellate blooms, which cooccur with dino agellates to yield high DMS 
concentrations [e.g., Matrai and Keller, 1993; Scarratt et al., 2007; Lizotte et al., 2008; Yang 
et al., 2009]. In the open ocean waters of the central Gulf of Alaska, concentrations are high 
throughout the summer and well into September for reasons not fully ascertained [Wong et al., 
2005]. Much of the data from this latter region have been collected recently and thus summer 
DMS levels for the PSAE province in our new climatology are remarkably higher than those in 
the original climatology, K99.
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Temperate low latitudes and northern subtropical regions typically follow a seasonal pattern with 
higher DMS concentrations in summer despite low chlorophyll a concentrations, a feature that has 
been coined the “summer DMS paradox” [Simó and Pedrós-Alió, 1999]. In the large subtropical 
Paci c (NPTW, NPTE) the summer maximum occurs, yet very subtly. In the subtropical Atlantic 
there is a remarkable difference between the seasonality of the western side (NASW) and that of 
the eastern side (NASE). While in the NASW the summer maximum is clear [Dacey et al., 1998], 
in the NASE DMS concentrations are higher, yet more variable, in spring (April-May) than in 
late summer [Belviso and Caniaux, 2009]. 

The eastern equatorial Paci c between 10°N and 10°S is one of the most visited regions over three 
decades. DMS concentrations in the region are relatively constant throughout the year [Bates 
and Quinn, 1997], which is clearly apparent in our climatological monthly maps. In the western 
equatorial Paci c, increased DMS concentrations in the period November–February have been 
observed, although it should be noted that the number of observations is low and the equatorial 
province (WARM) extends as far south as 18°S. As in the Paci c, the main equatorial province of 
the Atlantic (WTR also does not show a marked seasonality. The neighboring eastern province, 
ETRA, has fewer data. There, higher DMS levels have been observed to occur between April 
and September, coinciding with climatological satellite observations of increased chlorophyll 
a concentrations between June and September due to a strengthening of the zonal winds and 
associated upwelling [Pérez et al., 2005].

The equatorial Indian Ocean (MONS) shows a slight trend toward higher DMS levels during 
the boreal summer. Concentrations are always above 2–3 nM throughout the year. This is a 
remarkable difference with respect to the concentration given by K99, which was constructed 
almost without any data in this region and which predicted very low DMS levels over long 
periods of the year. The lack of data prompted K99 to attribute to MONS the patterns observed in 
the Arabian Sea (ARAB) and the coastal Indian provinieses (INDE and INDW). The amount of 
data collected in MONS, ARAB and INDE has increased considerably in recent years. The new 
data demonstrates that DMS concentrations are typically elevated during the southwest monsoon 
(June to September), particularly on the West Indian shelf [Shenoy and Kumar, 2007]. On the 
eastern side of India, the few existing measurements in the Bay of Bengal point to more moderate 
concentrations all year round. 

The Indian subtropical gyre (ISSG) shows a marked seasonality with average DMS concentrations 
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Figure 3. Monthly climatology (L10) of DMS concentrations (nM). Note that the scale is capped at 15 nM to ensure 
readability of the plots, although only a few speci c regions exceed 15 nM DMS concentration.
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in the austral summer 6 times as high as the winter ones (6 and 1 nM, respectively). Such a 
seasonal pattern is coincident with that of the shoaling of the mixed layer and opposite to that 
of chlorophyll a concentrations [Longhurst, 1998], thus setting the conditions for the so-called 
“summer DMS paradox” [Simó and Pedrós-Alió, 1999]. A noticeable increase in data coverage 
now provides a reasonably good description of DMS distribution in this large region. In K99, 
there were data only in two months and ISSG had to be substituted by its neighboring province 
to the South (SSTC), a region with completely different biogeochemistry. The semiempirical 
models of Aumont et al. [2002] and Simó and Dachs [2002] already predicted higher DMS 
concentrations in the southern Indian Ocean than K99. These predictions are borne out by the 

Figure 4. Annual global mean climatology (L10) of DMS concentrations (nM).
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new climatology. 

The large ultraoligotrophic subtropical gyre provinces of the South Atlantic and South Paci c 
(SATL and SPSG) show a similar seasonality to ISSG, with higher DMS levels coincident with 
the shoaling of the mixed layer [Longhurst, 1998], yet with lower maximum concentrations [e.g., 
Bell et al., 2006]. It is worth mentioning that, in K99, both provinces had very little data and were 
adjusted to the seasonal pattern of the circumglobal province SSTC. Although in the last 10 years 
the number of measurements in these regions has increased considerably, SPSG is still one of the 
more poorly sampled open ocean regions (Table 1). 

DMS seasonality in the coastal Paci c upwelling region, Humboldt Current coastal province 
(HUMB), appears very marked but is highly uncertain because of the lack of data during half 
of the year. High, but variable, concentrations are found in June-July along the Peruvian coastal 
upwelling [Andreae et al., 1995], and low concentration levels are observed all along the province 
in October-November (J. Johnson, unpublished data, 2006, 2007) and in the southernmost part 
in February [Lee et al., 2010]. A very strong “hotspot” of DMS is apparent off the southern coast 
of Chile in January (Figure 3). Concentrations as high as 22 nM were measured in a few samples 
through the transition between the HUMB and the South Subtropical Convergence province 
(SSTC). Since there was no associated signal in chlorophyll a, hydrography or atmospheric DMS 
concentrations, these observations may have corresponded to a highly localized patch [Marandino 
et al., 2009]. Further visits should help decipher if this hotspot is a recurrent feature. 

The Southern Ocean, as a whole, has enough data coverage to construct reliable monthly DMS 
maps. The seasonalities of the four provinces (SSTC, SANT, ANTA and APLR) are in phase, 
with concentrations increasing in the austral summer. High DMS levels (around 10 nM) are 
found southwest of Australia in January, coinciding with minimal mixed layer depths and 
maximal chlorophyll a concentrations [Longhurst, 1998]. Moving southward, DMS levels 
decrease across the subantarctic current and increase again in Antarctic waters [McTaggart and 
Burton, 1992]. A similar pattern is found along transects from the subtropical convergence off 
South Africa or on either side of South America toward Antarctic waters [Liss et al., 2004]. The 
highest concentrations of the Southern Hemisphere (>20 nM) are found in Antarctic coastal seas 
(APLR) in the period November-February. Those high DMS values are driven by the strong 
phytoplankton blooms in the sea-ice breakout season [Trevena and Jones, 2006]. Throughout the 
rest of the year DMS concentrations are low, re ecting the low levels of biological activity due 
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to increased ice cover and reduced light levels.

Average summer DMS concentrations in Antarctic waters (APLR) have been reduced signi cantly 
with respect to those in K99. Ten years ago, average concentrations in December and January 
were larger than 40 nM throughout most of the province, reaching regional maxima of up to 160 
nM (K99). With the recent increase in measurements, the new climatology contains a monthly 
average concentration of ca. 20 nM in December, with a regional maximum of ca. 50 nM. 

Oc e a n -A t mo s phe r e  DMS e mi s s i o n  �u xe s

Ocean-atmosphere DMS uxes are computed as the product of the air/sea concentration difference 
and gas transfer velocity, as follows: F = kT(Cw − Cga), where the gas transfer coef cient, kT, 
is the reciprocal of the total resistance to gas transfer on both sides of the air/sea interface [Liss 
and Slater, 1974]. DMS uxes are generally parameterized assuming water side resistance only, 
but as demonstrated by McGillis et al. [2000], air side resistance can also be signi cant at cold 
temperatures and high wind speeds. Atmospheric DMS levels are typically orders of magnitude 
lower than those in the surface ocean, and are assumed to be zero for these calculations. 

The water side DMS gas transfer velocity was based on the 10 m wind-speed-based parameterization 
of Nightingale et al. [2000] (hereafter N00), for a Schmidt number of 600 (k600 = 0.222U10

 2 + 
0.333U10). These were normalized to the Schmidt number of DMS as follows: kw = k600 (ScDMS/ 
600)−1/2, where ScDMS is a function of SST according to Saltzman et al. [1993].

Total gas transfer velocities for DMS were computed using the atmospheric gradient fraction 
(ga): kT = kw (1 − ga), where ga is de ned by ga = 1/(1 + ka/akw), using the approach of 
McGillis et al. [2000]. In this expression ka is the airside transfer coef cient, which was based 
on neutral stability water vapor bulk transfer coef cients from Kondo [1975] and a is the DMS 
solubility, from Dacey et al. [1984].

The DMS ux is calculated with the DMS concentration values obtained from this study and the 
total transfer velocity. This approach is slightly different than that of K00, who assumed only 
water side resistance to the air/sea ux under conditions of high wind speeds and cold SST. On 
an annual basis, the ux computed including air side resistance was 7.4% less than computed 
assuming water side resistance only.
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SST and wind speed climatologies were obtained from the NCEP/NCAR reanalysis project 
(http://www.esrl.noaa.gov/) for the period 1978–2008. Most of the DMS data used to generate the 
climatology were measured during that period. We applied a monthly sea-ice mask to set DMS 
emission uxes to zero in ice-covered waters. Data on ice extent and concentration (percentage 
of the local ocean surface covered by sea ice) were provided by IFREMER/CERSAT (http://
cersat.ifremer.fr/) upon analyses of the 12.5 km resolution data from the US SSM/I sensor since 
1992. We assumed negligible DMS emission uxes where the sea ice concentration is higher 
than 75%. All SST, wind speed and sea ice coverage data are converted to a 1° × 1° resolution 
using a cubic spline interpolation that avoids the problem of distortions near the edges of the 
global map. 

Because kw has a nonlinear dependence on wind speed, the use of monthly averaged wind 
speeds introduces a bias into the ux calculation. The ux was corrected for this effect assuming 
that instantaneous winds follow a Rayleigh distribution, using the approach of Simó and Dachs 
[2002]. To compare with K00, monthly global elds of DMS emission uxes were also computed 
using the parameterizations of Liss and Merlivat [1986] and Wanninkhof [1992]. 

L10 ve r s u s  K00

In order to evaluate the in uence of a 3-fold increase in measurements to the predicted 
monthly global distributions of DMS, we now compare the updated climatology (L10) with 
the reference climatology that is widely used at present (K00). The differences are summarized 
with graphical representations of the latitudinal annual means (Figure 5a) and the latitudinal 
means for the periods December-February (DJF) and June–August (JJA) (Figure 5b). Note that 
the concentration difference between K00 and L10 versus latitude can also be plotted for every 
individual month (see Figure S3). Large differences in the annual average distribution are found 
in the high latitudes (≥65°) of both summer hemispheres, where K00 predicted much higher 
DMS concentrations than L10. Clearly, the inclusion of new data has led to a substantial decrease 
of the high-latitude average DMS concentration, partly because data in K00 were dominated by 
coastal and ice-edge measurements. 

There are two latitudinal bands where L10 predicts higher annual mean concentrations than 
K00. One is around 50°–60°N, where the incorporation of a great number of measurements in 
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Figure 5. Comparison between K00 (dashed line) and L10 (solid line) 
climatological DMS concentration data (nM) in terms of (a) annual latitudinal 
mean concentrations; and (b) summer and winter (i.e. December- January-
February, DJF, and June-July-August, JJA) latitudinal mean concentrations.
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the DMS-rich Alaska coastal province ALSK (J. Johnson et al., unpublished data, 2002, 2003) 
has increased the regional mean (Figure 2). The other band occurs between the equator and 
40°S, where new data in the Indian Ocean (MONS and ISSG) and Paci c Warm Pool (WARM) 
provinces raise the annual mean.

The plot of the latitudinal seasonal means (Figure 5b) shows how DMS concentrations oscillate 
seasonally between lower values in the hemispheric winters and higher values in the hemispheric 
summers. The two climatologies predict almost identical concentrations in both seasons within the 
region comprised between 10°N and 50°N. Figure 5b clearly illustrates the substantial reduction 
in summer values and increase in winter values at both poles (i.e., greater than 60°N and S), as 
well as the year-round increase between 10°N–50°S, particularly in the Southern Hemisphere.

DMS �u x

Local ocean-to-atmosphere DMS uxes were computed from surface ocean concentrations using 
the parameterization suggested by Nightingale et al. [2000]; see section 2. A climatological 
monthly sea ice mask was applied with the assumption that uxes across the sea ice cover are 
greatly reduced or completely blocked, even though DMS concentrations measurements exist 
from the waters underneath. Emissions from the sea ice itself would also increase the amount 
of DMS uxes to the atmosphere. Recent laboratory and in situ experiments [Zemmelink et 
al., 2008; Loose et al., 2009] indicate that gas emission can occur through or from complete or 
partial ice cover and this should be taken into account. However, this poses an obvious dif culty 
when we are to apply a general parameterization of the gas transfer coef cient. Computed 

uxes with and without the ice cover mask, and the resulting global annual emissions, are not 
substantially different at the global scale (9.8% higher without ice mask). The difference at high 
latitudes (60°–90°N and 60°–90°S) is signi cant, 47.5% higher without the ice mask. The uxes 
calculated here are capped by the use of an ice cover mask, but further work is required to better 
quantify the effect of sea ice on the sea-to-air ux of DMS. 

In northern latitudes, emission uxes follow the seasonality of surface concentrations (see Figure 
6). This is also true of the high latitudes in each hemispheric summer. The Southern Ocean 
emissions stand out because high summer concentrations coincide with strong winds all year 
round. In the subtropical Indian Ocean, the combination of moderate DMS concentrations and 
persistent high wind speeds throughout most of the year leads to a strong ux. The Paci c Warm 
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Figure 6. Monthly climatology of DMS uxes (μmolS/m2 d). Note that the scale is capped at 30 μmolS/m2 d to ensure 
readability of the plots, although only a few speci c regions exceed this value.
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Pool (WARM) uxes are characterized by the coincidence of large concentrations and wind 
speeds between November and February, which renders high seasonal uxes. In contrast, the 
waters East of Somalia, despite having quite constant predicted DMS concentrations throughout 
the year, become an important region of sulphur emissions during the boreal summer due to the 
strengthening winds caused by the southwest monsoon. 

Integrated DMS emission uxes were computed using N00 and the classical parameterizations 
of Liss and Merlivat [1986] and Wanninkhof [1992], hereafter LM86 and W92, respectively. 
For the sake of comparison, and to provide a range of DMS ux estimates, we recalculated 
emissions for K00 with the three gas transfer parameterizations. Table 2 reports the results of 
annually integrated emissions by 10° latitudinal bands resulting from applying the different 
parameterizations to K00 and L10.

Table 2. Annual DMS ux (TgS/yr) per 10 degree latitudinal 
band alter this study (L10) and the Kettle and Andreae [2000] 
(K00) climatology, computed with the Nightingale et al. 
[2000] parameterization of the piston velocity. Total global 
DMS uxes calculated using the Liss and Merlivat [1986] 
and Wanninkhof [1992] parameterization are provided for 
comparation. 
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Annually integrated latitudinal emissions depend on the magnitude and persistence of local 
uxes but also on the ocean area occupied by each latitudinal band. In K00, the tropics and 

Southern Ocean contribute the largest share of the global DMS emission. In L10, the southern 
subtropical latitudes also contribute substantially. Together, the Southern Hemisphere oceans 
contribute 61%-62% (depending on the parameterization) of the global annual DMS emissions 
in L10 whereas their contribution was around 56%-57% in K00. As a result of the differences 
in DMS concentration distribution discussed above, the global annual DMS emission in L10 is 
15%–17% higher than that of K00. Taking N00 as an intermediate and probably more realistic 
parameterization of the transfer coef cient [Marandino et al., 2009], the updated revision of 
the global oceanic DMS emission is estimated at 28.1 TgS/yr. Following the classi cation of 
Longhurst [1998] we computed the oceanic DMS emission uxes from the coastal and upwelling 
areas. Nearly 11% of the global annual emissions occur in coastal provinces, which occupy 
nearly 10% of the global ocean area.

Analysis of the variability in the underlying data used to construct the climatology shows that 
the range in total global ux estimates due to data variability is, at least, as large as the range 
due to uncertainty in the air/sea gas transfer velocity parameterization. DMS emission uxes 
calculated by applying the N00 parameterization to the upper and lower bounds of the climatology 
uncertainty span a range of 24.1 to 40.4 TgS/yr.

Co n c l u s i o n s

The aim of this study was to construct a more accurate climatology of global monthly distribu-
tions of surface ocean DMS concentration based on state-of-the-art data, and to calculate as-
sociated sea-to-air emission uxes. The new L10 climatology has been constructed using data 
contributed by researchers from all over the world and archived in the Global Surface DMS 
Database (see Table S1), and can be regarded as an updated and re ned version of the former 
climatology (K00) assembled by A.J. Kettle and others (K99 and K00). 

Climatological DMS concentrations increased in regions and months that were severely under-
sampled 10 years ago, as for example in the subtropical Indian Gyre. Conversely, data additions 
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have substantially decreased climatological concentrations in regions where K99 showed ex-
tremely high values, namely polar waters. In this sense, a climatology constructed exclusively 
from available DMS measurements is very sensitive to the number of data, as pointed out by 
Belviso et al. [2004b]. Although the number of new DMS measurements in the Northern Hemi-
sphere was around 50% higher than that in the Southern Hemisphere, the largest differences 
between L10 and K00 are found in the South.

Assessing the data coverage in oceanic provinces with the greatest areal extent (and conse-
quently the largest in uence on DMS ux) has led to the realization that they are not always 
the most comprehensively sampled. In many cases, the measurements are poorly distributed in 
space and time (see Table 1). For example, the South Paci c Subtropical Gyre (SPSG) is un-
dersampled despite containing data from eight calendar months. The data is suf cient to make 
a rst-guess construction but only with a large associated uncertainty. Another example is the 
Indian Subtropical Gyre (ISSG), which still lacks data for half of the year despite a signi cant 
effort to increase the number of measurements in the last decade. Also the western North Paci c 
provinces, from the subarctic (PSAW) to the Tropical Gyre (NPTW) through the Transition Zone 
(NPPF), show a serious lack of data relative to the surface area they represent. This means that 
the obtained climatological patterns have been constructed using interpolated data and should be 
used with caution and urgently revised as more measurements are made.

The L10 climatology offers more reliable representation of sea surface DMS concentrations 
in the global oceans than the widely used former climatology (K00) mainly because of an in-
creased number of measurements and improvements in their spatial and temporal coverage. It 
is expected to be used as an input eld for global atmospheric models and as a reference for 
global comparisons with oceanic and atmospheric variables. K00 has also been used to validate 
the output of oceanic DMS models [Le Clainche et al., 2010] despite the uncertainty associated 
with the data analysis. As a parallel product to the L10 climatology, we have created a 1° × 1° 
binned monthly climatology of the original data which can be used for model validation (see 
http://www.bodc.ac.uk/solas_integration/). This work con rms the central role of DMS in the 
transport of sulphur from the biosphere into the atmosphere. The updated estimates given here 
indicate that the annual global DMS emissions are even larger than previously thought, with 
our best estimate suggesting 28.1 TgS/yr (17 % higher than estimated with K00). Owing to the 
potentially important in uence of ocean-atmosphere DMS emissions for global sulphur cycling, 
aerosol formation, cloud microphysics, and radiative balance, the L10 will be useful for as-
sessing the environmental factors controlling the DMS distribution and for validation of ocean 
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biogeochemical models. 
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Su ppl e me n t a r y Ma t e r i a l

This supplementary material contains a table showing the individual contributors who submitted 
DMS data to the Global Surface Seawater Dimethylsul de Database. Their data were used to 
create the updated DMS climatology in this study. The supplementary material also contains three 

gures that represent: (S1) the location of the 1ºx1º pixels with DMS data, (S2) the smoothed 
monthly rst-guess elds of sea surface DMS concentration (nM), and (S3) the latitudinal 
difference between the previous climatology (K00) and that obtained in the present study (L10). 
Figure S1 was constructed by pooling together all existing DMS data in 1º latitude x 1º longitude 
squares; the map shows the squares where DMS data exist. The monthly maps of Figure S2 were 
created from the annual cycles of each biogeographical province by computing the province 
monthly mean concentrations either from in situ data or by interpolation or substitution where 
there were no data; transitions across province borders were smoothed using an unweighted 
11-point lter. Figure S3 shows the % of difference between K00 and L10 of monthly DMS 
concentrations in 1º latitudinal bands.

Figure S1. Annual map of the location of the 1ºx1º ocean pixels with DMS data.
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Figure S2. Smoothed monthly rst-guess elds of sea surface DMS concentration (nM).
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Figure S3. Monthly latitudinal comparison between K00 and L10 in % of the difference (using L10 as the reference). 
Note that K00 > L10 is capped at 100% for readability.
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A bs t r a c t  

During the last decade the number of seawater dimethylsul de (DMS) concentration measurements 
has increased substantially. The importance this gas, emitted from the ocean to the atmosphere, 
may have in the cloud microphysics and hence in the Earth albedo and radiation budget, makes 
it necessary to accurately reproduce the global distribution. Recently, the monthly global DMS 
climatology has been updated taking advantage of the three-fold increased size and better 
resolved distribution of the observations available in the DMS database. Here, the emerging 
patterns found with the previous versions of the database and climatology are explored with the 
updated versions. The statistical relationships between the seasonalities of DMS concentrations 
and other variables are re-examined. The positive correlation previously found between surface 
seawater DMS and the daily-averaged climatological solar radiation dose in the upper mixed 
layer of the open ocean is con rmed with both the updated DMS database and climatology. 
Re-examination of the latitudinal match-mismatch between the seasonalities of DMS and 
phytoplankton, represented by the chlorophyll a concentration, reveals that they are highly 
positively correlated in latitudes higher than 40º, but anti-correlated in the 20º-40º latitudinal 
bands of both hemispheres. Overall, these global emerging patterns provide key information to 
further understanding the factors that control the emission of volatile sulfur from the ocean. The 
large uncertainties associated with the methodologies used in global computations, however, call 
for caution in using these emerging patterns as predictive tools, and prompt to the design of time 
series and process-oriented studies aimed at testing the validity of the observed relationships. 
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In t r o d u c t i o n

The emission of dimethylsul de (DMS) from the ocean is the main natural source of volatile 
sulfur entering the atmosphere [Bates et al. 1992, Simó 2001]. Once in the air, DMS oxidation 
products contribute to the number of small-size atmospheric particles that are necessary for 
cloud formation [Andreae and Crutzen 1997]. These particles in uence cloud microphysics and 
albedo over the oceans and hence have a potential to regulate the radiation budget of the Earth 
[Charlson et al. 1987]. The important role of DMS emissions on the radiation budget makes it 
necessary to accurately represent the global distribution of seawater DMS. 

The DMS data coverage of the ocean is not enough to derive a reliable global distribution by 
direct interpolation/extrapolation of the very measurements. To be able to construct a climatology 
from the existing data, some kind of mapping criteria and objective analysis techniques have to 
be applied, and the resulting spatio-temporal distribution will carry an uncertainty inversely 
proportional to the number and coverage of the original data. During the last years several 
alternative methods for obtaining realistic global DMS elds have been proposed. Some of these 
are based on algorithms that derive surface DMS concentrations from other variables [Anderson 
et al. 2001, Aumont et al. 2002, Simó and Dachs 2002, or Belviso et al. 2004], while some other 
are totally or partially based on numerical models [Six 2006, Bopp et al. 2008, Elliott 2009, 
Vogt et al. 2010]. Both methods carry some uncertainties, which are mainly associated with 
the dif culties in the validation of the outputs, due to absence of an objective and well-covered 
global DMS distribution.  

The DMS climatology that has been widely used hitherto was constructed a decade ago by Kettle 
et al. [Kettle et al. 1999, Kettle and Andreae 2000] after compiling the worldwide archived 
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measurements of DMS concentrations in the surface ocean, i.e., at depths shallower than 10 
m. The number of data available for that climatology was approximately 17,000, and were the 
origin of what would become the Global Surface Seawater (GSS) DMS database. Since then, the 
scienti c community has worked hard to enlarge the database: during the last decade the number 
of DMS measurements has increased threefold. Following this increase, a joint initiative of the 
SOLAS Project Integration, COST Action 735 and EUR-OCEANS was launched to produce an 
updated DMS climatology [Lana et al. 2011], which is now available and posted for open access 
at the SOLAS Project Integration webpage (www.bodc.ac.uk/solas_integration/). 

There are notable differences between the updated (hereafter L10) and the former (K00) DMS 
climatologies in some regions of the ocean. The aim of this work is to re-examine in L10 some 
of the global emerging patterns that arose in K00 and past versions of the database and have been 
instrumental for better understanding the processes that regulate DMS production in the surface 
ocean and its emission to the atmosphere. 

Me t ho d s

The seawater DMS concentration measurements used were those archived in the GSS DMS 
database (saga.pmel.noaa.gov/dms/) plus some additional measurements from the South Paci c 
[Lana et al. 2011]. This database is constructed from data contributions by individual scientists 
and maintained at the NOAA-PMEL. In February 2011, the DMS measurements amounted 
48,164 and had been collected between March 1972 and June 2010. The data submitted after 
the year 2000 (hereafter postK00), i.e., not used in the construction of the K00 climatology, 
were also analyzed in this study (24,951 DMS measurements). The updated DMS climatology 
(named L10) was built using the database as for April 2010 (47,313 data). Data analysis and 
interpolation schemes, where our current knowledge of ocean biogeochemistry and DMS 
variability was applied, allowed us to construct monthly gridded maps of global sea surface 
DMS concentrations. The objective analysis procedures, detailed in Lana et al. [2011], were 
essentially the same as those employed by Kettle et al. for DMS [Kettle et al. 1999, Kettle and 
Andreae 2000] and those used for other variables (temperature, salinity, oxygen and nutrients) in 
the latest version of the World Ocean Atlas [Locarnini et al. 2010] and previous editions (WOA94, 
WOA98, WOA01, WOA05). In brief, the rst step consists of monthly gridding the historical 
observations into 1ºx1º (latitude x longitude) square means. Then, grid points were grouped 
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according to biogeographic provinces [Longhurst 1998], DMS concentrations were monthly 
averaged within each province, and gradients were smoothed at province borders. The resulting 
global monthly maps are called the rst-guess elds. These are corrected at each grid point by 
the difference between the observed and the rst-guess value, and also by the distance-weighted 
mean of all the grid points with observed data that lie within the area de ned by a previously 

xed in uence radius. For comparative purposes, global monthly maps of surface DMS were also 
constructed using the algorithms of Simó and Dachs [2002], hereafter SD02, which parameterize 
the DMS concentration from the ratio of the chlorophyll a concentration (Chla) and the mixed 
layer depth (MLD). We recomputed SD02 using a SeaWiFS Chla climatology for the years 
1997-2009, and the MLD climatology re-calculated from de Boyer Montégut et al. [2004] as in 
Vallina and Simó [2007a].

In all computations, DMS and Chla data were constrained within the 99.95 percentile. This way 
we wanted to avoid very high DMS and Chla values associated with very localized hotspots 
or potentially created by sampling and handling artifacts, which might have a disproportionate 
weight in global distributions. This imposed an upper limit of 220 nM for the GSS DMS data, 
148 nM for the postK00 data, 34 nM for the L10 climatology, 95 nM for the K00 climatology, 
and 59 nM for the SD02 parameterization output. The upper limit for Chla was 10 mg m-3. 

To re-examine the proposed proportionality found between DMS and the solar radiation dose 
(SRD) over most of the global surface ocean [Vallina and Simó 2007a, hereafter VS07], and assess 
the in uence that the increased number of data has had on it, we computed the daily-averaged 
solar radiation in the upper mixed layer as in VS07, i.e., by: (a) calculating the solar irradiance 
at the top of the atmosphere [Brock 1981], (b) converting it into ocean-surface irradiance by 
a reduction by a half [Kiehl and Trenberth 1997], and (c) calculating the mean solar radiation 
in the mixed layer using a constant underwater light extinction coef cient (0.06 m-1) and the 
aforementioned climatology of the MLD. Monthly DMS concentrations and SRD were averaged 
by boxes of either 10º x 20º (latitude x longitude), as in the original study by VS07. Monthly box 
DMS data were then paired with monthly box SRD data for regression and correlation analyses. 
We imposed an upper limit of 10 nM for the 10º latitude – 20º longitude box DMS averages (95 
percentile) to avoid ephemeral patches of high DMS levels associated with eutrophic coastal 
systems and constrain the analysis into the large majority of the open ocean, also to compare to 
the original study. 
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An alternative calculation of the SRD was also done, with the incorporation of the following 
computations: (a) the conversion of the solar irradiance at the top of the atmosphere into ocean-
surface irradiance was done taking into account the variable in uence of clouds on reducing 
surface irradiance. To this aim, a cloud albedo climatology for the period 2001-2009 was obtained 
from CERES (Cloud and Earth’s Radiant Energy System). At each 1ºx1º pixel, the daily irradiance 
at surface was computed as: EDAYsurf = (EDAYtoa*(1-ALBtoa))*0.72. Where EDAYtoa is 
the shortwave irradiance at the top of the atmosphere, ALBtoa is the cloud albedo at the top of 
atmosphere, and 0.72 is the average sunlight transmittance of a clear-sky atmosphere. (b) The 
mean solar radiation in the mixed layer depth was calculated using the computed EDAYsurf and 
a climatology of the estimated underwater light extinction coef cient (at 490 nm) provided as an 
ocean colour product by the SeaWiFS Project.    

Global maps of seasonal correlations were created with the following procedure [Vallina et 
al. 2007]: using a running window of 7º x 7º, we obtained for each position (1º x 1º pixel) of 
the global ocean a time series of 12 points (months) for paired of the two variable's data to 
compare. Each of the 12 points of the time series is the average of the 49 values taken by the 
pixel-centred running window in a given month. Then, for every 1º x 1º grid box of the global 
ocean we calculate the seasonal Spearman correlation coef cient (ρ) between the two variables 
(12 degrees of freedom), generating a global map of seasonal correlations. Correlations were 
signi cant at 95% con dence level for |ρ| > 0.5. 

To re-examine the extent of the connection between the DMS concentration and sea surface 
microbiota [Vallina et al. 2006], we used L10 and the monthly SeaWiFS Chla climatology 
derived from 1997-2009 data, and evaluate the global map of seasonal correlation. Regression 
and correlation analyses were  also performed with monthly DMS and chlorophyll a concentration 
data averaged by boxes of 10º x 20º (latitude x longitude).    
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Re s u l t s  a n d  Di s c u s s i o n

Gl o ba l  DMS d i s t r i bu t i o n s

Five representations of the global distribution of surface seawater DMS concentrations are 
compared by means of Hovmöller, latitude vs month diagrams (Figure 1). The subplots correspond 
to the GSS DMS data distribution (Figure 1a), with their associated gaps, the postK00 data (Figure 
1b), with a higher number of gaps due to the reduced number of data, the two representations 
of the L10 and K00 climatologies (Figures 1c and 1d), and the distribution produced with the 
global SD02 parameterization (Figure 1e), with winter gaps at high latitudes re ecting lack of 
satellite Chla concentrations. The GSS data (total and after 2000), the two climatologies and the 
parameterization all show increased DMS concentrations at mid and high latitudes during the 
hemispheric summer months. In most cases, the maximum annual values for all 10º latitudinal 
bands are ≤ 15 nM.

As reported and discussed in Lana et al. [2011], the almost three fold increase in the number of 
data between K00 and L10 resulted in some remarkable differences in the climatologies despite 
the large similarity in the general pattern. K00 predicted much higher DMS concentrations than 
L10 in the high latitudes (≥ 65º) in both hemisphere summers, whereas the situation is reversed in 
the 40º-60º bands. In the tropical/subtropical latitudinal bands (10º-40º), L10 predicts smoother 
seasonal patterns where K00 depicts larger differences between summer and winter. This is 
particularly so in 10º-40ºS, and may be due to data inclusion in regions (South Indian Ocean 
and the Paci c Warm Pool) that were severely undersampled ten years ago. Most of the months 
of the year have data in that particular band in the updated database, due to the data submitted 
after the creation of the K00 climatology (see Figure 1b). Relatively high values can be observed 
in that latitudinal band for the GSS updated data (Figure 1a) and the postK00 data distribution 
(Figure 1b). 

Interestingly, the SD02 parameterization, whose algorithms were derived from the same data as 
K00, predicts seasonal patterns more similar to L10 than to K00 in the lower latitudes. These 
regions are a large part of the ca. 80% of the global ocean where the algorithm used to calculate the 
DMS concentration depends only on the MLD [Simó and Dachs 2002]. This further supports the 
suggested fundamental role the MLD plays in controlling monthly surface DMS concentrations, 
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Figure 1. Monthly averages by 10º latitude bands of (a) Surface DMS 
seawater concentrations (GSS DMS database), (b) Surface DMS 
seawater concentrations from the GSS DMS database after the year 
2000, (c) updated DMS climatology L10 (Lana et al. 2011), (d) DMS 
climatology K00 (Kettle and Andreae 2000), and (e) DMS distribution 
using SD02 algorithm (Simó and Dachs 2002).
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through its effects either on plankton dynamics or on the solar radiation entering the mixed 
layer, or both [Simó and Pedrós-Alió 1999, Vallina and Simó 2007a]. In general, though, SD02 
generates global monthly distributions that are more homogeneous than any of the climatologies, 
and fails at capturing the high summer DMS concentrations south of 60º S. As pointed out by 
Halloran et al. [2010], empirical parameterizations that are based on the knowledge of DMS 
production, such as SD02, should be appropriate to simulate present distributions of global DMS. 
However, they should be used with care as predictive tools in Earth-System models. 

DMS vs . SRD

To re-assess the global relationship between DMS and SRD reported by Vallina and Simó 
[2007a], we followed the same approach. We grouped the DMS data of either the GSS database, 
the postK00 data or the L10 climatology into boxes of 10º latitude x 20º longitude, and the same 
grouping was also applied to the SRD data. Box averages were calculated for each month, and 
the DMS averages were further grouped according to SRD bins of 15 W m-2. Binned DMS 
means and standard deviations (accounting for approximately the 66% of the data set) are plotted 
against the corresponding SRD bins in Figures 2a, 2b and 2c, which correspond to the GSS DMS 
database, GSS DMS data measured after the year 2000, and L10, respectively. Analyzed this 
way, climatological SRD accounted for 96% of the variance of monthly regional surface DMS 
concentration in the GSS database, 91% for the postK00 data and 98% in L10. This con rms 
and even reinforces the ndings of VS07. As in the previous study, standard deviations are quite 
large but the upper and lower contours of the scatter still show clear proportionality between 
DMS and the SRD.

As shown in Figure 3, the use of an alternative calculation to obtain the SRD produces 
changes in the statistical relationship between DMS and SRD. This alternative approach to the 
computation of the SRD includes the cloud albedo in the calculation of surface irradiance from 
the top-of-atmosphere insolation, and a satellite-derived parameterization of the underwater 
light extinction coef cient - see Methods. The L10 climatology and the alternative SRD were 
grouped into 10º x 20 º boxes, and the DMS was averaged according to 20 W m-2 SRD intervals. 
The regression coef cient is notably reduced, to a value of 0.76. Not only the metrics show a 
worse coupling, also the shape of the curve indicates linearity is notably lost and there seems not 
to be proportionality of DMS to SRD at intermediate SRD values (Figure 3). This poses some 
question mark on the otherwise linear relationship observed with either calculated climatological 
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Figure 2. Linear regression against the Solar Radiation Dose 
(SRD) of the seawater DMS concentrations averages of 10º 
latitude by 20º longitude boxes, binned by SRD intervals of 
15 W m-2; DMS data are obtained from: (a) updated GSS 
database; (b) data after the year 2000 from GSS database; 
(c) DMS climatology L10. The shaded area represents the 
standard deviations (accounting for approximately the 66% 
of the data set).
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SRD with xed atmospheric and underwater attenuation values, or with in situ DMS and SRD at 
two subtropical sampling sites [Vallina and Simó 2007a]. The objective of calculating SRD with 
inclusion of the cloud albedo was to account for regions of persistent cloudiness where the 50% 
atmospheric reduction of irradiance falls short (e.g., the Paci c intertropical convergence zone). 
It has to be noted, however, that the cloud albedo used is nothing but a climatology, and that 
for the most of the marine atmosphere cloudiness is very variable. The subsequent calculation 
of the atmospheric reduction is an approximate parameterization, and the same applies to the 
underwater light attenuation based on satellite measurements. Pretending these computations 
will show a more realistic relationship against non-contemporaneous DMS concentrations is 
almost as risky as the simple approach previously used.

The use of binned correlations between box averages is justi ed by the fact that the DMS data 
correspond to a combination of 40 years of measurements, and the SRD data are obtained with a 
climatological calculation. That is, DMS and SRD data are not contemporaneous and therefore 
they are not expected to be closely linked over a 1º x 1º grid. With the aim at exploring to what 
extent climatological DMS concentration responds in proportionality to climatological SRD in 
the upper mixed layer, we apply a binning to reduce (smooth out) small scale variability and 
extract rst order processes from the noisy data obtained with different spatial and temporal 
resolution. VS07 chose a binning interval of 15 W m-2, which roughly is the range of SRD 
variation from month to month at mid latitudes. However, Derevianko et al. [2009] have noted 
that the use of box grouping and binning largely reduce the total variance in the data and result 
in exaggeratedly high coef cients of determination. 

The window (or box) size we rst used here is the same as that in VS07 because we wanted to 
compare the results. We further changed the size to evaluate its effect on the regression between 
SRD and DMS. We repeated the analysis with boxes of 7º x 7º, 5º x 5º and 1º x 1º, always with a 
SRD binning interval of 15 W m-2. The results show very similar regression coef cients. For the 
L10 climatology there is almost no variation in the regression coef cients for different windows. 
The GSS database had a regression coef cient reduced to 0.86 when the windows were 7º x 7º, 
but recovered (0.95) with 5º x 5º windows. The DMS values obtained after the year 2000 showed 
more variable correlation coef cients against the SRD with changes in the window size: 0.82 
for windows of 7º x 7º, 0.87 for 5º x 5º and 0.96 for 1º x 1º.  According to these results and those 
of Derevianko et al. [2009], the binning interval seems to have higher in uence than the box 
averaged sizes in the correlation coef cients between DMS and SRD.
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It can be argued that even a smaller window, or a narrow-range binning does not provide a realistic 
assessment of the co-variation between variables, and that direct correlation of gridded data or 
boxes would be more appropriate. VS07 reported a Spearman's rank correlation coef cient of 
0.47 for the monthly 10º x 20º boxes of the GSS database DMS and the SRD (n = 545). Using the 
latest version of the database, this coef cient becomes 0.45 (n = 806). After noting that the DMS 
concentrations do not follow a normal distribution, Lana et al. [2011] computed the correlation 
between the 1º x 1º gridded, log transformed climatological DMS and SRD data, and obtained a 
Pearson's correlation coef cient of 0.58 (n = 452,269). All these statistics, which are signi cant 
with a probability > 99.99%, suggest a certain degree of proportionality between DMS and SRD 
on a global scale. 

Figure 3. Linear regression against the alternative calculation of Solar Radiation Dose (SRD) of the seawater 
DMS concentrations values obtained from L10 climatology, averages of  10º latitude by 20º longitude boxes, 
binned by SRD intervals of 20 W m-2. 
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For the sake of a further comparison between DMS and the alternative SRD, a global correlation 
map (Figure 4) was calculated using the updated DMS climatology, L10. The Spearman's 
correlation map shows that there is a strong seasonal coupling between both variables all over 
the global ocean. The seasonal coupling is broken in the equatorial area. We still do not have a 
sound explanation for the equatorial exception, but it has to be noted that seasonality is very weak 
around the equator. Negative or low correlation values may be produced by the low seasonality, 
since any uncertainty in the distribution of DMS may easily have a larger amplitude than the 
seasonal pattern.       

Mechanisms behind the emerging pattern of proportionality between DMS and SRD, yet not 
fully resolved, are related to photobiological effects on DMS producers and consumers, and 
photophysical effects on the hydrodynamics of the upper ocean, and have been discussed 
elsewhere [Simó 2004, Toole and Siegel 2004, Vallina and Simó 2007a, 2007b, Vila-Costa et al. 
2008]. A recent study by Galí et al. [2011] has shown that the exposure to solar radiation, UV 
included, increases gross DMS production, con rming sunlight as an important modulator of 
DMS. However, we have also shown that the relationship between climatological SRD and DMS 
data is in uenced by the calculation of the SRD and the use of different DMS climatologies. Miles 
et al. [2009] used exclusively in situ data of irradiance and attenuation coef cient to calculate 
in situ SRD and compared them with DMS measurements in the Atlantic Ocean (they showed 
that, although DMS and light were signi cantly correlated, the correlation value was increased if 
they replace the in situ by climatological data for the calculation of SRD). Further studies should 
address this issue based solely on contemporaneous in situ measurements throughout seasons; 
only this way we will be able to evaluate the potential response of DMS production and emission 
to solar radiation, which is a required component of the hypothesized negative feedback that 
would link ocean biosphere and climate through atmospheric sulfur [Charlson et al. 1987]. 
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DMS vs . Chl a

Global 1º x 1º maps of correlations between monthly DMS (K00 and L10) and Chla climatology 
concentrations are shown in Figure 5a and 5b. Seeing DMS as a biogenic trace gas, some degree 
of proportionality of its concentration to that of Chla (a commonly used measure of phytoplankton 
biomass) has often been sought, with success only at the regional scale but not at the global scale 
[Kettle et al. 1999; Lana et al. 2011]. Figures 5a and 5b show that, globally, a match-mismatch 
between the seasonalities of the two variables occurs largely depending on latitude: north of 
40º N and south of 40º S, DMS shows a strong positive correlation to Chla, whereas in the 10º-
40º latitudinal bands of both hemispheres the relationship reverses into anti-correlation. This 
latitudinal distribution of correlations obtained with K00 (Figure 5a), and already reported by 
Vallina et al. 2006, occurs also with L10 (Figure 5b). It is remarkable how abrupt the transition is 
between positive and negative correlations at around 40º in both hemispheres. This is coincident 
with the upper latitudinal boundaries of the major subtropical ocean gyres. 

The coincidence of the annual maxima of DMS concentrations with minima of phytoplankton 
biomass in subtropical and low temperate regions, where the strati cation season is long and 
primary production is essentially limited by nutrient availability, has been called the 'summer 
DMS paradox' [Simó and Pedrós-Alió 1999], and has been attributed to a combination of 
plankton community succession and the effects of sunlight on plankton [Dacey et al. 1998, 
Simó and Pedrós-Alió 1999, Stefels 2000, Sunda et al. 2002, Simó 2004, Toole and Siegel 
2004]. This feature is dif cult to reproduce with numerical models [Le Clainche et al. 2010]. 
The production of the microalgal metabolite dimethylsulfoniopropionate (DMSP) seems to have 
much to tell about this paradox. DMSP is the main biogenic precursor of DMS in the ocean. One 
of the intracellular functions of DMSP in algal cells is as photoprotector. At some speci c areas 
DMSP concentrations correlate with photo-protective pigments, instead of with chlorophyll a 
concentration [Bell et al., 2010]. Hence the correlation between chlorophyll a and DMSP is 
broken for those areas, and so is expected to be for DMS too. It has to be noted, though, that 
an important time lag between the annual maxima of DMSP and DMS has been reported in the 
subtropical waters of the Sargasso Sea [Dacey et al. 1998] and the Mediterranean [Vila-Costa et 
al. 2008]. The key to the understanding of the ‘summer DMS paradox’ is not to be found only 
in the understanding of the association of DMSP to phytoplankton ecotypes. Further studies of 
the multiple paths and players involved in determining the ef ciency of the DMSP-to-DMS 
conversion at the community level are needed.  
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Figure 5. Global distribution of Spearman’s rank coef cients of correlation between monthly 
series of Chla concentrations (SeaWiFS climatology of the years 1997-2009) and (a) DMS 
(climatology K00) and (b) DMS (updated climatology L10).
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At high latitudes, conversely, where the strati cation season is shorter and primary production is 
limited or co-limited by light, both phytoplankton and DMS peak in summer [Vallina et al. 2006, 
Kiene et al. 2007]. 

Differences between L10 and K00 with respect to their respective correlations to Chla occur in 
the equatorial Indian Ocean and in the eastern equatorial Atlantic. These areas, where there is less 
correlation with the K00 climatology (Figure 5a), con rming the results found with a different 
Chla climatology [Vallina et al., 2006], show a strong positive coupling with L10 (Figure 5b). 
In the equatorial and northern Indian Ocean, both phytoplankton biomass and DMS increase in 
phase in June through September at the pace dictated by the monsoons. In the northwest sector, 
this is due to the southwest monsoon wind [Dasgupta et al. 2009]; in the equatorial sector, high 
Chla levels come associated with the heavy precipitations of the monsoons, which transport silt 
and nutrients from land to sea through the rivers [Dasgupta et al. 2009]. In the eastern equatorial 
Atlantic off the coasts of Africa, DMS also appears to peak in the period from June to September, 
yet this seasonal pattern is largely uncertain due to a severe lack of data [Lana et al. 2011]. Water 
discharges by the Congo River, added to the direction of the South Equatorial Current, seem to 
be the causes of higher Chla levels in the same period [Dasgupta et al. 2009]. 

The same regression analysis used with L10 and the SRD was applied to the Chla climatology. 
Both L10 DMS and Chla data were averaged by 10º x 20º boxes, and the box DMS means 
were plotted against box Chla concentration means binned into 0.1 mg m-3 intervals (Figure 6). 
An upper limit of 2 mg m-3 was imposed onto the box Chla means to exclude the coastal and 
local phytoplankton blooms that carry extremely high values. The regression coef cient is low 
(r2=0.47, n=20) in agreement with the results of the distribution of the correlation between the 
two variables. 
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Figure 6. Linear regression of DMS concentrations (L10 climatology) averaged by 10º latitude x 20º longitude boxes 
against Chla concentrations binned in 0.1 mg m-3. 
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Co n c l u s i o n s

With the use of an increased number of DMS measurements and an updated global monthly 
climatology we have con rmed the salient features of the global monthly emerging patterns found 
in previous studies: (a) There is a general seasonal trend towards higher DMS concentrations in 
each hemispheric summer; (b) this seasonal pattern largely coincides with that of the daily solar 
radiation dose in the upper mixed layer of the ocean; (c) a proportionality between DMS and 
Chla only occurs north of 40º N and south of 40º S, while both variables are anti-correlated in 
most of the 40º N-40º S latitudinal band. These emerging patterns could be illustrative of some of 
the factors that control the ocean's source of volatile sulfur for the Earth system. Due to the large 
uncertainties associated with the computation of global variables, the reported relationships have 
to be taken with caution and as indicative of where further studies should be aimed to. In situ 
time series studies should be conducted to test these global emerging patterns, and the complexity 
of the interplay between physical, chemical, and biological processes that drive global DMS 
distributions should be investigated in process-oriented studies. 
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A bs t r a c t

Low marine clouds (LMC), which cover 40% of the oceans, act as powerful climate coolers 
because their ability to re ect sunlight (albedo) exceeds their ability to retain heat from below. 
The regional albedo of LMC increases with cloud amount and the zenith angle of sunlight, 
and inversely to cloud droplet size, which is related to the presence of small aerosols. We use 
nine years of global weekly satellite records to show that, over the unpolluted mid- and high-
latitude ocean, LMC amounts increase as droplet size decreases from winter to summer, thus 
compensating for the lowering of the zenith angle and providing large negative radiative forcing. 
Disruption of this natural seasonality might cause a reduction of annual cloud-mediated cooling 
in the oceanic atmosphere regions heavily impacted by anthropogenic aerosols.
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In t r o d u c t i o n

The timing of climatic seasons on Earth is set by well known orbital features, but their amplitude 
is internally modulated by positive and negative feedbacks in the radiation budget. Positive 
feedbacks (those that enhance seasonal transitions and amplitude) include heat retention by 
atmospheric water vapor [Wu et al. 2008], and snow and ice re ection [Hall and Qu 2006] 
and vegetation absorption [Liu et al. 2006] of solar radiation. Ocean’s heat uptake, transport 
and release provide negative feedback that attenuates seasonal amplitude [Marshall and Plumb 
2008]. Other potentially important seasonal feedbacks, either positive or negative, may result 
from clouds and their radiative behavior. Clouds are powerful climate players that both re ect 
shortwave radiation (SWR) from above to cause surface cooling and absorb longwave radiation 
(LWR) from below to cause surface warming [Harrison et al. 1990; Kim and Ramanathan 
2008]. 

Clouds cover over 60% of the planet [Rossow and Schiffer 1999] and provide a negative net 
radiative forcing (cooling of the Earth-atmosphere system) of nearly -20 W m-2 [Harrison et al. 
1990]. Among cloud types, low marine clouds (LMC, those occurring at the top of the marine 
boundary layer and composed of liquid droplets, Rossow and Schiffer 1999) are of major climate 
concern because they reduce insolation in the 40% of the highly absorbing dark ocean they 
overcast [Sassen and Wang 2008]. Main contributors to LMC are stratiform clouds, which are far 
more ef cient at re ecting SWR than at absorbing LWR. Actually, LMC account for a dominant 
share of cloud negative forcing over the subtropical oceans [Klein and Hartmann 1993]. Despite 
their importance in the Earth radiative budget, LMC simulations represent one of the largest 
sources of uncertainty in model projections of global warming [Forster et al. 2007].

The seasonality of the abundance of LMC is principally governed by air column stability [Klein 
and Hartmann 1993], but their brightness or albedo is largely in uenced by the presence of 
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aerosols. Small hygroscopic aerosols facilitate cloud droplet formation at atmospheric conditions 
that otherwise would be thermodynamically unfavorable for homogeneous water condensation 
[Andreae and Rosenfeld 2008]. Theory and observations concur to postulate that, given a xed 
or low varying amount of liquid water, the more of these cloud condensation nuclei (CCN) occur, 
the more cloud droplets are formed and the smaller they are [Andreae and Rosenfeld 2008, 
Lohmann and Feichter 2005, Twomey 1991]. This is climatically relevant, because a cloud with 
more (fewer) and smaller (bigger) cloud droplets is a brighter (more transparent) cloud or, in 
other words, has a higher (lower) albedo [Twomey 1991]. Moreover, by being smaller, cloud 
droplets take longer to reach precipitable sizes; hence, a cloud formed on more CCN lives longer 
[Albrecht 1989] and its albedo is sustained longer. This is particularly important in air masses 
with low aerosol loads, like those over the oceans and far from continents, where CCN are 
scarce and cloud formation, brightness and duration are largely affected by variations in aerosol 
numbers. 

Here we use nine years of global weekly satellite records to investigate the potential seasonal 
in uence of natural and anthropogenic, marine and continental aerosols on cloud microphysics 
and albedo. 

Da t a  a n d  Me t ho d o l o gy

Marine clouds, cloud condensation nuclei and indirect effect (IE). The cloud optical and 
microphysical parameters, as well as derived statistics, were obtained from the Moderate 
resolution Imaging Spectroradiometer (MODIS) aboard the Terra Earth Observing System 
platform [Tanré et al., 1997, Platnick et al., 2003; Remer et al., 2005]. The data are from the 
Level 3 MODIS Terra Collection 5, available from the Atmosphere Archive Distribution System 
at the NASA Goddard Space Flight Center (ladsweb.nascom.nasa.gov/data/search.html). We 
used global weekly and monthly data of liquid cloud droplet effective radius (re, ratio of third to 
second moment of the cloud drop size distribution, important for radiative transfer, in µm) and 
liquid cloud fraction (Ac), with a 1ºx1º latitude-longitude spatial resolution for the period 01 Jan 
2001 – 31 Dec 2009 (9 years). 

Column-integrated numbers of satellite-derived cloud condensation nuclei (NCCNs, particles 
cm-2) were also obtained from MODIS-Terra Collection 5. This variable is derived from aerosol 
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optical depths (AOD), the fraction of the AOD that corresponds to submicron aerosol (η), and 
the aerosol effective radius [Tanré et al., 1999; Gassó and Hegg, 2003]. NCCNs represents the 
maximum columnar number of particles in the accumulation mode and provides an upper end 
estimate of the concentration of particles that may act as CCN at ~ 0.2% supersaturation.

The effect of aerosols on cloud microphysics was quanti ed using IE, the indirect effect index 
[Feingold et al. 2003], de ned as:

IE = -δlogre / δlogNCCNs

which was computed regionally as the slope of the linear regression between weekly logre and 
logNCCNs values throughout the 2001-2009 period (n = 414). At each 1ºx1º latitude-longitude grid 
pixel, IE was calculated with the logs of the means of re and NCCNs within a 7ºx7º box centered at 
the targeted position. According to theory [Twomey 1991], re is related to the number of cloud 
droplets (Nd) by:

re   ~  (Nd)
1/3

and aircraft observations [Chuang et al. 2000] indicate that cloud droplets relate to the subset 
of aerosols with the appropriate size to act as CCN, namely the number of accumulation mode 
particles Nap, by:

Nd   ~  (Nap)
(0.48±0.06)

Therefore, 

logre  ~  (0.16±0.02) logNap

Derivation of NCCNs by MODIS is based on the identi cation of CCN by size only [Remer et al. 
2005, Gassó and Hegg 2003], with no clue to aerosol chemical composition or hygroscopicity. 
Therefore, NCCNs is actually Nap, the number of accumulation mode particles that may potentially 
act as CCN, and not the real number of CCN. 
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Marine aerosol characteristics, wind speed and continental aerosol source points. AOD (a 
measure of sunlight attenuation by the column of aerosols) was taken as an indication of total 
aerosol amount over the ocean. The standard deviation of the mean AOD (σAOD) within each 
1ºx1º latitude-longitude grid box was indicative of the existence of spatial gradients. The ne 
mode fraction (η) was used as an indication of aerosol size distribution. Ranging from 0 to 1, η is 
de ned as the ratio of the AOD contributed by the small mode particles (or accumulation mode) 
to the total AOD (AODsmall/AODtotal) and can thus be viewed as a measure of the percentage of 

ne particles that contribute to the total aerosol burden. Wind speed values at 10 m over the 
surface (u10), obtained from the National Center for Environmental Prediction (NCEP) / National 
Center for Atmospheric Research (NCAR) Reanalysis model, were used to identify the particles 
ejected to the atmosphere from the surface ocean as sea spray. Fire counts were taken from the 
World Fire Atlas of the European Space Agency (http://dup.esrin.esa.it!ionia/wfa/). The Atlas is 
constructed with data obtained with the instrument Along Track Scanning Radiometer (ATSR), 
which localized the hot spots with night time data exceeding 308 K.  The localizations of urban 
and industrial centers were taken from the MODIS-based International Geosphere-Biosphere 
Programme (IGBP) land cover classi cation data at the Land Processes Distributed Active 
Archive Center (US Geological Survey; https://lpdaac.usgs.gov). All these variables were used 
in a monthly resolution for 2001-2009, and interpolated (when needed) into 1ºx1º latitudinal-
longitudinal spatial resolution.

Dominant aerosol types over the oceans. In order to attribute marine aerosols to their dominant 
emission sources, we used satellite measurements of the optical characteristics of aerosols and 
modeled/assimilated analyses of atmosphere and land-associated variables. Source apportioning 
was conducted following the sequential threshold methodology of ref. [Jurado et al. 2008], 
see Table 1. We considered 6 aerosol types with alternate dominance over the oceans: mineral 
dust (DU), biomass burning aerosol (BB), urban, suburban and industrial aerosol (IN), sea-salt 
particles (SS), continentally in uenced air masses in the distant marine atmosphere (BKc) and 
biogenic background marine aerosol (BKm). Note that ‘dominance’ is the key word here: several 
aerosol types co-exist at a given location and time; our method allows for attribution of the aerosol 
source or type that confers the optical properties observed from satellite. Thus, for instance, by 
attributing the aerosols of an air parcel over the Arabian Sea to DU we do not mean that those 
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aerosols are composed of dust only, but that the overall aerosol has the optical characteristics and 
source proximity of dust. We therefore refer to it as ‘dominated by dust’ yet we recognize it is 
most probably contributed also by sea salt, biogenic and anthropogenic aerosols.

Aerosol total abundance, size and proximity to potential source points were the main criteria 
used to distinguish among dominant types. To de ne these criteria (thresholds) we made use of 
average values reported in the literature for typical air-masses studied from satellite and ground 
stations, and by modeling (e.g., Husar et al., 1997; Tegen et al., 1997; Kaufman et al., 2001; 
Kaufman et al., 2002; Smirnov et al., 2002; Brasseur et al., 2003; Kinne et al., 2003; Cavalli et 
al., 2004; Kaufman et al., 2005). In rst instance, large AOD values (≥0.1) accompanied by small 
size (η≥0.6) and connectivity to re points were attributed to dominance of biomass burning 
particles (BB). If connected to urban and industrial centers, they were assigned to urban and 
industrial dominated aerosols (IN). Very large AOD (≥0.3) and large size (η<0.6) were considered 
dust-dominated aerosol (DU). Large sized aerosols (η<0.5) that did not meet the former criterion, 
occurred under high wind speeds (≥6 m s-1) and were not connected to coastland, were considered 
dominated by sea salt (SS). Among the remaining aerosols (at low AOD), those exhibiting large 

Table 1.  Criteria used for source apportioning of satellite derived aerosols. AOD: aerosol optical depth; σAOD: standard deviation 
of AOD; η: proportion of small aerosol; u10: wind speed at 10 m height; BB: biomass burning aerosol; IN: urban, suburban and 
industrial aerosol; DU: mineral dust aerosol; SS: sea-salt aerosol; BKc: continentally-in uenced remote marine aerosol; BKm: 
biogenic background marine aerosol.

Dominant
aerosol

AOD σAOD η [0-1] u10

(m s-1)
Other conditions

BB ≥ 0.1 ≥ 0.6 Proximity to re points. 
IN 0.1-0.7 ≥ 0.6 Proximity urban centers, not BB.
DU ≥ 0.3 < 0.6 Not BB, not IN.
SS < 0.5 ≥ 6 Distance from coast, 

not IN, not BB, not DU.

BKc ≥ 0.025 Not DU, not IN, not BB, not SS. 
BKm Not DU, not IN, not BB, not SS, not BKc.
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σAOD (≥0.025) were assigned a dominance of continental background aerosol. Finally, aerosols 
that did not meet any of the former criteria were considered dominated by the marine biogenic 
background aerosol.  

Application of the sequential threshold method to monthly aerosol data from MODIS for the 
period 2001-2009 allowed constructing global monthly maps of the types/sources of oceanic 
aerosols. 

A mask of the continental and anthropogenic in uences on marine aerosols. In order to de ne 
the regions of the oceanic atmosphere that are heavily in uenced by aerosols of continental origin 
(either natural or anthropogenic), we arbitrarily selected those 1ºx1º latitude-longitude pixels 
where aerosol was dominated by either BB, IN, DU or BKc during 4 or more months a year, or 
in 36 months over the 9 years studied (see light grey areas in gure 2 of the main manuscript). 
Those regions with the same proportion of months dominated by BB or IN were considered the 
most heavily impacted by anthropogenic aerosols. 

Solar radiation, cloud albedo and cloud shortwave radiative forcing. Climatological, daily-
averaged solar irradiance at the top of atmosphere (STOA, W m-2) was calculated according to 
Brock et al. [1981], and re-computed into weekly and monthly data on a 1ºx1º latitude-longitude 
resolution grid. Cloud albedo was computed from total and clear sky albedos provided by Clouds 
and Earth’s Radiant Energy System (CERES). The CERES instruments provide radiometric 
measurements that include both solar-re ected and Earth-emitted radiation from the top of the 
atmosphere to the Earth’s surface. We used Level 3 daily data, with a 1ºx1º latitude-longitude 
spatial resolution. Daily values were transformed into weekly and monthly means. 

Could albedo (αc) was calculated by subtracting the TOA clear-sky albedo (αclr) from the TOA 
all-sky albedo (α):

αc = α - αclr
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Cloud shortwave radiative forcing (CRFsw, W m-2) was computed as the product of the TOA 
irradiance (STOA) and cloud albedo (αc):

CRFsw = STOA x αc

Global maps of temporal correlations. Temporal co-variations between paired variables 
(namely NCCNs and re, Ac and re, re and STOA) were explored by the running-window correlation 
method [Vallina et al. 2007]. For each month and each 1ºx1º position, we substituted the value 
of the targeted variable for the average of the 49 values of a 7ºx7º window located around the 
position. Then we constructed the weekly (8-day) series of the variable over the 2001-2009 period 
(9 years, 414 weeks) for each 1ºx1º position. With these 414 data for each variable for each 1°x1° 
pixel we computed the Spearman’s rank correlation (ρ) between paired variables, obtaining a 
global map of correlation coef cients. Correlations were signi cant at 95% con dence level 
when /ρ/ > 0.1.   

Re s u l t s  a n d  d i s c u s s i o n

Studies of the global spread of the inverse proportionality between cloud droplet size and aerosol 
numbers that is observed at the local scale are feasible only with satellite data. We compared 
weekly global distributions of CCN numbers (NCCNs) and cloud droplet effective radii (re) 
provided by the Moderate resolution Imaging Spectroradiometer (MODIS) for the period 2001 
to 2009, and observed that they are anti-correlated over time in much of the oceanic atmosphere, 
particularly at mid and high latitudes (Figures 1a). This realization is consistent with previous 
works that attempted the same comparison simultaneously over time and space [Nakajima et 
al. 2001, Breón et al. 2002], and is a remarkable nding because MODIS derives NCCNs as the 
number of small aerosols throughout the atmospheric column and not within the cloud layer 
[Remer et al. 2005]. We then calculated the indirect effect (IE, Feingold et al. 2003), obtaining 
values ranged between 0.12 and 0.17 (see Figure 2), with a global average of 0.14. Our observed 
IE are hence consistent with what is known and predicted about aerosol effects on droplet size. 
The global mean IE  falls well within the expected range, and so do IE in midlatitude clean 
atmospheres (Figures 2, and 1d and 1e). Lower values (0.12-0.13) occur in polar regions where 
re is known to be particularly small [Bréon et al. 2002] and in regions where heavy loads of small 
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continental aerosols may saturate the condensation effect [Rosenfeld 2000] or aerosol and cloud 
layers do not necessarily coincide in the vertical pro le [Constantino and Bréon 2010]. 

Comparison of re with LMC abundance (liquid cloud fraction, Acl) over time shows that, over 
the very most of the oceans, the more abundant LMC are, the smaller their droplets (Figure 1b). 
That is, the two variables that govern the contribution of LMC to planetary albedo vary, on a 
seasonal basis, in such a concert that they potentiate each other’s radiative effect. If we take daily-
averaged insolation at the top of the atmosphere (STOA) as the marker of the pace of seasonality 
at every location on Earth, we observe that cloud droplets tend to be smaller in summer and 

Figure 1. Seasonal aerosol-cloud coupling. Top: Global maps of Spearman’s rank correlation coef cients (ρ) between weekly 
data over the 2001-2009 period of (a) satellite-derived cloud droplet size re and number of accumulation mode particles NCCNs, 
(b) satellite-derived liquid cloud fraction Acl and re, and (c) re and the daily-averaged insolation STOA. Correlations are signi cant 
with a probability of 95% at /ρ/ > 1 (n = 414). Bottom (d,e,f): Series of mean-normalized weekly data of re and NCCNs at the three 
7ºx7º latitude-longitude windows indicated on map a. Central coordinates, ρ and indirect effect (IE = -δlogre / δlogNCCNs) values 
are given next to each series.
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bigger in winter, as shown by the widespread anti-correlation between re and STOA (Figure 1c). 
This general seasonality of re breaks or even reverses is some particular regions of the oceans 
(yellow to red areas in Figure 1c) adjacent to known continental aerosol sources [Kaufman et 
al. 2002]. Surprisingly, however, not all major continental sources seem to produce the same 
effect, as revealed by the lack of effect of the typically thick dust plume over the tropical north 
Atlantic. It has been profusely documented that total aerosol mass is not the appropriate indicator 
of aerosol-cloud interaction because the ability of aerosols to act as CCN depends mainly on their 
size, but also on chemical composition and hygroscopicity [Andreae and Rosenfeld 2008, Twohy 
et al. 2008, Jones et al. 2009]. All these aerosol properties vary with source and transformation 
undertaken during transport. Unfortunately, satellites provide clues to size distribution but no 
surrogates of chemical composition and hygroscopicity [Kaufman et al. 2002]. Besides, aerosols 
of diverse nature and origin always coexist in the atmosphere, and source apportioning of marine 
aerosols using remote sensing is therefore a dif cult task.

We used satellite measurements of optical parameters of aerosols and their proximity to localized 
sources to derive dominant aerosol types at any point and time over the oceans [Jurado et al. 
2008]. The sequential threshold method (Table 1, description in Data and Methodology section) 

Figure 2. Global ocean distrubution of 
IE calculated from weekly cloud droplet 
radius (re) and cloud condensation 
nuclei number (NCCNs) values, in 7ºx7º 
running windows, throughout the 2001-
2009 period.
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allowed identifying the global distribution of the dominant among the major aerosol types that 
concur in the marine atmosphere: mineral dust, biomass burning, urban and industrial, sea salt 
and marine biogenic particles (Figure 3). The method ef ciently distinguishes between aerosols 
of marine and continental origins, and of natural and anthropogenic origins. See Figure 4 for an 
example year. Interestingly, those regions where small anthropogenic aerosols dominate during 
at least 1/3 of the year (Figure 3e) coincide with those where the seasonality of re is reversed 
(Figure 1c), namely the NW Atlantic off North America, the tropical Paci c off Central America, 
the tropical SE Atlantic off Africa, the S Indian around Madagascar, waters around Indonesia 
and NW Australia, the subtropical W Paci c off east Asia, and the continental European seas. 
The only exception occurs in the Arabian Sea, where anthropogenic aerosols are masked by 
co-occurring heavy loads of mineral dust [Jones et al. 2009]. Taken altogether, Figures 1 and 3 
strongly suggest that aerosols indeed drive LMC droplet size through seasons, but natural marine 
aerosols bring this seasonality towards negative feedback on insolation, whereas anthropogenic 
aerosols provide positive feedback. 

Figure 3. Natural and anthropogenic aerosols over the ocean. (a, b, c, d) Distribution of dominant aerosols types in January, 
April, July and October 2004, respectively. Aerosol types as in Table 1. Source attribution is based on sequential thresholds 
on satellite data (see further details in the Data and Methodology section). (e) Light and dark grey correspond to areas where 
continental (DU, BB, IN, BKc) and anthropogenic (BB, IN) aerosols, respectively, dominate in 30% or more of the 108 months 
between Jan 2001 and Dec 2009. Red squares indicate the positions of the study cases of g. 5.
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Figure 4. Monthly distribution of dominant aerosol types over the oceans in 2004, as estimated from satellite-derived aerosol 
optical characteristics with the sequential threshold method.

What are the potential consequences of these distinct natural and anthropogenic behaviors for 
the albedo and radiative forcing of LMC? Regional cloud albedo (αc) is a positive function of the 
zenith angle of insolation, and solely because of that it would be higher in winter and lower in 
summer. This is not always the case because αc is further modulated by cloud abundance (Acl) and 
droplet size (re). We obtained weekly αc data from the Clouds and Earth’s Radiant Energy System 
(CERES) in two locations that we use as study cases because they are symmetric in latitude 
and have the same insolation and seasonality, similar mean annual Acl and αc (Figures 5a,c), but 
different aerosol amounts and sources. While aerosols in the South Paci c at 35ºS are of natural 
marine origin all year round, the W Atlantic at 35ºN is heavily impacted by urban and industrial 
aerosols. In the South Paci c, Acl are higher and re are smaller coinciding with low zenith angles 



Natural and anthropogenic drivers

128

Figure 5. Cloud abundance, droplet size, and radiative effects. Series of weekly data of liquid cloud abundance Acl, cloud droplet 
size re, cloud albedo αc and cloud shortwave radiative forcing CRFsw over the period 2001-2009 within two 7ºx7º latitude-
longitude windows centered at 35ºN 60ºW (a,b) and 35ºS 150ºW (c,d).

and higher insolation in summer (Figure 5c), thus resulting in almost invariant αc, and cloud 
shortwave radiative forcing (CRFsw) values that vary between -100 and -25 W m-2 from summer 
to winter (Figure 5d), with a 9-year mean of -62 W m-2. In the NW Atlantic, Acl are higher and re
smaller in winter; together with the larger zenith angle, they give rise to higher αc in winter, at the 
season of lower insolation. The resulting CRFsw values vary between -75 and -20 W m-2 from late 
winter to fall (Figure 5b), with a 9-year mean of -51 W m-2. Thus, CRFsw in the anthropogenically 
perturbed air is lower than that in the clean air by as much as 11 W m-2.  Since in both cases the 
cloud LW radiative forcing exhibits a much narrower seasonal variability [Harrison et al. 1990], 
this difference in CRFsw translates into a similar or even larger difference in cloud net radiative 
forcing, 10-15 W m-2 [Harrison et al. 1990]. In other words, cloud cooling is notably reduced in 
the anthropogenically perturbed region. Similar patterns are observed in other polluted regions 
downwind of important emission sources, such as the Mediterranean and the Arabian Seas, the 
tropical S Indian off the NW of Australia, or the SE Atlantic off Angola, where annual mean 
CRFsw are lower than those of pristine regions with similar annual cloudiness located at the same 
latitudes (data not shown).
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Altogether, our results show that the two main drivers of cloud albedo over the oceans, namely 
meteorology-driven cloud abundance and aerosol-driven cloud droplet size, concur inversely in 
a unimodal seasonality. Over most of the clean marine atmosphere, this compensates the effects 
of the zenith angle on cloud albedo and provides strong annual cooling. Explanations for such 
a concurrence can be found in the seasonalities of the air column stability and the emission of 
natural marine aerosols, which are both stronger in summer [Klein and Hatmann 1993, Yum et 
al. 2004, Vallina et al. 2007]. It is most likely that this seasonal behavior was the general rule in 
the preindustrial Earth. Continent-to-ocean transport of anthropogenic aerosols interferes with 
the natural seasonality of the albedo of marine clouds, which may result in a reduction of their 
annual cooling potential. 
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A bs t r a c t

Aerosols have a large potential to in uence climate through their effects on the microphysics and 
optical properties of clouds and, hence, on the Earth’s radiation budget. Aerosol-cloud interactions 
have been intensively studied in polluted air, but the possibility that the marine biosphere plays 
an important role in regulating cloud brightness in the pristine oceanic atmosphere remains 
largely unexplored. We used 9 years of global satellite data and ocean climatologies to derive 
parameterizations of  (a) production uxes of sulfur aerosols formed by the oxidation of the 
biogenic gas dimethylsul de emitted from the sea surface; (b) production uxes of secondary 
organic aerosols from biogenic organic volatiles;  (c) emission uxes of biogenic primary organic 
aerosols ejected by wind action on sea surface; and (d) emission uxes of sea salt also lifted by 
the wind upon bubble bursting. Series of global weekly estimates of these uxes were correlated 
to series of cloud droplet effective radius data derived from satellite (MODIS). Similar analyses 
were conducted in more detail at 6 locations spread among polluted and clean regions of the 
oceanic atmosphere. The outcome of the statistical analysis was that negative correlation was 
common at mid and high latitude for sulfur and organic secondary aerosols, indicating they 
might be important in seeding cloud nucleation and droplet activation. Conversely, primary 
aerosols (organic and sea salt) showed more variable, non-signi cant or positive correlations, 
indicating that, despite contributing to large shares of the marine aerosol mass, they are not major 
drivers of the variability of cloud microphysics. Uncertainties and synergisms are discussed, and 
recommendations of research needs are given. 
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In t r o d u c t i o n

Aerosols have a great impact on the Earth’s radiative budget by direct and indirect interactions 
with solar radiation. Direct effects occur through the absorption and the scattering of sunlight 
back into space, thus decreasing the solar energy that reaches the Earth’s surface [Haywood 
and Boucher 2000]. Indirect effects occur through the big in uence that aerosols have on the 
formation and optical properties of clouds. The concentration number, physical and chemical 
characteristics of aerosols modify cloud microphysics, namely the size and number of cloud 
droplets, and thereby in uence cloud brightness [Twomey 1977] and longevity [Albrecht 1989], 
among other properties [Lohmann and Feichter 2005]. The most salient of these complex indirect 
effects is that clouds formed in the presence of larger amounts of small aerosols have larger 
albedo [Andreae and Rosenfeld 2008]. This in uence is predicted more acute in air masses with 
fewer aerosols, such as those over the oceans away from continental in uence [Twomey 1977; 
Andreae and Rosenfeld 2008]. 

Among the natural climate-regulation processes hypothesized to act through aerosol-cloud 
interactions, the most notorious was postulated as the CLAW hypothesis [Charlson et al. 1987]. 
CLAW suggested that oceanic emissions of dimethylsul de (DMS) to the atmosphere could 
constitute a climate buffer through the regulation of the amount of solar radiation that reaches 
the Earth surface. DMS is formed in the surface ocean as a by-product of food-web processes 
and plankton ecophysiology [Simó 2001; Stefels et al. 2007]. Being a volatile compound, DMS 
is emitted from the ocean to the atmosphere where it is oxidized, mainly by OH radicals, to form 
H2SO4, non-sea-salt SO4

-2 and other hygroscopic products that may nucleate into particles and 
grow to act as cloud condensation nuclei (CCN) or seeds for cloud drop formation [Andreae 
and Rosenfeld 2008]. If planktonic production of DMS increases with increasing temperature or 
sunlight, and its emission eventually reduces solar radiation, DMS might be the core of a negative 
(self-regulating) feedback between the marine biosphere and climate [Charlson et al. 1987]. 
The cross-discipline and cross-scale nature of the CLAW hypothesis has stimulated research 
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in and across elds as apparently distant as plankton ecophysiology, air-sea gas exchange and 
aerosol-cloud interactions [Simó 2001]. Even though some key aspects of the hypothesis have 
met strong support, notably through regional evidences for coupling between phytoplankton 
blooms cloud microphysics and optics [Meskhidze and Nenes 2006; Krüger and Graβl 2011], 
and global evidence for the sensitivity of DMS production to underwater light intensity [Vallina 
and Simó 2007a; Lana et al. 2011b], the existence and signi cance of the proposed feedback loop 
as a climate buffer remains elusive [Levasseur 2011]. 

Despite DMS has drawn much of the attention because of the CLAW hypothesis, there might be 
other secondary organic aerosol (SOA) precursors (as yet largely unidenti ed) that are produced 
by similar mechanisms and might therefore play analogous roles [Liss and Lovelock 2007]. Marine 
SOA precursors are natural volatile organic compounds produced by plankton and photochemical 
reactions all over the oceans. Their emissions are, however, poorly constrained [Dachs et al. 
2005, Dachs et al. 2012, Simó 2011]. Initially it was suggested that biogenic isoprene uxes 
could account for a signi cant fraction of SOA [Palmer and Shaw 2005; Meskhidze and Nenes 
2006], as occurs over densely vegetated land. Recently, a number of other SOA precursors have 
been identi ed, namely iodomethanes, amines, monoterpenes and non-methane hydrocarbons 
(Simó 2011 and references therein). They cause increases in aerosol number and organic matter 
during periods of higher biological productivity [O’Dowd et al. 2004; Vaattovaara et al. 2006; 
Müller et al. 2009]. With these emissions being poorly quanti ed, combinations of modeling and 
observations indicate that known emission uxes of marine volatiles cannot account for organic 
aerosol concentrations measured over the oceans, and important uxes of primary organic 
aerosols (POA) are to be invoked (e.g., Arnold et al. 2009; Rinaldi et al. 2010). Actually, current 
estimates of POA and SOA precursor uxes fall short at predicting organic aerosol levels through 
atmospheric models [Heald et al. 2005], thus calling for the existence of hitherto unaccounted 
marine sources of organic carbon. It is to be noted that emissions of hydrophobic semivolatile 
chemicals that accumulate in the surface microlayer and are released through volatilization or in 
association with sea-spray, such as alkanes and polycyclic aromatic hydrocarbons [Nizzetto et al. 
2008, Dachs et al., unpublished data], have been overlooked as marine aerosol precursors.  

Sea-spray is ejected into the atmosphere by the action of wind speed on the surface of the ocean. It 
is generated by bubble bursting and carries sea salt together with organic particles, both of which 
may act as CCN once in the atmosphere. These sea-spray POA are composed of virus, bacteria, 
biogenic polymeric organic material and associated semivolatiles [Bauer et al. 2003; Bowers 
et al. 2009; Russell et al. 2010; Orellana et al. 2011]. Being all of biological origin, it is likely 



Chapter 4

137

that POA precursors are somewhat proportional to plankton biomass and its most commonly 
used indicator, chlorophyll a concentration.  Indeed, the scarce existing measurements of POA 
in small marine aerosols (e.g., O’Dowd et al., 2004; Leck and Bigg, 2007]  suggest that they 
are more abundant in air masses downwind of chlorophyll a rich waters, particularly if  strong 
winds enhance the lift of sea spray. The biological POA source may be reinforced by the action of 
surfactants exuded by phytoplankton, which lower surface tension and may facilitate the ejection 
of small aerosols. 

Sea salt (SS) is also ejected off the sea surface as sea-spray. It has an important presence in the 
marine atmosphere, contributing 44% of the global aerosol optical depth [O’Dowd and De Leeuw, 
2007]. Sea salt was overlooked in the original CLAW hypothesis, because it was thought to be 
composed of too few and too big particles to have a signi cant in uence in cloud microphysics 
despite their high hygroscopicity [Le-Quéré and Saltzman 2009]. Today, however, it is known 
that a non-negligible proportion of sea salt particles belong in the small size fraction that makes 
them effective as CCN [Andreae and Rosenfeld 2008, de Leeuw et al. 2011]; moreover, sea salt 
aerosols play a role in the atmospheric chemistry of gaseous aerosol precursors [von Glassow 
2007]. 

When the CLAW hypothesis was published [Charlson et al. 1987], DMS was suggested to be 
the main, if not the only, source of new CCN in the pristine ocean. This scenario has been 
complicated with the discovery of the aforementioned wide range of volatiles and particles with 
potential to in uence cloud condensation [O’Dowd et al. 1997; Andreae and Rosenfeld 2008]. 
Further complication comes from the widespread occurrence of continental aerosols in the marine 
atmosphere, co-existing with marine aerosols in internal and external mixtures [Andreae and 
Rosenfeld 2008]. Any attempt to evaluate the role of the marine biosphere in cloud formation and 
the radiative budget on a global scale must therefore be able to distinguish between biotic and 
abiotic, and between autochtonous and continental sources of the marine aerosols, and describe 
their geographical, temporal, concentration and size distributions. 

In the present paper, we make use of satellite data and ocean climatologies to parameterize the 
variability in the ux rates of aerosol formation from ocean-leaving DMS and SOA precursors. We 
also parameterize the emission uxes of POA and sea salt from the surface ocean. These aerosol 
sources are compared with the satellite-derived size of cloud droplets on weekly and monthly 
bases over a 9-year period. Temporal correlations at both the global scale and representative 
locations are analyzed as a means to assess the potential role of each marine aerosol source in 
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driving the variability of cloud microphysics. Regions where the sought marine aerosol-cloud 
interactions are heavily interfered by continental aerosols are identi ed. 

Da t a  a n d  Me t ho d o l o gy

Bi o ge n i c  s u l f u r  a e r o s o l  �u x

The global ocean DMS concentration data used in this study is the L10 DMS climatology [Lana 
et al. 2011], which consists of global monthly maps of concentrations distributed in 1°x1° 
latitude-longitude pixels. This climatology, an update of that from 1999 [Kettle et al. 1999], was 
constructed using exclusively the surface DMS concentration measurements (approx. 47,000) 
available in the Global Surface Seawater DMS database (GSSDD), maintained at the NOAA-
PMEL ¿http://saga.pmel.noaa.gov/dms) and fed with contributions of individual scientists from 
all over the world.

Ocean-to-atmosphere emission uxes were computed with the climatological surface DMS 
concentrations and the corresponding gas transfer coef cients, which were parameterized taking 
into account both the water and the air side resistances, as described in McGillis et al. [2000]. The 
parameterization used for the water side DMS gas transfer coef cient is that used by Nightingale 
et al. [2000] corrected to the Schmidt number of DMS according to Saltzman et al. [1993]. 
The air side transfer coef cient calculation was based on the neutral stability water vapor bulk 
transfer coef cients from Kondo [1975]. The computation of the emission ux also consideres 
the sea surface temperatures (SST) and the non-linear in uence of wind speed on air-water mass 
transfer coef cients.

Monthly global, 1°x1° climatologies of SST and wind speed were obtained from the NCEP/NCAR 
reanalysis project  (http://www.esrl.noaa.gov) for the period 1978-2008, as most of the DMS 
data available in the database are from that period. Because the water side gas transfer coef cient 
has a nonlinear dependence on wind speed, the use of monthly averaged wind speeds introduces 
a bias into the ux calculation. The ux was corrected for this effect assuming that instantaneous 
winds follow a Weibull distribution, using the approach of Simó and Dachs [2002]. 

To compute a proxy of DMS oxidation uxes in the atmosphere we followed the same approach 
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as Vallina et al. [2006]. The hydroxylradical (OH) is the main atmospheric DMS oxidant [Savoie 
and Prospero 1989; Chin et al. 2000; Barrie et al. 2001, Kloster et al. 2006]. Daytime DMS 
oxidation initiated by OH produces, among other products, aerosol-forming methanesulphonic 
acid (MSA), sulfuric acid and its corresponding anion non-sea-salt sulfate (nss-SO4

-2). Therefore 
the amount of DMS-derived aerosols that can act as CCN depends not only on the DMS ux 
but also on OH concentrations. We used a monthly global distribution of OH concentration 
data in the marine boundary layer (MBL) obtained from the GEOS-CHEM model run by the 
Atmospheric Chemistry Group at Harvard University for the year 2001 [Fiore et al. 2003].  

The potential source function for DMS-derived CCN can be parameterized as follows:

CCNDMS = b * γ * DMS ux    (1)

where b is a unit conversion constant and γ is a dimensionless parameter varying between 0 a 
1 that gives the ef ciency of DMS oxidation as function of the ratio between OH and DMS ux 
following an equation of the form:

γ = x / (kS+x)     (2)

where,

x = OH/DMS ux   (3) 

In the absence of OH (or very low OH) concentrations respect to the DMS ux, most (or at least 
part) of the DMS ux cannot be converted to CCNDMS (in this situations γ will be low). On the 
other hand, if OH concentrations are in excess all the DMS ux can be oxidized to CCNDMS
(in this situations γ will be close to one). The form of the equation accounts for an asymptotic 
behavior; as the availability of OH for DMS oxidation (the variable x) increases, a higher fraction 
of the DMS ux can be converted to CCNDMS approaching asymptotically the upper limit of 
gamma (for which all DMS ux is converted to CCNDMS). Therefore γDMS ux gives the amount 
of biogenic sulfur potentially available for CCN production. Following Vallina et al. [2006], 
we took the value of kS derived from the annual averages of OH, DMS ux and  γ over the 
Southern Ocean.  Note that Vallina et al. [2006] validated the capability of this parameterization 
to reproduce the seasonality of DMS oxidation by comparing it against monthly series of MSA 
concentrations in aerosols at 15 aerosol sampling stations of the world oceans. MSA is the 
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most appropriate for validation purposes because it is formed exclusively from DMS oxidation, 
whereas nss-SO4 results from DMS, combustion sources and volcanic emissions altogether. For 
comparison purposes, we used the monthly aerosol MSA climatologies of Mace Head (Ireland), 
Hedo Okinawa (Japan), Palmer Station (Antarctica), Prince Edward Island (Southern Ocean) and 
Shemya Island (Aleutians) from the University of Miami network of aerosol sampling stations 
[Chin et al. 2000], and monthly rainwater MSA concentrations at Amsterdam Island [Sciare et 
al. 1998].

Ma r i n e  SOA  �u x

We parameterized the variability of the SOA production rate with the same approach used for the 
DMS-derived aerosol, computing the emission ux and the oxidation rate of its precursor. Unlike 
biogenic sulfur aerosols, however, marine SOA has a number of potential precursors, namely 
a myriad of VOCs not yet fully characterized, which includes isoprene [Bonsang et al. 1992], 
terpenes [Yasaa et al. 2008], amines [Facchini et al. 2008], alkylnitrates [Chuck et al. 2002], 
alkanes [Dachs et al., unpublished data], among others [Bonsang et al. 2008]. Since no global 
climatology of surface ocean VOCs exists, and because both the air-sea transfer coef cient and 
the atmospheric oxidation are dependent on the chemical composition of the precursor mix, 
which is unknown and probably very variable, an accurate parameterization is impossible. To 
overcome this limitation, we considered that SOA-forming VOCs are closely associated with, 
and proportional to the concentration of chlorophyll a [Baker et al. 2000]. We took isoprene as a 
surrogate of SOA precursors, and parameterized the emissions of total volatile and semi-volatile 
precursors as it was isoprene. Isoprene concentration in the surface ocean has been found roughly 
proportional to chlorophyll a, at least much more so than that of DMS [Baker et al. 2000; Bonsang 
et al. 1992; Broadgate et al. 1997; Palmer and Shaw 2005].  Therefore, we computed the SOA-
forming VOCs concentration in surface seawater as chlorophyll a as a proxy. The chlorophyll 
a weekly and monthly data for the period 2001-2009 were obtained from the SeaWiFS Project 
(GSFC, NASA), and transformed into 1°x1° latitude-longitude spatial resolution.

Then, we computed the VOC emission ux as:

Fvoc = kw(u,SST) * CHL (4)

where kw is the transfer coef cient of isoprene, calculated following Palmer and Shaw [2005]. 
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SST and wind speed (u) climatologies were derived from the same data sources as for DMS ux, 
but over the 2001-2009 period only.

VOC oxidation into SOA was computed assuming OH is the main oxidant, which is the case for 
isoprene and most organics at the low NOx levels of the marine atmosphere [Kroll et al. 2006; 
Carlton et al. 2009].

Ma r i n e  pr i ma r y a e r o s o l  �u xe s : s e a  s a l t  a n d  POA  

We parameterized the emission ux of submicron sea salt (FSS) in sea spray as a function 
exclusively of the wind speed, following Geever et al. [2005]:

FSS = (1.854 * 10-3 ) * u2.706 (5)

Where u is the wind speed taken from the same climatology as for the SOA ux.

Since POA is mainly constituted by phytoplankton and bacterioplankton-derived biopolymers 
[Facchini et al. 2008; Hawkings and Russell 2010] and biological particles such as virus, bacteria 
[Aller et al. 2005] and microalgae [Brown et al. 1964], it is reasonable to consider that POA 
precursors in the surface ocean occur in general proportionality to chlorophyll a [O’Dowd et 
al. 2004]. Indeed, an empirical parameterization has been suggested to estimate the amount of 
submicron organic matter lifted as primary particles by wind speed along with the sea spray as a 
function of the chlorophyll a concentration - CHL - [Vignati et al. 2010]: 

                          % organic mass = 43.5 * CHL + 13.805   (6)
                          for CHL < 1.43mgm−3; and

                          % organic mass = 76       (7)
                          for CHL >= 1.43mgm−3.



Natural and anthropogenic drivers

142

With the calculation of the FSS and the percentage of organic mass, we computed the POA ux 
emitted to the atmosphere:

POA ux = FSS * (0.435 * CHL + 0.138)    (8)
for CHL < 1.43mgm−3; and

POA ux = FSS * 0.76                   (9)
for CHL >= 1.43mgm−3.

where CHL was taken from the same monthly 1ºx1º SeaWiFS climatology used for the 
SOA ux.

Co n t i n e n t a l  a e r o s o l -d o mi n a t e d  r e gi o n s  a n d  c l o u d  d r o pl e t  r a d i u s

To estimate the geographic extent of a heavy in uence of continental aerosols to the marine 
atmosphere we used the approach of Jurado et al. [2008] and Lana et al. [2011c]. The aerosol 
classi cation procedure is mainly based on satellite optical measurements that are proxies for 
the amount and type of aerosol: the aerosol optical thickness, which describes the attenuation of 
sunlight by a column of aerosol, its standard deviation, indicative of the aerosol optical depth 
variability, and the Angström exponent, which is inversely related to the average size of the 
aerosol. These were all obtained from the Moderate Resolution Imaging Spectrometer Instrument 
(MODIS, http://modis.gsfc.nasa.gov). Complementary data used were wind speed and proximity 
to re points, land vegetation and urban and industrial centers. Wind speed distributions were 
obtained from the NCEP/NCAR reanalysis project as mentioned above, and helped identify the 
conditions for large sea salt emissions. Firecounts were determined from nightime ATSR data, 
identi ed where the signal exceeds 308 K, reported in the World Fire Atlas from the European 
Space Agency (http://dup.esrin.esa.it/ionia/wfa/index.asp). Urban centers and land vegetation 
were taken from the land cover classi cation map of the International Geosphere-Biosphere 
Programme (http://edcdaac.usgs.gov/modis/mod12q1lv4.asp). All parameters were computed 
into monthly means on a resolution of 1°x1° for the period 2001-2009. 

The cloud microphysical property used in this study was the liquid cloud droplet effective 
radius (re, ratio of third to second moment of the satellite-derived cloud drop size distribution). 
It was obtained from the Level 3 MODIS Terra Collection 5, obtained from the NASA Goddard 
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Space Fight Center Level 1 and Atmosphere Archive Distribution System (DAADS Web, http://
ladsweb.nascom.nasa.gov/data/search.html). The data resolution is 1°, with a quality assurance 
of 1 km. Both weekly and monthly data for the 2001-2009 period were used. 

Te mpo r a l  c o r r e l a t i o n s  be t we e n  va r i a bl e s

Temporal co-variations between paired variables (namely aerosol uxes and re) were explored 
by the running-window correlation method [Vallina et al. 2006]. For each month and each 1ºx1º 
position, we substituted the value of the targeted variable for the average of the 49 values of 
a 7ºx7º window located around the position. Then we constructed the monthly series of the 
variable over the 2001-2009 period (9 years, 108 months) for each 1ºx1º position. With these 
108 data for each variable for each 1°x1° pixel we computed the Spearman’s correlation between 
paired variables, obtaining a global map of correlation coef cients. Correlations were signi cant 
at 95% con dence level approximately when ρ > 0.1 (monthly and weekly temporal resolution) 
and when ρ > 0.5 (annual resolution).   

For the Southern Ocean case study, we calculated the average of each variable over the 40◦-60◦S 
latitudinal band, and compared the weekly data series of paired variables throughout the 9 years 
(414 weeks). We calculated the Spearman’s correlation coef cient between the 414 data pairs 
of each aerosol ux and re. The time series were plotted in standardized form, since we were 
interested in the variability and co-variation of the variables and not in their absolute values.

For the aerosol sampling stations case studies, weekly aerosol uxes and re values were averaged 
over  a 7°x7° window located right upwind of each station. Paired variables were plotted in 
standardized form and correlated as for the Southern Ocean case study. When they were to be 
compared with in situ aerosol MSA concentrations, they were collapsed into monthly means over 
one climatological year by simple averaging.  



Natural and anthropogenic drivers

144

Figure 1. Global maps of Spearman’s rank correlation coef cients 
between monthly series (2001-2009) of CLEFRA or re and the 
parameterized uxes of: (a) DMS emission and oxidation in the 
atmosphere (γDMS ux), (b) SOA formation in the atmosphere 
(SOA ux), (c) POA emission (POA ux) and (d) sea salt emission 
(SS ux). Superimposed on all maps is the mask that indicates 
the marine atmosphere heavily in uenced by continental aerosols 
(see Methods).
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Re s u l t s

Gl o ba l  Ma ps  o f  Se a s o n a l  Co r r e l a t i o n s

DMS oxidation ux versus re: To investigate if there is a widespread seasonal relationship 
between secondary aerosol precursors or primary aerosols ejected from the ocean surface and 
cloud droplet size, we constructed global maps of correlation coef cients of monthly data over 
the period 2001-2009 (Figure 1). Superimposed on the plots is the area of the oceanic atmosphere 
heavily in uenced by continental aerosols, according to Lana et al. [2011c]. Figure 1a shows 
that there is a strong negative correlation between the DMS oxidation ux (γDMS ux) and re
over temperate and high latitudes and in the subequatorial Atlantic and eastern Paci c oceans. 
A uniform negative correlation is particularly remarkable in the southern oceans south of 30ºS. 
Negative correlation implies that the higher the DMS oxidation ux in the atmosphere is, such 
that there is larger potential for biogenic sulfur aerosol formation, the smaller the droplets of 
liquid clouds are, and vice versa. Indeed, over most of the global oceans γDMS ux increases 
from winter to summer as a result of a generalized increase of the seawater DMS concentration 
[Lana et al. 2011] and a concomitant increase in the OH concentration in the MBL [Vallina et al. 
2006].

Correlation between γDMS ux and re turns non-signi cant in the subtropical southern Paci c 
and Atlantic, and slightly positive in the equatorial and the subtropical northern oceans. It is also 
non-signi cant or slightly positive downwind of major pollution sources, namely Europe (NE 
Atlantic and European seas), the eastern coast of North America (NW Atlantic), southern Asia 
(N Indian) and eastern Asia (NW Paci c). These are areas heavily in uenced by continental 
aerosols, as shown by the mask on the map, and particularly by small combustion-derived aerosols 
[Lana et al., 2011c], which are as good as natural marine aerosols as CCN. The seasonality of 
combustion aerosols shows a maximum during winter, thus it is different from that of marine 
biogenic aerosols, and it has been shown that, in regions downwind of combustion foci, the 
seasonality of re differs from that in unpolluted oceanic regions and follows closely the timing of 
the dominant combustion aerosol [Lana et al. 2011c]. 

In the case of the equatorial and tropical N Paci c, the occurrence of positive correlations between 
γDMS ux and re is more puzzling. It is to be noted that this also occurs with the correlations 
of other types of natural aerosols to re (Figures 1b,c,d). This is a region most affected by the 
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intertropical convergence, where large ascending air uxes feed the formation of a persistent 
band of high altitude-reaching thunderstorm clouds. There, the liquid cloud attribution of MODIS 
to the re measurements may have little to do with aerosols formed in the MBL. 

In addition to the abundance of continental aerosols regions in the tropics and subtropics, it is to 
be noted that the low latitudes are characterized by low seasonality. Since our statistical analysis 
is mainly based on seasonal correlations, any uncertainty associated with the monthly variables 
can generate a noise with larger amplitude than the underlying seasonality, thus affecting the 
correlation coef cient. Only because of the low seasonality, hence, lower correlation coef cients 
are to be expected at lower latitudes, even if the underlying causal relationships were the same.

SOA precursos versus re: The correlation map between the chlorophyll a associated SOA ux and 
re (Figure 1b) is quite similar to that of the γDMS ux (Figure 1a). Roughly, negative correlation 
(blue color) dominates and non-signi cant or positive correlation is most common at lower 
latitudes. Important differences occur in the southern oceans between 20ºS and 40ºS, where 
the SOA ux exhibits mostly positive correlation while the γDMS ux gives non-signi cant 
or negative correlation. Also in the N Paci c between 20ºN and 40ºN, the SOA ux correlates 
negatively to re where γDMS ux does not. Conversely, both γDMS ux and SOA ux correlate 
negatively to re north of 40ºN and south of 40ºS. 

Primary organic aerosol (POA) versus re. Unlike those of γDMS ux and SOA ux, the correlation 
of marine submicron primary organic aerosols (POA ux) to re does not show a general pattern 
(Figure 1c). Correlation coef cients change from positive to negative through non-signi cant in 
a rather patchy way. Many of the regions with negative correlation, i.e., those where POA could 
be regarded as an important source of CCN and smaller cloud droplets, are regions with a heavy 
in uence of continental aerosols. Since the POA ux was parameterized as a function of wind 
speed and the chlorophyll a concentration, the correlation map shows some similarities to that of 
the SOA ux. The important differences come from the fact that the SOA ux parameterization 
used also the OH concentration, which has a seasonality similar to that of re.

The correlation map of the submicron sea salt emission ux (SS ux) to re (Figure 1d) resembles 
that of the POA ux. This was expected because the parameterization of the POA ux is derived 
from that of the SS ux with intervention of the chlorophyll a concentration. The main difference 
between both occurs in the Southern Ocean south of 50ºS, where the SS ux shows a rather 
uniform positive correlation to re. This strongly indicates that sea salt is not a main driver of CCN 
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variability in the pristine ocean, as already suggested by Vallina et al. [2007]. 

 We e kl y Evo l u t i o n  i n  t he  Un po l l u t e d  So u t he r n  Oc e a n

Several authors have suggested that if a causal relationship between marine emissions and cloud 
microphysics occurs today, it should be most visible in the Southern Ocean [Menskindse and Nenes 
2006; Krüger and Graßl 2011]. The reason is that, due to the lack of continental land masses and 
large pollution sources, and due to the strong circumpolar winds, the Southern Ocean underlies 
one of the most pristine atmospheres on Earth, with the additional particularity of being rather 
uniform over a broad latitudinal band and all throughout longitudes. Further, the seasonalities 
of both marine productivity and aerosol and cloud variables are very marked and repeated over 
years. Indeed, strong positive correlations have been reported between CCN numbers and the 
DMS oxidation uxes in the Southern Ocean [Vallina et al. 2006]. Therefore, this region makes 
an interesting case study for a closer examination of correlations among marine aerosol emission 
and formation uxes and cloud droplet size.

Weekly series of average γDMS ux, SOA ux, POA ux and SS ux data were correlated to 
average re data over the full 40º-60ºS band (Figure 2). Note that while SOA and primary aerosol 

uxes were parameterized from weekly wind speed, SST and chlorophyll a data throughout the 
period 2001-2009, the parameterization of γDMS ux used weekly seawater DMS concentration 
data deconvoluted from a climatological year; that is, the interannuality of the γDMS ux series 
only re ects the interannuality of wind speed and SST, but not that of DMS. 

Weekly re showed a clear annual pattern, repeated with great similarity year after year (Figure 
2a): larger cloud droplets in austral winter (May through August) and smaller in summer 
(December-February). The series of γDMS ux and re showed a close inverse relationship, with 
a Spearman’s correlation coef cient of -0.93 (n=414). This agrees with the ndings of Krüger 
and Graßl [2011] and is similar to the strong negative correlation found for monthly γDMS ux 
and satellite-derived CCN numbers in the region [Vallina et al. 2006, 2007]. Also the SOA ux 
was strongly anti-correlated to re on a weekly basis (ρ=-0.92, n=414; Figure 2b). These results 
show that the more DMS and organic volatiles are emitted into the atmosphere and oxidized, the 
smaller cloud droplets are, which is consistent with the potential role of marine biogenic trace 
gases in aerosol nucleation and growth. 
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Figure2. Temporal evolution (2001-2009) of (a) weekly satellite-derived re (CLEFRA) and γDMS ux; (b) weekly SOA ux, 
POA ux and sea salt ux  averaged over the entire Southern Ocean (40º-60ºS). The inset indicate the Spearman’s correlation 
coef cient of each variable against re.
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No correlation was found between the POA ux and re (ρ=0.06, n=414; Figure 2b). Even though 
POA ux exhibited some seasonality, this was less marked (less unimodal) than those of re, 
γDMS ux and SOA ux, with minimal values in late summer, maximal values in late spring, 
and a lot of intra- and interannual variability. The SS ux, though also variable, showed more a 
marked seasonality, but in positive phase with that of re (Figure 2b). In fact, and according to 
its simple parameterization, SS ux followed the seasonality of wind speed. Consequently, the 
correlation coef cient was high but positive: 0.76 (n=414). 

Ca s e  St u d i e s  i n  t he  Un po l l u t e d  a n d  Po l l u t e d  Ma r i n e  A t mo s phe r e

With the aim to make a closer examination of the potential in uence of marine biota on cloud 
microphysics we chose six localized areas of the ocean that represent different climate regimes 
and exhibit a range of quantitative in uences of continental aerosol (Figure 3). These areas were 
de ned as 7ºx7º windows upwind of the Prince Edward Islands (Southern Ocean), Palmer Station 
(Antarctic Peninsula), Amsterdam Island (S Indian), Shemya Island (subarctic N Paci c), Mace 
Head (temperate NE Atlantic) and Hedo-Okinawa (temperate NW Paci c). All these areas contain 
an aerosol sampling station with a record of monthly atmospheric MSA measurements for at least 
one year. Since MSA originates exclusively from DMS oxidation and has no major continental 
source, it is a good metrics to which validate our representation of the γDMS ux [Vallina et al. 
2007]. Figure 3 shows the monthly series of MSA, γDMS ux and re for a cimatological year. 
Figures 4-6 show weekly series of γDMS ux, re, SOA ux, POA ux and SS ux for the period 
2001-2009. Note that, again, the γDMS ux series was not constructed with actual weekly data 
but was calculated from deconvoluted, climatological monthly seawater DMS concentration and 
weekly wind speed and SST data.

Three of the stations are located in unpolluted regions: Prince Edward Island, Palmer and 
Amsterdam Island. Prince Edward Island (46.9ºS-37.3ºE) is located in the Indian sector of the 
Southern Ocean. The annual variability of monthly aerosol MSA concentrations, which are 
maximal in summer and minimal in winter, agree well with that of the estimated γDMS ux 
(Figure 3a), thus providing a ground-based test for the validity of the seawater DMS climatology 
and the associated emission and oxidation uxes in the Southern Ocean. re showed an inverse 
seasonality, with larger cloud droplets in winter and smaller in summer, in the way it would be 
predicted by the indirect aerosol effect if the γDMS ux would be a major source of CCN. As a 
result, the correlations of monthly MSA and γDMS ux to re were strongly negative (Spearman’s 
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Figure3. Seasonal evolution of 
satellite-derived re (CLEFRA), SOA 

ux and ground-based aerosol MSA 
concentrations at six aerosol sampling 
stations: (a) Prince Edward Island, (b) 
Palmer Station, (c) Amsterdam Island, 
(d) Shemya Island, (e) Mace Head and 
(f) Hedo Okinawa. The bottom map 
shows the locations of the stations and 
the extension of the regions heavily  
impacted by continental aerosols.
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Figure 4. Same as Fig. 2 but for (a, b) Prince Edward Island, and (c, d) PalmerStation. 

coef cients of -0.85 and -0.97, respectively, n=12). On a weekly basis over the period 2001-
2009, both γDMS ux and SOA ux correlated signi cantly to re (ρ=-0.64 in both cases, n=411 
and n=376). Conversely, the POA ux and the SS ux gave positive correlations (0.37 and 0.49, 
respectively, n=381 and n=414), contrary to the predictions if they were main sources of CCN 
(Figures 4a and 4b).

Palmer Station (64.9ºS-64.1ºW) is located on Anvers Island, midway down the western side of 
the Antarctic Peninsula. The seasonalities of aerosol MSA, γDMS ux and re are very similar to 
those observed at Prince Edward Island, and the negative correlation of the two former to the 
latter was equally strong (-0.84 and -0.94, respectively, n=12; Figure 3b). Also weekly γDMS ux 
correlated signi cantly to weekly re (ρ=-0.66, n=411; Figure 4c), and so did the SOA ux (ρ 
=-0.6, n=322; Figure 4d). The POA ux showed no signi cant correlation (ρ=-0.16, n=324) and 
the SS ux showed a slight positive correlation (ρ=0.37, n=414; Figures 4c and 4d). 
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Figure5. Same as g. 2 and 4 but for (a, b) Amsterdam Island, and (c,d) Shemya Island. 

Amsterdam Island (37.8°S-77.5°E) is located in the S Indian Ocean. Monthly rainwater MSA 
from 1996 showed a marked seasonal variation with higher concentrations in summer, coincident 
with the seasonality of concurrent atmospheric DMS concentrations [Sciare et al. 1998].  We 
can observe in Figure 3c that the monthly variation of the MSA measurements agrees closely 
with that of the γDMS ux derived from the updated seawater DMS climatology. Both MSA 
and γDMS ux showed a strong negative correlation to re (Spearman’s correlation coef cients 
of -0.92 and -0.89, respectively, n=12). On a weekly basis, the correlation between γDMS ux 
and re was weaker (ρ=-0.49, n=411; Figure 5a) but still signi cant. SOA ux did not correlate 
signi cantly to re (ρ=-0.2, n=377), whereas POA ux and SS ux had similar positive correlations 
(0.43 and 0.45, respectively, n=381 and n=414; Figure 5b). 



Chapter 4

153

Figure6. Same as Fig. 2, 4 and 5 but for (a, b) Mace Head, and (c, d) Hedo Okinawa. 

Shemya (52.42°N-174.06°E) is one of the Aleutian Islands located in the high-latitude central 
N Paci c. Aerosol MSA measurements were conducted by Saltzman et al. [1986] as part of a 
broader study over the Paci c Ocean. By computing the ratio MSA/nss-SO4

−2, Savoie et al. [1989] 
concluded that marine biogenic sulfur accounts for ca. 80% of the annually averaged nss-SO4

−2

over the mid-latitude North Paci c. Shemya was the station with the highest MSA concentrations 
and the most dramatic seasonal cycle. In spite of a lack of local nss-SO4

−2 measurements, the 
authors estimated that the station is in uenced by continental aerosol sources during the winter, 
when the input from biological sources is minimal. The monthly aerosol MSA series agreed closely 
with our estimate of monthly γDMS ux (Figure 3d). re showed a less unimodal seasonality than 
that in more pristine regions, and consequently the correlations of monthly MSA and γDMS ux 
to droplet size were lower, yet signi cant (-0.54 and -0.64, respectively, n=12). On a weekly 
basis (Figures 5c and 5d), both γDMS ux and SOA ux were signi cantly inversely correlated 
to re (ρ=-0.51 and –0.53, respectively, n=410 and n=350), whereas POA ux and SS ux were not 
(ρ=0.09 and 0.21, respectively, n=355 and n=414).
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We also chose two stations situated in polluted areas, i.e., heavily in uenced by continental 
aerosols: Mace Head and Hedo-Okinawa. The aerosol MSA measurements at both stations were 
taken from Chin et al. [2000]. Mace Head (53.3°N-9.9°W) is located on the SW coast of Ireland. 
According to O’Dowd et al. [2004], this station allows for a sound sampling of air representative 
of the open ocean if precaution is taken to avoid land-crossing air masses. According to our 
satellite-using approach, a large part of the N Atlantic receives important loads of continental 
aerosols at least during 4 or more months a year [Lana et al. 2011c]. In the case of Mace Head, it 
often is under the in uence of urban and industrial sources, especially during spring and summer. 
There was a close agreement between the seasonalities of MSA and γDMS ux (Figure 3e), 
but they did not correlate signi cantly to re, which did not show any clear seasonal pattern. 
The correlation between γDMS ux and re did not improve on a weekly basis (ρ=-0.11, n=412; 
Figure 6a). The SOA ux, POA ux and SS ux did not correlate either (|ρ|<0.20 in all cases, with 
n=303, n=307 and n=414 respectively; Figure 6b), indicating that the variation of re was driven 
by factors other than marine aerosols.

Cape Hedo is the northern tip of Okinawa Island (26.9°N-128°E), located between Japan main 
islands and Taiwan. The station is downwind of important urban and industrial aerosol sources, 
and it is also affected by biomass burning and Asian dust transport [Takami et al. 2006; Lana et 
al. 2011c]. This was the only examined station where monthly MSA and γDMS ux data did not 
agree (Figure 3f); this had been observed by Vallina et al. [2007] using a former version of the 
seawater DMS climatology, and was attributed to the in uence of polluted aerosols on particulate 
MSA through heterogeneous adsorption. Neither MSA nor γDMS ux correlated signi cantly to 
re. This was also evident on a weekly basis, where the seasonalities of re and γDMS ux were 
lagged by a few weeks (ρ=-0.07, n=411; Figure 6c). Among the other marine aerosol sources, 
only the SOA ux, but not POA ux and the SS ux, showed a signi cant negative correlation to 
re (correlation coef cients of -0.49, -0.21 and -0.11, respectively, n=378, n=381 and n=414).
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Di s c u s s i o n

Se c o n d a r y a e r o s o l s

Our results show the spread of negative correlations of parameterized emission and oxidation 
uxes of DMS and SOA precursors with cloud droplet size (re) over large regions of the ocean. 

In the case of DMS, this is consistent with the positive correlations reported for γDMS ux and 
satellite-derived CCN burdens (NCCNs) [Vallina et al. 2007] and for NCCNs and re [Lana et al. 2011c] 
over the global oceans, particularly at mid and high-latitudes. Although correlation is never a 
proof of causality, it is a necessary condition for causality. The correlation map in g. 1a provides 
support to the hypothesized importance of DMS emissions for cloud microphysics in the clean 
marine atmosphere. 

Both the γDMS ux and the SOA ux show a particularly high anti-correlation with re in the 
Southern Ocean, where there is a reduced number of CCN, and marine precursors must play an 
important role in cloud microphysics because the in uence of continental aerosols is very low. 
However, there are also large areas in the tropics and subtropics where the seasonalities of the 
γDMS ux and the SOA ux are non-signi cantly or even positively correlated to that of re. In 
some of these areas (e.g., the NW Atlantic, the N Indian and the westernmost N Paci c), the 
notable presence of continental aerosols is probably more in uential on cloud microphysics than 
these natural secondary sources. But also in the cleaner equatorial and subtropical S Paci c, the 
lack of seasonal coupling discards marine secondary aerosols as the main divers of re. We should 
note, however, that the weak or absent seasonality in the tropics hampers the use of temporal 
correlation analyses that are mainly based on seasonal signals. 

In the SH, the areas with non-signi cant or positive coupling between SOA ux and re extend 
further south than those for the γDMS ux. This may re ect actual differences in the role of 
DMS and other organic volatiles as sources of CCN. But it could also be due to an inappropriate 
parameterization of the SOA precursor uxes from the ocean. Based on multiple evidence (see 
section 2.2, and e.g. O’Dowd et al. 2004), we parameterized the SOA ux with the assumption 
that volatile and semivolatile precursors occur in the surface ocean in proportionality to the 
chlorophyll a concentration. At mid to high latitudes (>40º), chlorophyll a concentrations increase 
in summer in parallel to an increase in CCN numbers [Vallina et al. 2007] and a decrease in 
cloud droplet size [Lana et al. 2011c]. At subtropical to mid latitudes, conversely, chlorophyll a
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concentrations are maximal in late winter-early spring while CCN and re still peak in summer, 
thus giving rise to the observed mismatches in g. 1b. Should SOA precursors have a seasonality 
less coupled to the chlorophyll a concentration (phytoplankton biomass) and more driven by, 
e.g., phytoplankton taxonomy, nutrient availability, oxidative stress and solar radiation, as is the 
case for DMS [Vallina and Simó 2007a; Lana et al. 2011, 2011b], the SOA ux might also show 
an annual maximum in summer and be more inversely proportional to re. There is a strong need 
to better identify the most important players among marine SOA precursors, beyond isoprene, 
and to conduct time series and manipulation studies aimed at deciphering the biological and 
environmental drivers of their seasonal variability. Also their volatilization and atmospheric 
chemical behavior (including SOA production yields in the marine atmosphere) need to be 
described if we are to assess their role in CCN formation and cloud microphysics over the ocean. 
Overall, the notion that SOA from marine biogenic precursors play in the size distribution and 
compositon of remote marine aerosols is supported by aerosol studies [e.g., O’Dowd et al. 2004; 
Facchini et al. 2008; Sorooshian et al. 2009]. A signi cant in uence of biogenic SOA on marine 
cloud microphysics is still an open question regional, satellite-based studies have not agreed 
upon [Meskhindze and Nenes 2006; Miller and Yuter 2008].

A further complication for the interpretation of the differences and similarities between the 
SOA ux and the γDMS ux with respect to re arises from the potential synergisms  of volatile 
organics and biogenic sulfur in aerosol nucleation and CCN activation. Modeling [Meskhidze 
and Nenes 2006] and smog chamber studies  [e.g., Zhang et al. 2004; Metzger et al. 2010] have 
suggested that mixtures of organic volatiles and ammonia enhance the nucleation of sulfuric acid 
into particles, their growth to the accumulation mode size, and their activation as CCN. 

Pr i ma r y a e r o s o l s

POA emissions occur by bubble bursting formation of sea spray enriched with organic matter  
[Leck and Bigg 2005; Keene et al. 2007] or biological particles [Aller et al. 2005] that can be 
identi ed under the microscope. When only the chemical characterization of aerosols is feasible, 
POA are quani ed as water-insoluble organic carbon [e.g. O’Dowd et al. 2004]. It has been 
shown [Leck and Bigg 2005; Leck and Bigg 2008] that those small insoluble organic aerosols are 
the seeds onto which acidic gases condense, a process that may lead to their activation as CCN.  

Our statistical analyses yielded a patchy distribution of the correlation between the POA ux and 
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re (Figure 1c), with large regions with non-signi cant and positive correlations. Even though the 
parameterization of the POA ux related it to the chlorophyll a concentration, just like that of the 
SOA ux, their seasonal patterns were very different because of the larger in uence wind speed 
has on the POA ux calculation. As a result, POA does not seem to play a role in driving the 
variability of cloud droplet size over most of the ocean. This is a little surprising, because water 
insoluble organic compounds have been seen to account for a dominant fraction of the organic 
mass of marine aerosols [Facchini et al. 2008; Russell et al. 2010]. A possible explanation would 
be the low hygroscopicity of most primary particles, including microorganism cells, unless they 
get internally mixed with hygroscopic condensates [Leck and Bigg 2005]. Another explanation 
would lie on the parameterization itself,  where POA precursors are assumed to occur in some 
degree of proportionality to the chlorophyll a concentration. This is a reasonable assumption 
for biological particles such as viruses, bacteria and the smallest microalgae, but it is harder 
to predict for the algal polymers, mainly carbohydrates, that dominate the submicron aerosols 
[Facchini et al. 2008; Russell et al. 2010; Orellana et al. 2011]. It is known that this type of 
algal exudates do not only depend on total phytoplankton biomass but also on their species 
composition, physiological status and productivity [Verdugo et al. 2004]. As in the case of SOA 
precursors, hence, we should better know the geographic and seasonal distribution of POA-
forming material and their environmental drivers before we can fully assess the signi cance of 
our results.   

The sea salt lifted into the atmosphere with sea spray has been long recognized as the largest 
global source of primary aerosols [Woodcock 1948; de Leeuw et al. 2011]. In terms of mass, 
it represents the largest contributor to marine aerosols. Even though the concentration of small 
sized sea salt particles in the marine boundary layer is enough to represent an important, but 
highly variable, source of CCN [O’Dowd and Smith 1993; Lewis and Schwartz 2004; Caffrey et 
al., 2006; Pierce and Adams 2006], our correlation analysis shows that they do not seem to play 
an important direct role in driving the variability of cloud microphysics. At least, not the expected 
role, since the SS ux is positively or non-signi cantly correlated to re in most of the sea salt rich 
oceanic atmosphere (Figure 1d). This is consistent with the ndings of Vallina et al. [2007] that 
sea salt contributes a large share of CCN numbers but does not drive their seasonality over the 
Southern Ocean. Our parameterization of the SS ux relates it exclusively to wind speed. Some 
modeling studies related the emission rate also with sea surface temperature [Caffrey et al. 2006; 
Pierce and Adams 2006; Korhonen et al. 2008] and con rmed the large contribution of sea salt 
to regional monthly mean CCN numbers in the marine boundary layer. It is important to notice 
that models are only as good as our knowledge of the underlying mechanisms is, and results 
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are dif cult to validate because of  the inherent dif culties associated with conducting in situ 
measurements of SS ux and realistically reproducing sea surface conditions in the laboratory. 
As for the POA, the in uence of sea salt on the seasonal variability of cloud microphysics seems 
poor but remains uncertain.   

Co n c l u s i o n s

Our correlation analyses at both the global and the regional scales and over a 9-year period 
provide a framework for potential causal relationships between marine aerosol source strengths 
and cloud microphysics. We have shown that the weekly ux of DMS emission and oxidation 
is signi cantly anti-correlated with cloud droplet size in most of the clean atmosphere over the 
mid and high latitude oceans. A similar result is found for the emission and oxidation of marine 
precursors of secondary organic aerosol, yet with differences in the subtropics. A remarkable 
result is the strong negative correlations found over the Southern Ocean, in the cleanest of 
current atmospheric regions. Conversely, primary organic and sea salt aerosols do not show a 
clear pattern against cloud droplet size, and in the case of the Southern Ocean they even show 
positive correlations, contrary to what would be expected if primary aerosols were direct drivers 
of cloud microphysics. Therefore we conclude that the observed patterns are consistent with a 
potential primary role of biogenic secondary aerosol precursors (DMS and organic volatiles) 
in determining the number and size of cloud droplets and, hence, having an impact on cloud 
radiative properties. Conversely, primary aerosols, even though they contribute to aerosol mass, 
do not seem to act as primary drivers of CCN numbers and droplet size.  

Our efforts to distinguish among marine aerosol sources and types, deal with their distinct 
dynamics and seasonalities, and identify their areas of in uence with respect to continental 
aerosols, overall represent a step forward towards the comprehension of aerosol-cloud interactions 
over the oceans. On rst sight, however, our approach seems grounded on one major conceptual 
simpli cation: aerosol sources each contribute a proportion of an external mixture of marine 
aerosols, and the ones identi ed here to be the best coupled to cloud microphysics (namely the 
secondary aerosols) are hence the most climatically active through the indirect effects. A deeper 
interpretation of our data should take into account that most marine aerosols occur as internal 
mixtures from different sources and nature. Electron microscopy observations of marine aerosols 
depict a variety of heterogeneous particle constructions, with e.g. organic polymers internally 
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mixed with sulfuric acid or sea salt crystals [Leck and Bigg 1999, 2005, 2008]. The view that 
new aerosols and CCN are formed by homogeneous nucleation and further condensation of 
vapors is too simplistic; H2SO4 nucleation is enhanced by organics and ammonium, and growth 
to CCN activation occurs by organic condensation [e.g., Hegg et al. 1990; Covert et al. 1992; 
Kulmala et al. 2004; Zhang et al. 2004], but also tiny primary aerosols get activated as CCN by 
condensational growth or by absorption of surface active and hygroscopic compounds [Cavalli 
et al. 2004; Leck and Bigg 2005; O’Dowd and Leeuw 2007]. Our results should not be regarded 
as evidence for a unique role of DMS (and possibly other organic volatiles) in CCN formation, 
with dismiss of the primary aerosols, but point to a pivotal role of trace gas oxidation products in 
CCN activation of smaller secondary or primary particles [Andreae and Rosenfeld 2008].

A better knowledge of the biological and biogeochemical mechanisms that lead to the production 
of primary and secondary organic aerosol precursors, and particularly their spatio-temporal 
dynamics, is urgently needed if we are to better understand and parameterize their emission 
strengths. New information may change our current perception of the most important players in 
aerosol-cloud interactions in the pristine marine atmosphere that still covers a considerable area 
of our planet.
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The  CLA W hypo t he s i s  24 ye a r s  l a t e r

In the context of the CLAW hypothesis [Charlson et al. 1987], this thesis aimed to contribute to 
the general knowledge of the biogeochemical-physical interactions and feedbacks between the 
ocean and the atmosphere as a coupled system. Aerosol-driven microphysical characteristics 
of clouds and their in uence on the Earth’s radiation budget were here analyzed, based on the 
emissions of marine aerosols and their precursors. The thesis has taken advantage of the recent 
huge increase in the number of marine volatile sulfur measurements and the long-term atmosphere 
satellite data record available. 

The CLAW hypothesis suggests a simple mechanism that links the marine biota with climate 
regulation. According to this hypothesis, the biogenic DMS gas, produced by phytoplankton 
and emitted to the atmosphere, could be the major source of cloud condensation nuclei over the 
oceans. This implies that, before the industrial revolution, the formation and microphysics of 
clouds over the oceans, i.e. most of the Earth’s clouds, would had been largely regulated by DMS 
emissions. Its simplicity and importance is what makes the hypothesis so attractive; however, 
thus far there is no concluding proof of its certainty. 

This apparently simple hypothesis hides a huge intrinsic complexity. Under the surface 
of the ocean DMS is produced as a degradation product of the sulfur microalgal metabolite 
dimethylsulfoniopropionate (DMSP), which is a biogenic compound present in the photic zone. 
The ef ciency of DMSP as DMS producer is mainly affected by solar radiation, the existent 
species of phytoplankton and the DMSP intracellular functions as an osmoregulator, cryoprotector 
or antioxidant, just to mention a few variables. DMS production, in turn, is affected by diverse 
environmental forcing factors by different paths. It can be enhanced under oxidative stress, 
nutrient limitation or high UV radiation, and is has a dependence on the phytoplankton groups 
and species present [Simó 2001; Stefels et al. 2007]. There is not a simple way to evaluate the 
DMS production in the ocean. In the rst part of the thesis, we aimed at describing the global 
geographical and seasonal distribution of DMS and assessing its environmental regulators. A 
small part of the DMS produced under the oceans is emitted to the atmosphere [Simó, 2001; 
Vila-Costa et al., 2006]. The second part of the thesis focused on that moment onwards, when 
the DMS escapes from the ocean into the atmosphere. With regard to the atmospheric portion of 
the DMS cycle, there are many questions to be answered to understand the CLAW hypothesis: 
how DMS escapes to the atmosphere, its amount, its oxidation, its impact in the chemistry of 
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low troposphere, its interaction with other gases and compounds, its role in forming new cloud 
seeds or its relevance in the growth of pre-existing particles [Andreae and Rosenfeld 2008]. To 
answer these and other questions multidisciplinary studies are requiered. Chemists, physicists, 
biologists and oceanographers have involved in the study of the CLAW hypothesis. There is 
not yet a clear conclusion, and probably there will never be. That’s probably what makes it so 
exciting, its complexity. 

Since it was postulated, the available literature on this topic has opened many questions and has 
provided contrasting results, either supporting or rejecting the hypothesis. 

Previous evidences supporting or against the CLAW hypothesis, published before the development 
of this thesis, are summarized bellow: 

Pr e vi o u s  r e s u l t s  – s u ppo r t i n g t he  hypo t he s i s : 

- Field measurements show strong relationships between atmospheric DMS, aerosol 
chemical composition (particularly methansulfonate content), and cloud condensation nuclei, 
under unpolluted conditions. Some of these eld measurements were performed over the tropical 
South Atlantic, over the Southern Indian Ocean, and at Cape Grim, situated in the Southern 
Ocean [Andreae et al., 1995; Baboukas et al., 2004; Andreae et al., 1999], just to mention a few 
examples. They suggested that DMS oxidation is the dominant sulfur source for aerosols during 
summer, indicating that over pristine areas of the ocean the atmospheric sulfur burden is mainly 
in uenced by biogenic emissions.

- Anthropogenic sources of nss-SO4 are mainly located in the North Hemisphere. Over 
most of the Southern Hemisphere, oceanic DMS emissions account for the majority of nss-SO4 
aerosols [Bates et al., 1992a]. 

- DMS concentrations are highly positively correlated with the solar radiation dose in the 
upper mixed layer of the open ocean, with independence of the latitude, plankton biomass or 
temperature [Vallina and Simó, 2006]. 

- There is an evidence of an impact of marine biota in cloud microphysics. Using satellite 
data, over a large phytoplankton bloom in the Southern Ocean cloud effective radius was 
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reduced, apparently, due to the increase of biogenic aerosols emissions from the ocean, with the 
consequent impact on the radiation ux at the top of the atmosphere. The reduction in the short-
wave radiation at the surface was comparable to the indirect effect over highly polluted areas, 
which demonstrates the potential huge importance of biogenic emissions in climate regulation 
[Meskhidze and Nenes, 2006].

- A similar result is obtained using a circulation model: DMS emissions produce changes 
in cloud microphysical properties, both seasonally and globally. The model shows an increased 
number of smaller sized cloud droplets during the period of increased phytoplankton blooms 
[Thomas et al. 2010]. 

Pr e vi o u s  r e s u l t s  - r e je c t i n g t he  hypo t he s i s :

- Field observations show, at least in the Equatorial Paci c, no evidence of new particle 
formation in the marine boundary layer, in spite of the DMS emission and its conversion into 
sulfate aerosols [Clarke et al., 1996].

- The original simpli cation of the DMS cycle in the atmosphere hid key atmospheric 
processes that relate atmospheric DMS with the growth of pre-existing particles [Vaattovaara 
et al., 2006]. Those processes may imply a DMS effect on cloud albedo opposite of the one 
suggested by the CLAW hypothesis [von Glassow 2007].

- Adding aerosol physics processes on global models, a lower sensitivity of cloud 
condensation nuclei concentration is obtained to changes in DMS ux emissions [Woodhouse et 
al., 2010].

- MSA records from ice cores at high latitudes suggest that sulfur-climate feedback between 
glacial and interglacial periods was positive in sign [Saltzman et al., 2006, Legrand et al., 1997]. 
The sea ice extent, the origins of sulfur within the ice, or other sulfate sources such as continental 
or volcanic emissions could be the reason. 

- According to the latter suggested reason for the no-evidence of the CLAW hypothesis in 
some regions, times and conditions, other aerosols are suggested to act as cloud condensation 
nuclei [Leck and Bigg, 2005, 2007; O’Dowd et at., 2004; Russell et al., 2010].
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- A recent study, based in model simulations, suggests that the ‘‘plankton–DMS–clouds–
earth albedo feedback’’ hypothesis is weak as a long-term thermostatic system but it may act as 
a seasonal mechanism that contributes to regulate the solar radiation doses reaching the Earth’s 
biosphere through seasons [Vallina et al., 2007, Vallina and Simó 2007c]. 

Qu e s t i o n s  a n s we r e d  i n  t hi s  t he s i s

In this complex scenario, we tried to answer a handful of questions in order to provide a further 
insight into this mechanism. Although we partially answered them, some aspects remain unclear 
and open for further analyses and future investigation.  

There are still a lot of uncertainties associated with the CLAW hypothesis, and big methodological 
challenges. One main dif culty is to segregate natural marine aerosols from anthropogenic and 
continental ones. This separation is a key requierement if we are to study the in uence of marine 
biota on climate through aerosol production. 

To facilitate approaching it, we can split the CLAW hypothesis in two main directions (Figure 
1). On the one side, we have DMS production by the plankton food web, its ventilation to the 
atmosphere and its in uence, once oxidized into aerosol-forming species, on cloud formation 
(Figure 1a). On the other side, solar radiation has an in uence on plankton and physics of the 
photic zone, where DMS is produced, and, at the same time, it is in uenced by cloud albedo, 
which reduces the amount of sunlight that reaches the ocean surface (Figure 1b). These two 
main process directions are highly in uenced by the physical, chemical and meteorological 
characteristics of the atmosphere. We focused our studies on the seasonality of the two halfs of 
the CLAW hypothesis, using correlation analyses of regional and global data. Spatio-temporal 
correlations between seasonally changing variables are a necessary, but not suf cient, condition 
for the feasibility of the potential feedbacks between marine biota and climate. The correlations 
do not provide the nal answer, but they are a very useful approach. 
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Figure 1. Scheme of the CLAW hypothesis loop: (a) the rst part of the loop  relates the emission of DMS from the ocean to 
cloud formation and brightness (albedo); (b) the second part deals with how solar radiation, affected by the albedo of clouds 
affects DMS production in the surface ocean. 
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Do  DMS c o n c e n t r a t i o n  a n d  e mi s s i o n  r e s po n d  t o  me t e o r o l o gi c a l  o r  
c l i ma t e  f o r c i n g?

The rst objective of the thesis was to create an accurate updated DMS global distribution as 
a follow up to the hitherto widely used DMS climatology, created in 1999 [Kettle et al., 1999], 
and updated one year later [Kettle and Andreae, 2000]. Over the last decade, the amount of data 
in the global DMS database has tripled. Using this enlarged data set, we have applied objective 
analysis techniques [Barnes, 1964; Locarnini et al., 2010] to create monthly global maps of DMS 
concentration in the ocean surface (Chapter 1). 

The scarcity of data over space and time makes it very dif cult to construct a uniform global 
distribution with high temporal and spatial resolutions. The extreme under-sampling of many 
regions of the ocean, and the uneven temporal coverage obligated us to make use of interpolation 
and extrapolation techniques, based on our knowledge of the biogeography of the oceans, to 
construct a monthly global DMS distribution with a 1ºx1º latitudinal-longitudinal resolution. 
With the new climatology we created an spatio-temporal framework for future DMS process 
studies to address the relevant scales of variability.  

The new DMS climatology was instrumental to address both sides of the CLAW hypothesis: 
the variability of DMS concentration and emission told us both about the distribution of aerosol 
sources to be compared with aerosol numbers and cloud microphysics (Figure 1a), and about the 
factors controlling DMS production, including cloud albedo (Figure 1b).

Previous studies [Vallina and Simó, 2007a] found a strong positive relationship between sea 
surface DMS and the solar radiation dose received in the upper mixed layer of the ocean. The 
analysis was based on the DMS database and local time-series measurements. We revisited 
this global analysis taking advantage of the updated DMS database and climatology , with the 
aim to re-examine the seasonal coupling between SRD and DMS. Our results con rm the tight 
relationship between both variables over the global ocean (Chapter 2) that had been seen in 
previous studies. However, the statistical analyses seem to be very sensitive to the SRD binning 
intervals and the methodology used to calculate SRD. Other studies, such as Derevianko et 
al. [2009], had pointed out this concern, namely that the use of box grouping and binning 
largely reduces the total variance in the data and results in exaggeratedly high coef cients of 
determination. However, the use of the updated climatology in the linear regression, using a 
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Figure 2.  Linear regression of the seawater 
DMS concentrations from the updated 
DMS climatology L10 against the daily-
averaged Solar Radiation Dose (SRD) in 
the upper mixed layer of the ocean. Dots 
are averages of 5º latitude by 5º longitude 
boxes, binned by SRD intervals of 1 W 
m-2. SRD calculated as in Vallina and Simó 
(2007).

smaller averaged box and a reduced binning interval for the SRD than that used in Chapter 2, 
shows a high coef cient of determination– see Figure 2. In the results shown in Chapter 2, and 
in the latter calculations, standard deviations are quite large but the upper and lower contours of 
the range still show clear proportionality between DMS and the SRD.

The surface seawater DMS concentration is linked to plankton organisms living within the upper 
mixed layer. Using the surface chlorophyll a concentration as a proxy of the phytoplankton 
biomass in the surface ocean, we re-evaluated the potential links between DMS and plankton. 
The link had been previously studied by Vallina et al. [2006]. Re-examination of the latitudinal 
match-mismatch between the seasonality of DMS and phytoplankton, represented by the 
chlorophyll a concentration, reveals that they are highly positively correlated in latitudes higher 
than 40º, but anti-correlated in the 20º-40º latitudinal bands of both hemispheres. 
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In spite of the differences between the updated and the previous DMS climatology (Chapter 
1), very few differences have been found in the global and seasonal emerging patterns with the 
use of the updated DMS database and climatology. This is probably due to the use of updated 
versions of the other variables employed in the re-examination of the patterns, when there was 
an updated version available. These global emerging patterns provide key information about the 
factors that control the emission of volatile sulfur from the ocean. Sunlight and phytoplankton 
concentration seem to be important modulators of DMS production. However, further work is 
still required to understand DMS production and emission. 

Do e s  DMS a �e c t  t he  mi c r o phys i c s  a n d  r a d i a t i ve  pr o pe r t i e s  o f  c l o u d s ?

We analyzed the hypothesized relationship between emitted DMS and cloud formation. To this 
aim, we explored the relationship between a parameterization of the DMS emission and oxidation 

ux and cloud droplet radius with the use of satellite-derived data. When it was possible, the 
resolution was brought to weekly and local (Chapter 4). We focused our attention on the cloud 
droplet effective radius as the signi cant cloud microphysical property for our purpose. The 
size of the cloud droplets in uences the solar radiative properties of clouds in two ways. Firstly, 
if the size of the cloud droplets becomes smaller, the cloud albedo increases [Twomey, 1977 
]. Secondly, smaller droplets stay longer in the atmosphere before reaching the size needed to 
become a rain droplet and precipitate [Albrecht, 1989]. In other words, smaller droplets make 
longer-lasting clouds. Both phenomena contribute to reduce the solar radiation that reaches the 
Earth’s surface, and both produce a cooling effect.

We evaluated the seasonality of low clouds over the global ocean, and found a temporal coupling 
(correlation) between their coverage and the size of the cloud droplets. These two cloud properties 
(one macrophysical, cloud cover fraction, and one microphysical, droplet size) vary in concert 
and in proportionality to the incident solar radiation. When the solar radiation is higher, the 
cloud droplet radius is smaller, and cloud coverage is higher. These relationships imply that two 
of the factors that contribute to cloud albedo increase their positive contribution with higher 
solar irradiances. The third main driver of cloud albedo, solar zenith angle, in uences in such 
a way that it increases albedo with an increase in the angle. Therefore, if for the zenith angle 
alone, cloud albedos would be higher in winter and lower in summer, thus providing positive 
feedback on insolation and a modest annual cooling of the ocean surface. But the seasonality 
of both cloud cover and cloud droplet size in such that it decreases cloud albedo in winter and 
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increases it in summer, thus compensating for the zenith angle effect and enlarging the annual 
cloud cooling (Chapter 3).  This negative feedback between cloud microphysics (droplet size) 
and solar irradiance would have probably been the widespread (natural emerging) pattern in the 
pre-industrial Earth. 

In areas highly affected by continental aerosols, which have their own seasonality that does not 
necessarily coincide with the natural one, this compensatory effect of cloud cover and droplet 
size is broken and annual cooling in reduced   (Chapter 3). 

We also analyzed whether the DMS emission uxes from the ocean play the hypothesized key 
role in this link between the cloud droplet effective radius and solar radiation over the ocean. 
Our results show an inverse co-variation between the DMS oxidation ux - estimated from 
the updated DMS climatology - and the cloud droplet effective radius, not proving but setting 
the conditions for a mechanistic involvement of DMS  in the variability of the size of cloud 
droplets. (Chapter 4). The aerosol production from DMS varies seasonally in concert with cloud 
droplet radius, as if increasing the former leads to a decrease in the latter. In this thesis, we 
have approached ocean biosphere/atmosphere interactions mostly through seasonal correlations 
among variables. We are aware that correlation is not a suf cient condition to derive causality 
between a pair of variables; instead, we regard it as a necessary condition to start digging into, or 
ruling out, hypotheses of causal mechanisms.

We started this part of our research asking ourselves why, in the pristine oceanic atmosphere, 
there is a deep seasonality in cloud droplet radius. In all likelihood, biogenic emissions from the 
ocean produce an increase in the number of droplets and hence a decrease in their size. This is 
consistent with the predictions of the CLAW hypothesis. 

Is  DMS t he  ma i n  pl a ye r  i n  pl a n kt o n /c l o u d  i n t e r a c t i o n s ? 

It has been suggested that volatiles other than DMS also play a role in the formation of cloud 
condensation nuclei and the regulation of cloud droplet sizes [O’Dowd et al., 1997; Andreae and 
Rosenfeld, 2008]. Aerosol-forming volatiles that have been identi ed in surface seawater occur at 
individual concentrations that are generally lower than that of DMS by factors of 20-100. There is 
the suspiction, however, that many more compounds are yet to be detected and quanti ed. Hence, 
it is currently impossible to characterize the contribution of each potential individual precursor 
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Figure 3. Temporal evolution of 
satellite-derived weekly chlorophyll 
a concentrations (Chla) and cloud 
droplet effective radius (CLEFRA) 
over the years 2001-2009, at (a) 
Midway Islands (pristine area of the 
subtropical North Paci c atmosphere) 
and (b) Mace Head, Ireland (situated in 
the North-East Atlantic Ocean, affected 
by continental aerosols).  

to secondary aerosols, and any attempt to quantify secondary aerosol formation has to rely on 
parameterizations of an idealized or ‘average’ bulk precursor. A parameterization of the oxidation 

ux of biogenic isoprene (as a surrogate of the secondary organic aerosol, SOA, formation in 
the marine atmosphere) showed a similar seasonal variability to that of the invesrse of the cloud 
droplet radius at mid and high latitudes. Therefore, at these latitudes it is dif cult to discriminate 
the relative roles of DMS and SOA precursors in regulating droplet size because they all vary in 
concert.  As a matter of fact, we observed a close coupling between chlorophyll a concentration 
and cloud droplet effective radius over marine areas not affected by continental aerosols – see 
Figure 3a. However, where the oceanic atmosphere is strongly affected by continental aerosols, 
this relation is broken – see Figure 3b – because cloud droplet size is largely controlled by 
pollution aerosols.
We parameterized SOA precursor emission and oxidation as a function of the chlorophyll a 



173

Discussion and Conclusions

concentration (proxy of plankton biomass), the wind speed, the sea surface temperature and their 
main oxidant, the OH radical. Although a myriad of compounds are potential SOA precursors 
(see Table 1, obtained from Simó [2011], for more details), we use isoprene as a surrogate, 
and base our parameterization on the properties of this compound [Palmer and Shaw 2005].  
However, in situ measurements are needed to validate the parameterizations with the real data 
series of the amounts of aerosols formed by biogenic ux emissions from the ocean. Correlation 
maps and temporal evolution plots show a tight coupling, over large regions of the high latitude 
oceans, between cloud droplet effective radius and the parameterization of the two biogenic 
secondary aerosol precursors studied (DMS and organic volatiles). Unfortunately, during this 
thesis it was not possible to evaluate which of them would be the main player. Further studies 
therefore are needed to address this issue. 

Parameterized emission uxes of primary aerosols (primary organic aerosols – POA - and sea salt) 
do not vary in anti-correlation with cloud droplet effective radius as would be predicted if there 
were a strong in uence of the former on the latter. Rather, POA uxes show a patchy correlation 
to cloud droplet effective radius, and sea salt uxes show a mainly positive correlation in large 
regions such as the Southern Ocean (Chapter 4). These results suggest that particles emitted 
directly from the ocean as aerosols do not seem to have a large/direct impact on the variability 
of cloud microphysics.

Apparently, at the mixed boundary layer (MBL) sea salt aerosols provide much of the surface 
area for cloud condensation [Pirjola et al. 2000], and particle nucleation is highly sensitive to the 
presence of those primary particles. Aerosol nucleation is affected by short-term meteorological 
phenomena [O’Dowd et al., 1998; Petters et al., 2006; Chen et al., 2011] that cannot be deeply 
analyzed with the temporal and spatial scale used for our studies.  The nucleation process, 
classically assumed to occur only via homogeneous condensation of H2SO4 clusters, has been 
observed in areas affected by the incursion of a wide range of aerosols, as in the tropical marine 
boundary layer, MBL [Clarke et al., 1998], or close to shore [Covert et al., 1992; Hoppel et al., 
1994; O’Dowd et al., 2002]. The occurrence of nucleation in the remote MBL remains unclear. 
The chemical composition of the formed particles can be in uenced by their transport through 
the atmosphere, and by the original composition of the precursor. Transport of particles from 
other areas, such as the free troposphere [Covert et al., 1996; Clarke et al. 1998, Russel et al. 
1998], seems to play an important role in providing new cloud-seeding aerosols to the remote 
MBL. However, other studies show that sulfuric nucleation can indeed occur in the remote MBL 
[Petters et al. 2006]. Laboratory experiments show that SOA exist mostly as internally mixed 
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COMPOUND MAIN ENVIRONMENTAL ROLEa
OCEANIC EMISSION

MAGNITUDE          CONTRIBUTION TO
TOTAL EMISSIONb

OTHER SOURCESc TOKEN REFERENCES

CH4 Greenhouse 0.6-15 Tg/yr 0.1-2% Wetlands, livestock, 
rice elds, land lls, 
natural gas

Bates et al. 1996,  Denman et 
al. 2007, Rhee et al. 2009

N2O Greenhouse 0.9-7 TgN/yr 4-20% Soils, fertilizers, 
combustion

Nevison et al. 1995, Bange 
2006, Rhee et al. 2009

Sulfur volatiles:
 Dimethylsul de (DMS)

COS

CS2

Global sulfur budget
Aerosol precursor: atmospheric acidity and 
cloud nucleation

Precursor of stratospheric aerosol

COS precursor

20-35 TgS/yr

0.60 TgS/yr

0.15 TgS/yr

90%

20%

?

Soils, plants

Soils, combustion 

Soils, wetlands

Kettle & Andreae 2000, Simó 
& Dachs 2002

Kettle et al. 2002, Uher 2006, 
Sutharalingam et al. 2008

Xie & Moore 1999, Kettle et 
al. 2002

Selenium volatiles
(methyl selenides)

Halogenated volatiles:
 CH3I, CH2I2

CH3Br

CH3Cl

Other halomethanes
 and haloethanes

Global selenium budget

Global iodine budget, tropospheric 
photochemistry, coastal aerosol precursor, 
cloud nucleation

Stratospheric ozone destruction

Tropospheric photochemistry, acidity,  
stratospheric ozone destruction 

Tropospheric photochemistry, acidity,  
stratospheric ozone destruction

≤35 GgSe/yr

1 TgI/yr

20-46 GgBr/yr

0.1-0.3 TgCl/yr

?

50-75%

>50%

10-40%

10%

?

Soils, plants, 
wetlands

Rice elds, 
combustion 

Agriculture, 
combustion, salt 
marshes

Combustion, 
industrial 

Combustion

Amoroux et al. 2001

Moore & Groszko 1999, 
O’Dowd et al. 2002

Lobert et al. 1995, Pilinis et 
al. 1996, Butler 2000, Yvon-
Lewis et al. 2009

Moore et al. 1996, Khalil & 
Rasmussen 1999, Butler 2000

Moore et al. 1995, Butler 
2000

NH3 and methylamines 
(mono-, di-, tri-)

Aerosol acidity-alcalinity ? ? Soils, wetlands, 
plants?

Quinn et al. 1988, Gibb et 
al. 1999, Jickells et al. 2003, 
Facchini et al. 2008

Alkyl nitrates Tropospheric photochemistry ? ? Combustion, poto-
reactions

Chuck et al. 2002, Moore & 
Blough 2002

Volatile hydrocarbons
(e.g., C2-C4, isoprene, 
monoterpenes)

Tropospheric photochemistry, aerosol 
precursors

2.1 TgC/yr minor Plants, combustion Plass-Dülmer et al. 1995, 
Broadgate et al. 1997, Yassaa 
et al. 2008, Arnold et al. 2009, 
Gantt et al. 2009

Table 1. (obtained from Simó 2011) The breath of the sea. Volatile compounds (other than CO2 and O2) produced in the surface 
ocean by biological and photochemical reactions, which are emitted into the atmosphere and affect its chemical properties and 
dynamics. In most cases a ‘positive’ net annual ux has been observed, but this does not mean that the surface ocean is always 
supersaturated in these trace everywhere. In some cases, such as COS or CH3Br, throughout the year the oceans change their 
role as a source or a sink depending on the accumulation rates in the troposphere caused by variability in all sources.  The list is 
intended comprehensive but not complete.

a  Impact of the oceanic emission on the Earth System, mainly through atmospheric chemistry.
b Estimated contribution of the oceans to the global emission from all sources (natural + anthropogenic).
c Main sources to the atmosphere, other than the ocean.
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organic-inorganic particles [Prenni et al., 2007], and organics facilitate the nucleation of H2SO4 
clusters and make them grow [Kulmala et al. 2004; Metzger et al. 2010]. Moreover, condensation 
of organic volatiles or their surface-active oxidation products make POA signi cantly more 
hygroscopic, to the extent that they can become activated with atmospheric ageing [Leck and 
Bigg 2005]. 

Our data indicate that the main player on the cloud microphysics variation seems to be biogenic 
emissions from the ocean, affecting directly by providing new secondary particles that can act 
as cloud condensation nuclei, or indirectly by growth and activation of pre-existing particles. 
The latter process calls for a revision of the contribution of sea salt and POA to marine aerosols, 
where they account for much of the variability of the total mass and size distribution [Quinn 
and Coffman, 1999; O’Dowd et al., 2004; Russell and Singh, 2006; Facchini et al., 2008], but, 
according to our study, not for the variability of the amount of cloud condensation nuclei.  This 
calls for a revision of the CLAW hypothesis into an enriched formulation with the inclusion of 
other sources of marine aerosol [Leck and Bigg 2007].  

MA IN CONCLUSIONS by Cha pt e r s

Chapter 1. Efforts have been conducted to accurately represent the global DMS distribution. With 
some limitations, we have now updated a monthly global DMS climatology based exclusively 
on DMS measurements The increase amount of DMS data used to construct the updated DMS 
climatology has produced an increase in the DMS concentration values in the regions of the 
ocean and months that were severely under-sampled in the previous study. Conversely, data 
additions have substantially decreased climatological concentrations in regions that had enough 
data coverage, but extremely high values, as the Polar Regions. Those changes in the updated 
DMS global distribution have produced an increase in the updated estimates of the DMS ux 
emissions of 17%. The best estimate suggests an annual DMS emission ux of 28.1 TgS.    

Chapter 2. We investigated the factors that have the main in uence in DMS production, and 
how the environmental variables affect DMS variation An evaluation of the emerging patterns 
found in the updated DMS distribution, con rms previous results in spite of the regional changes 
observed. The monthly global DMS distribution coupled closely with that of the daily solar 
radiation dose in the upper mixed layer of the ocean. The seasonal proportionality between 
DMS and chlorophyll a concentration at high latitudes of both hemispheres and the inverse 
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proportionality in the subtropical and low temperate ocean - the so-called ‘summer paradox’- is 
con rmed as a global emerging pattern. 

Chapter 3. We used nine years of satellite-derived aerosol and cloud data to investigate the 
seasonality of aerosol-cloud interactions over the global ocean and its natural and anthropogenic 
drivers. We observed a strong negative correlation between the weekly evolution of cloud droplet 
effective radius and the fraction of liquid clouds, mainly corresponding to low clouds. That is, 
the higher occurrence of low clouds, the smaller their droplets are, and vice-versa. A strong 
negative correlation is also found between solar irradiance at the top of the atmosphere and cloud 
droplet size. Therefore, aerosol-driven microphysical characteristics (namely cloud droplet size) 
of low marine clouds concur seasonally with liquid cloud cover and solar irradiance in such a 

Figure 4. Ocean divided by Longhurst provinces (Longhurst, 2007), with the representation of the number of 
months with DMS data. 
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way that they compensate for the variations of solar zenith angle and provide strong cooling of 
the ocean surface. This natural seasonal couplings found in the pristine marine atmosphere are 
clearly broken in regions heavily in uenced by continental aerosols, and particularly by putative 
anthropogenic aerosols (industrial, urban and biomass burning sources). As a result of seasonal 
perturbation, anthropogenic aerosols locally reduce annual surface cooling by low clouds. 

Chapter 4. Correlation analyses with satellite data and empirical parameterizations revealed 
that, over pristine region such as the Southern Ocean, sulfate secondary aerosols formed from 
DMS emissions and secondary organic aerosols vary seasonally in concert with the cloud droplet 
effective radius, in the way expected if they were providing new cloud condensation nuclei. 
Regions where big loads of continental aerosols dominate during a signi cant part of the year did 
not show this correlation between marine biogenic secondary aerosols and cloud microphysics. 
Parameterized emission uxes of primary organic aerosols and sea salt did not vary in anti-
correlation with cloud droplet size as would be predicted if there was a mechanistic relationship 
between the variables: there was a patchy correlation in the case of the primary organic aerosol, 
and a mainly positive correlation in the case of sea salt over the pristine ocean.  These results 
suggest that particles emitted directly from the ocean as aerosols do not seem to have a large 
direct impact on the variability of cloud microphysics.



178

FUTURE PERSPECTIVES

The CLAW hypothesis formulated almost 25 years ago has caused something even more valuable 
than a concise result: a huge interest of the scienti c community in the investigation of ocean and 
atmosphere exchanges, and thousands of interdisciplinary studies. We probably will not reach a 
de nitive conclusion, but the results obtained from each study are increasing the pieces of this 
puzzle.

During the thesis we realized of the importance of the amount of DMS measurements available, 
and how valuable they are. The development of automatic and semi-automatic systems to 
measure DMS concentration are changing the perspective on DMS studies. Having a global, 
homogeneously spatial and temporal DMS measurements distribution would resolve most 
of the limitations found in the construction of the updated DMS climatology. We have to be 
conscious of the regions of the ocean severely undersampled, shown in our study (Chapter 1) 
and schematically in Figure 4. This situation should motivate the proposals of new projects to 
improve our knowledge of DMS distribution and dynamics. 

Simultaneous measurements of seawater DMS concentrations and cloud microphysical properties 
would contribute to improve our knowledge in this eld. Those areas without continental in uence 
are of special interest, where the studies can focus on the marine aerosols and their precursors, 
without interferences from continental sources. Studies should be dedicated to improve the 
current parameterizations of the emission uxes of aerosols and precursors from the ocean. 

The use of remote sensing data was extremely valuable for the present thesis. However, the data 
were limited to certain satellites that provide long time series, but limited in spatial resolution, 
solely available in a two dimensional format. The further use of alternative remote sensing tools, 
such as CALIPSO (Cloud-Aerosol Lidar and Infrared Path nder Satellite Observation), which 
provides data on the vertical dimension of the atmosphere, would improve our knowledge of 
aerosol sources and cloud formation. CALIPSO provides a three-dimensional perspective of how 
clouds and aerosols are formed and transported, and should be an invaluable tool for studying 
weather and climate. Currently the sensor launching is so recent that there is no long-term series, 
but this will obviously be solved in a few years time.
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Accurate and consistent quanti cation of aerosol precursors in the ocean and their chemical 
transformations in the atmosphere are critically needed in order to better understand how ocean 
biogeochemistry in uences the atmosphere. The collaboration between the oceanographic and 
atmospheric communities, which provides in situ data assimilation systems, with the Earth 
Observation technology community, which provides global satellite measurements, should 
render an unprecedented potential to observe and predict the processes that govern the ocean-
atmosphere interactions and their impacts from local to global scales.  
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