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Abstract: Pt particles were supported on a highly mesoporous carbon xerogel and used 1 

as catalysts for the oxygen reduction reaction (ORR) in Direct Methanol Fuel Cells 2 

(DMFCs). Different synthesis routes were followed in order to study their influence on 3 

the characteristics and the performance of Pt electrocatalysts, therefore determining the 4 

optimal synthesis method for the preparation of these carbon xerogel supported 5 

catalysts, leading to the highest catalytic activity. The highest active catalyst was 6 

compared to a Pt catalyst supported on commercial carbon support, Vulcan, synthesized 7 

in the same conditions. Synthesis methods studied were impregnation, following two 8 

different reduction protocols (sodium borohydride and formic acid), and microemulsion, 9 

used for the first time for carbon xerogels. The electrochemical characterization proved 10 

that the catalysts’ synthesis method strongly influenced the catalytic behavior. The 11 

impregnation method and reduction with formic acid lead to the highest active catalyst 12 

towards ORR. When compared to an analogously prepared Vulcan carbon black-13 

supported catalyst, the carbon xerogel-based one still showed enhanced performance, in 14 

spite of higher ohmic loss, due to the lower electrical conductivity of this carbon 15 

material. 16 

 17 

Keywords: Pt; catalysts; carbon xerogel; synthesis method; ORR. 18 
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 20 

1. Introduction 21 

The oxygen reduction process is a limiting step in the development of highly 22 

efficient low temperature fuel cells, due to the large overpotential needed to achieve 23 

high current densities [1]. Due to their intrinsic activity and stability in acidic solutions, 24 

Pt/C electrocatalysts are, at present, the most widely used materials as cathodes [2] in 25 

proton conducting electrolyte-based low temperature fuel cells, such as direct methanol 26 

fuel cells (DMFCs), operating with methanol, a liquid fuel presenting great advantages 27 

in terms of handling [3]. Nevertheless, there is still great interest in developing more 28 

active, selective and less costly electrocatalysts for the oxygen reduction reaction (ORR) 29 

[4]. Considerable efforts are being thus made whether to obtain Pt-free catalysts [5], 30 

whether to improve the electrocatalytic performance of Pt catalysts [6]. Regarding the 31 

first issue, several papers have been published in the last years describing the use of 32 

carbon–supported iron-based catalysts with active sites containing iron cations 33 

coordinated by pyridinic nitrogen functionalities, which show similar activities to those 34 

prepared using Pt [7-9]. On the other hand, efforts to improve the electrocatalytic 35 

performance of Pt catalysts have focused on improving catalytic effectiveness of Pt by 36 

dispersing catalyst materials onto an electrode support with high surface area and 37 

conducting properties, such as carbon materials and metallic oxides [10-14], or by 38 

synthesizing Pt and Pt-based advanced nanomaterials [14], such as core-shell catalysts 39 

[15-17]. 40 

Regarding the use of carbon supports, it is generally recognized that a high Pt wt. 41 

% on the carbon substrate will significantly decrease the thickness for the same Pt 42 

loading per geometric electrode area. Thus, it is possible to enhance mass transport 43 

through the electrode and, at the same time, considerably reduce the ohmic losses. The 44 

synthesis of a highly dispersed electrocatalyst phase in conjunction with a high metal 45 

loading on carbon support is one of the goals of the recent activity in the field of 46 

DMFCs [18]. In this sense, one of the main requirements for an optimal electrocatalyst 47 

is its high dispersion. The mass activity (A g-1) of the catalyst for an electrochemical 48 

reaction is directly related to the degree of dispersion, since the reaction rate is generally 49 

proportional to the active surface area [3].  50 
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 The success obtaining a highly dispersed catalyst will depend both on the 51 

synthesis method and the support. Among the main synthesis routes for the preparation 52 

of Pt/carbon electrocatalysts one can find impregnation, colloidal procedures, self-53 

assembling and Pt decoration methods [3, 19- 21]. The strong influence of the catalyst 54 

preparation procedure on its properties makes it necessary to optimize each synthesis 55 

method, taking into consideration the particular characteristics of the support, in order 56 

to obtain a properly dispersed active phase, with the most appropriate crystal size and 57 

chemical state. 58 

 With respect to the carbon material, and among the various types of carbon 59 

supports considered in the last decades, carbon xerogels have been extensively studied 60 

and successfully employed in electrochemical applications, due to their unique and 61 

easily controllable properties [22, 23]. These materials offer high surface area, 62 

mesopore structure with tunable pore size distribution, and high purity. Besides, when 63 

used as catalysts supports, their three-dimensionally interconnected uniform pore 64 

structure allows a high degree of dispersion of the active phase and an efficient 65 

diffusion of reagents [24]. Moreover, several authors have described enhanced 66 

performance of catalysts supported on carbon xerogels when compared to conventional 67 

supports, such as Vulcan carbon black [25-28].  68 

 However, in order to further increase the efficiency of carbon xerogel supported 69 

Pt catalysts, it is necessary to develop a simple procedure to obtain Pt catalysts with 70 

relatively high metal loading and optimal dispersion [29]. In this work, several synthesis 71 

methods have been considered with the aim of determining the optimal procedure to 72 

prepare highly active Pt catalysts supported on a highly mesoporous carbon xerogel. As 73 

a first screening, a metal loading of a 20 wt. % has been chosen to analyzed the optimal 74 

method, in order to carry on in the future with higher Pt loadings, allowing enhancing 75 

mass transport through the electrode and, at the same time, reducing the ohmic drop. 76 

Upon the optimization of the synthesis method, the catalytic activity of the carbon 77 

xerogel-supported electrocatalyst has been compared to that of an analogously prepared 78 

carbon black-supported one, in order to analyze the particular influence of the nature of 79 

the carbon support. 80 

 81 
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2. Experimental details 82 

2.1. Synthesis of the carbon xerogel 83 

CXG was synthesized as described in [31] by the pyrolysis at 800 ºC of an organic 84 

gel obtained by the polycondensation of resorcinol and formaldehyde in stoichiometric 85 

ratio (2 moles of formaldehyde per mole of resorcinol). The gelation and curing process 86 

took place at an initial pH of 6.0 and using sodium carbonate as catalyst (0.04 mol % 87 

with respect to total content of resorcinol + formaldehyde). Curing of the organic gel 88 

was carried out for 24 h at room temperature, 24 h at 50 ºC and 120 h at 85 ºC. 89 

Subsequently, remaining water was exchanged with acetone and the gel was dried under 90 

subcritical conditions before its pyrolysis. Pyrolysis took place at 800 ºC under a 91 

nitrogen atmosphere for 3 h. 92 

 93 

2.2. Synthesis of the Pt-catalysts 94 

Pt catalysts with a 20 wt. % loading were synthesized using CXG as support, by 95 

means of different synthesis methods. Synthesis routes included: impregnation and 96 

reduction with two different reducing agents: sodium borohydride (i-SBM) and formic 97 

acid (i-FAM) and a microemulsion based method (ME).  98 

For the impregnation method and reduction with NaBH4, a 3 mM aqueous 99 

solution of H2PtCl6 (Sigma-Aldrich), was slowly added to a dispersion of the CXG in 100 

ultrapure water under sonication. pH was adjusted to 5 with a NaOH (Panreac) solution, 101 

followed by addition of a 25 mM aqueous solution of NaBH4 (Sigma-Aldrich), 102 

maintaining the temperature around 18ºC. The catalyst so obtained was named Pt/CXG-103 

i-SBM. 104 

In the case of using formic acid as reducing agent, the carbon material was first 105 

dispersed in a 2 M HCOOH (Panreac) solution at 80 ºC. Subsequently, a 4mM aqueous 106 

solution of the metallic precursor, H2PtCl6 (Sigma-Aldrich), was added stepwise. The 107 

catalyst obtained in such a way was named Pt/CXG-i-FAM. Finally both type of 108 

catalysts were filtered and thoroughly washed with ultrapure water, and dried overnight 109 

at 60 ºC. 110 

Pt nanoparticles were also synthesized by the water in oil microemulsion route (ME) 111 

[31], that consists of preparing a microemulsion composed of a commercial surfactant 112 
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(Brij30, Sigma-Aldrich), n-heptane as the non-polar phase and 2-propanol as co-113 

surfactant. Briefly, the surfactant and n-heptane were mixed and stirred. An aqueous 114 

solution of H2PtCl6 (8 mM) was then added dropwise. Subsequently, 2-propanol was 115 

added until an optically transparent mixture was observed, indicating the formation of 116 

the microemulsion. After 4 h of stirring, the reducing agent (NaBH4) was slowly added 117 

in 0.1 M aqueous solution to the microemulsion under continuous stirring. The 118 

suspension was slowly added to a suspension of CXG in ethanol under sonication. 119 

Finally the catalyst was thoroughly washed with ethanol and water and subsequently 120 

dried overnight at 60 ºC [32]. The catalyst so obtained was named Pt/CXG-ME. 121 

 122 

2.3. Physico-chemical characterization 123 

The textural and morphological features of the different carbon supports and 124 

catalysts prepared were determined by means of N2 physisorption at −196 °C 125 

(Micromeritics ASAP 2020). Specific surface area and pore volume were calculated 126 

from such isotherms applying the Brunauer-Emmet-Teller (BET) equation, Barrett-127 

Joyner-Halenda (BJH) and t-plot methods. Inductively coupled plasma atomic emission 128 

spectroscopy (ICP-AES) was used to determine the amount of metal deposited. 129 

Catalysts were as well characterized by X-Ray Diffraction (XRD), using a Bruker AXS 130 

D8 Advance diffractometer. Crystallite sizes were calculated from the Scherrer’s 131 

equation on the (220) peak for Pt. Particle sizes were evaluated from TEM images 132 

obtained in a JEOL 2100F microscope operated with an accelerating voltage of 200 kV 133 

and equipped with a field emission electron gun providing a point resolution of 0.19 134 

nm. The standard procedure involved dispersing 3 mg of the sample in ethanol in an 135 

ultrasonic bath for 15 min. The sample was then placed in a Cu carbon grid where the 136 

liquid phase was evaporated. X-ray photoelectron spectrometry (XPS) analyses were 137 

performed using a ESCAPlus Omicron spectrometer equipped with a Mg (1253.6 eV) 138 

anode, 150 W (15 mA, 10 kV) power, over an area of sample of 1.75 × 2.75 mm. Pt 4f 139 

(65–84 eV) signals were obtained at 0.1 eV step, 0.5 s dwell and 20 eV pass energy. 140 

Spectra were deconvoluted using CasaXPS software. 141 

 142 

143 
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2.4. Electrochemical characterization and activity 144 

Gas diffusion electrodes were prepared according to a procedure described 145 

elsewhere [32], consisting of carbon cloth backing, gas diffusion layer and the catalytic 146 

layer under study. The membrane electrode assemblies (MEAs) for single cell studies 147 

were prepared by hot-bonding the electrodes on either side of a pretreated Nafion-115 148 

membrane at 130ºC. The cathode consisted of the catalyst under study pasted on a 149 

hydrophobic backing layer (LT 1200W ELAT, ETEK) with a Pt loading of ca. 0.5 150 

mg·cm-2. The anode consisted of a commercial PtRu black (1:1 at., Johnson Mattey) 151 

pasted on a backing layer (HT ELAT, E-TEK) and with a Nafion content of 15% wt. 152 

The Pt loading was kept to ca. 0.5 mg cm-2. 153 

Single cell tests were performed in a fuel cell test fixture of 5 cm2 active area. 154 

This latter was connected to a test station from Fuel Cell Tech, Inc. For single cell 155 

polarization experiments, aqueous methanol (2 M) was fed to the anode chamber of the 156 

DMFC through a peristaltic pump; dry oxygen was fed to the cathode. Atmospheric 157 

pressure in the anode and cathode compartments was used in the experiments. Reactant 158 

flow rates were 3 and 100 cm3 min-1 for the methanol/water mixture and oxygen stream, 159 

respectively. Cathode operation conditions were selected to avoid limiting effects on the 160 

cell behavior, such as methanol crossover [33], membrane dehydration, which may 161 

influence the evaluation of the anode polarization’s. In this regard, a good hydration of 162 

the membrane inside the cell was achieved by the use of oxygen feed, high pressure and 163 

high oxidant flow rates. Obviously, these conditions are not consistent with a practically 164 

viable device [34, 35]. Single cell performances were investigated by steady-state 165 

galvanostatic polarization measurements at 30ºC and 60ºC. Electrochemical impedance 166 

spectroscopy (EIS) data were recorded in the potentiostatic mode by using an 167 

AUTOLAB Potentiostat/Galvanostat (Metrohm), equipped with a Frecuency Response 168 

Analyses (FRA) module, applying a sinusoidal signal with an amplitude of 10 mV and a 169 

frequency in the 10 KHz-0.01 Hz range. The series resistance (Rs) was determined from 170 

the high frequency intercept on the real axis in the Nyquist plot. The charge transfer 171 

resistance (Rct) was taken as the difference between the extrapolated low frequency 172 

intercept and the high frequency intercept on the real axis. 173 

Besides gas diffusion electrodes for half-cell tests were prepared according to a 174 

procedure described elsewhere [36], consisting of carbon cloth backing, gas diffusion 175 

layer and the catalytic layer under study. To reduce the flooding effects in the sulfuric 176 
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acid half-cell, a hydrophobic backing layer was used (LT 1200W ELAT, E-TEK). The 177 

catalytic layer was composed of 33 wt.% Nafion® ionomer and 67 wt.% catalyst, with a 178 

Pt loading of ca. 0.10 mg cm−2 (±0.02 mg cm−2). Half-cell tests were carried out in a 179 

conventional thermostated three-electrode cell consisting on the gas diffusion electrode 180 

to be tested (working electrode), a mercury-mercurous sulfate reference electrode 181 

(Hg/Hg2SO4, sat.) and a high surface coiled platinum wire as counter electrode. The 182 

electrode geometric area was 0.2 cm2, and a 0.5 M H2SO4 aqueous solution was 183 

employed as electrolyte. Gas (nitrogen or oxygen) was fed to the electrode backing 184 

layer during the tests. A μAutolab Metrohm potentionstat/galvanostat was used to 185 

perform the measurements. Among the various methods reported in literature [37], an 186 

accelerated stress test has been selected for the evaluation of the catalysts resistance to 187 

degradation. It consists on a continuous potential cycling between 0.6 and 1.2 V vs. 188 

RHE up to a total of 1000 cycles, feeding nitrogen to the electrode. The evaluation of 189 

the decay process was carried out by in situ electrochemical tests: cyclic 190 

voltamperometry (from 0.02 to 1.2 V vs. RHE) in nitrogen and polarization curves in 191 

pure oxygen. 192 

 193 

 194 

195 
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3. Results and discussion 196 

3.1. Influence of the synthesis method on the properties and electrochemical activity of 197 

the carbon xerogel-supported catalysts 198 

Textural properties of the CXG and the synthesized catalysts were determined 199 

from N2 adsorption isotherms shown in Figure 1. 200 

Isotherms present type IV shape, according to the IUPAC classification [38], with 201 

a hysteresis loop of type II. Isotherm shape for the carbon xerogel is already clearly 202 

indicative of a mesoporous carbon material, with average pore sizes extending to the 203 

wide mesopore range. Textural properties derived from these isotherms are shown in 204 

Table 1. 205 

The carbon xerogel presents a high surface area of 528 m2/g, high pore volume, 206 

1.79 cm3/g - with more than 80% of this volume corresponding to mesopores - as well 207 

as a mean pore size around 23 nm. The pore size distribution, shown in Figure 1b, 208 

points indeed to wide mesopores prevailing in the pore structure of this carbon material. 209 

Generally, upon Pt loading, surface area and pore volume of CXG decrease. Pore 210 

blockage is already noticeable for the catalysts prepared through both impregnation 211 

routes, and becomes slightly more remarkable in the case of Pt/CXG-i-FAM. In fact, 212 

average pore sizes remain almost unaffected. On the other hand, pore volume and 213 

surface area decrease is dramatic in the case of the catalyst prepared through the 214 

microemulsion method, Pt/CXG-ME. In this last case, micropore volume is totally 215 

blocked upon active phase loading. This can be due to the presence of some rests of the 216 

surfactant employed within the synthesis of this catalyst, which remain bonded to the 217 

carbon surface, as evidenced in TGA oxidation of this catalyst (not shown). The 218 

presence of this material, even upon extensive washing, still blocks part of the porous 219 

structure of the support. Nevertheless, the catalyst preserves an important fraction of its 220 

mesoporous structure, with an average pore size of 17.1 nm. 221 

 222 
Figure 2 presents the XRD patterns obtained for the three carbon xerogel-based 223 

Pt-catalysts. The patterns show the typical [111], [200] and [220] diffraction peaks of Pt 224 

face centered cubic structure. Additionally, a wide and slight peak corresponding to 225 

carbon [002] diffraction can be observed and ascribed to a certain degree of graphitic 226 

ordering within the primary particles of the carbon xerogel structure. Pt crystal sizes 227 
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were calculated from the [220] peaks, applying Scherrer’s equation. The values 228 

obtained are shown in Table 2. Crystal sizes are relatively similar for the three catalysts, 229 

independently of the synthesis route followed, ranging from 3.6 to 4.2 nm. The largest 230 

Pt crystal size, 4.2 nm, corresponds to the catalyst prepared using the impregnation 231 

route and reduction with sodium borohydride, Pt/CXG-i-SBM, the lower, 3.6 nm, was 232 

obtained for the catalyst prepared using formic acid as reducing agent, Pt/CXG-i-FAM. 233 

The crystal size obtained for the catalyst Pt/CXG-ME was unexpectedly high, given that 234 

this method usually provides lower crystal sizes, as previously studied in [39]. It is 235 

believed that the excessive growth of the crystal size is due to the agglomeration of the 236 

metallic precursor micelles on the surface of the carbon material.  237 

X-ray photoelectron spectroscopy (XPS) was used in order to identify the 238 

chemical state of the Pt species on the surface of the different catalysts prepared. Pt 4f 239 

core level region was curve fitted to three sets of spin-orbital doublets, namely 240 

accounting for 4f7/2 and 4f5/2 peaks. Contributions at 71.4, 72.7 and 75.1 eV, and 74.8, 241 

76.1 and 78.4 eV, were assigned to Pt0, Pt2+ (PtO) and Pt4+ (PtO2) oxidation states, 242 

respectively, based on the existing literature on XPS studies of carbon-based Pt catalysts 243 

[40-41]  244 

Table 3 contains the percentages of each species after quantitative deconvolution 245 

of the peaks, shown in Figure 3. Generally, Pt0 was found to be the predominant species 246 

on the surface of this series of catalysts. There is, however, an important contribution of 247 

oxidized Pt2+, as well as of Pt4+. XPS analysis evidences similar contents in reduced Pt, 248 

Pt0, for the catalysts prepared by impregnation methods, being slightly higher in the 249 

case of the catalyst prepared using formic acid as reductant, Pt/CXG-i-FAM. In spite of 250 

the stronger reduction character of sodium borohydride in comparison to formic acid, 251 

the low temperature employed in the synthesis of the catalyst prepared using sodium 252 

borohydride may be responsible for the lower amount of reduced Pt in Pt/CXG-i-SBM, 253 

as well as in the catalyst prepared through the microemulsion route, which shows the 254 

lowest content in Pt0. Reduction is particularly hindered in this last case due to the fact 255 

that the reducing agent has to go through the micelle before reaching the core containing 256 

the Pt precursor. 257 

Figure 4 shows the TEM images acquired for the three different catalysts, as well 258 

as their corresponding histograms. Different extents of metal dispersion can be 259 

observed, as well as different particle sizes and morphologies. In principle, the catalyst 260 
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showing a more adequate Pt-dispersion is the one prepared following the formic acid 261 

route, Pt/CXG-i-FAM, Figure 4b. The corresponding histogram evidences mean particle 262 

size value slightly lower than the one predicted by means of XRD, around 2.7 nm, but 263 

in any case it remains the lowest of the series of catalysts. Synthesis by means of the 264 

borohydride route, Pt/CXG-i-SBM, Figure 4a, results in an almost bi-modal particle 265 

size distribution. The corresponding histogram shows 2 peaks, one centered in sizes 266 

about 3.2 nm, the other at about 4.5 nm, pointing to the presence of both isolated 267 

particles of lower size together with some others which tend to agglomerate to a higher 268 

extent. Morphology of Pt-particles in the catalyst prepared by means of the 269 

microemulsion method, Figure 4c, looks completely different to those observed in the 270 

impregnated catalysts. Though particles appear to be individually slightly smaller than 271 

in the other cases, they tend to agglomerate forming chain-like structures, with an 272 

average size centered at 4.3 nm. The dispersion of the active phase seems to be worst 273 

for this microemulsion catalyst, Pt/CXG-ME. It is believed that the micelles of 274 

surfactant and precursor are too big to enter the pores of the carbon material, in 275 

agreement with higher extent of pore blockage evidenced in the textural characterization 276 

of this catalyst (Table 1). Micelles then get agglomerated on the carbon surface, as a 277 

consequence of the interaction of consecutive nearby micelles. 278 

Regarding the electrochemical characterization and activity of this series of 279 

catalysts, Figure 5a and 5b shows the polarization and power curves at 30°C and 60ºC 280 

respectively, for the DMFC equipped with the various Pt/CXG catalysts at the cathode. 281 

Among the three CXG-supported catalysts, the one prepared following the formic acid 282 

route, Pt/CXG-i-FAM, evidences the best performance at both temperatures (30 ºC and 283 

60ºC), with maximum values of power density of 12 and 38 A·g-1 Pt (equivalent to 12 284 

and 38 mW·cm-2, given that the total loading of the MEA was 1 mg·cm-2). Differences 285 

between Pt/CXG-i-FAM and the other two catalysts, become more pronounced when 286 

operating the cell at 60 ºC. Catalysts prepared through the borohydride and 287 

microemulsion methods show very similar behavior, particularly in the high density 288 

region, given their similar physico-chemical properties, such as less uniform metallic 289 

dispersion (in comparison to Pt/CXG-i-FAM) and higher crystal size (4,2 and 3,9 nm, 290 

respectively). Figure 5c shows a zoom of the polarization curve in the activation zone at 291 

30ºC. As can be seen, the catalyst Pt/CXG-i-FAM, presents the highest intrinsic 292 

activity, given its more appropriate crystal size, 3.6 nm, closer to the optimum size of 3 293 
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nm for the ORR determined by Kinoshita et al. [42]. The catalyst Pt/CXG-i-SBM, 294 

although presenting the highest crystal size, shows a slightly higher intrinsic activity in 295 

the activation region of the curve, in comparison to the Pt/CXG-ME catalyst, probably 296 

due to its better metallic dispersion. 297 

Current density in polarization curves was also represented as mA·cm-2 and power 298 

density in terms of mW·cm-2, in order to compare the results with the ones available in 299 

literature [43], as presented in Figure 6a and 6b (measured at 30ºC and 60ºC, 300 

respectively). As the electrodes were prepared with 1 mg·cm-2 of Pt, polarization curves 301 

show the same order of magnitude as expressed by mA or mW per g of Pt. 302 

Brouzgou et al. [43] presented a review of low and non-platinum electrocatalysts 303 

for PEMFCs, including DMFCs. According to their review, catalysts are classified in 304 

three regions: (i) catalysts with maximum mass specific power density higher than 0.1 305 

mW·g−1 Pttotal, (ii) catalysts with maximum mass specific power density between 0.01 306 

mW·g−1 Pttotal, and 0.1 mW·g−1 Pttotal, and (iii) catalysts with maximum mass specific 307 

power density lower than 0.01 mW·g−1 Pttotal. The catalysts presented in this work are 308 

found in the low part of the second region, with maximum mass specific power density 309 

between 0.01 mW·g−1 Pttotal, and 0.1 mW·g−1 Pttotal, with performances similar to those 310 

reported by Antolini et al. [44]. One must take into consideration the low temperature 311 

used in the present work.  312 

Electrochemical impedance spectroscopy was studied at 0.2 V, 30ºC and 60ºC in 313 

the same conditions than polarization curves. The Nyquist plots are represented in 314 

Figure 7a and 7b. The lowest Rct was observed both at 30 ºC and 60 ºC for the catalyst 315 

prepared by means of the formic acid route, Pt/CXG-i-FAM, as a proof of its higher 316 

intrinsic activity, proved previously by the polarization curves. The highest Rct was 317 

observed for the catalyst prepared by impregnation and reduction with sodium 318 

borohydride, Pt/CXG-i-SBM method, in line with the results obtained at that potential 319 

in the polarization curves. The Rs is similar for all the MEAs; its value is around 0.5 320 

ohm·cm2, which is slightly larger than for conventional cells based on catalysts 321 

supported on commercial carbon black [45]. The low electrical conductivity of these 322 

carbon materials may be responsible for this slight increase in Rs, compared to other 323 

studies [46]. Once again, differences encountered between Pt/CXG-i-FAM and the other 324 

two catalysts, are more significative at 60 ºC. 325 



Submitted, accepted and published in Applied Catalysis B: Environmental 147 (2014) 947-957. 
Post-print of: 
 

13 
 

3.2. Comparison with Pt supported on commercially available carbon support, Vulcan-326 
XC-72-R. 327 

After determining the most favorable synthesis method, a comparison with a 328 

commercially available carbon support, Vulcan-XC-72R, was carried out. Pt particles 329 

were deposited on Vulcan by impregnation and reduction with formic acid, in the same 330 

conditions previously established for Pt/CXGs catalysts. 331 

Both BET surface area and pore volume of the carbon xerogel (see Table 1) 332 

double those of Vulcan carbon black. Moreover, though well known for being a 333 

mesoporous material, with a low content in micropores, Vulcan carbon black shows an 334 

average pore size of 11 nm, as observed in Figure 8b, that is, its pores are in average 335 

more than two times narrower than those in the carbon xerogel. Table 4 shows the 336 

textural parameters determined by means of N2 adsorption isotherms (shown in Figure 337 

8a), for both the carbon black, Vulcan, and the catalyst prepared using Vulcan as 338 

support. 339 

As previously observed for the carbon xerogel-supported catalysts, surface area 340 

and mesopore volume decrease as well for Vulcan carbon black, upon the incorporation 341 

of the active phase. Although pore volume decreases only a 24% as a consequence of 342 

pore blockage in the Vulcan-supported catalyst, and this decrease is almost double, 42% 343 

in the case of the carbon xerogel-supported one, the latter still shows much higher 344 

surface area and pore volume than the former, preserving as well the average pore size, 345 

as a consequence of the initially highly developed porous structure of this material.  346 

XRD pattern, acquired for the Vulcan supported catalyst, along with a TEM 347 

image of this catalyst, are both shown in Figure 9.  As can be observed, good dispersion 348 

of the active phase can be as well achieved when using Vulcan carbon black as support. 349 

In spite of its less developed porous structure, Pt particles appear adequately distributed. 350 

The different morphology of this material can be also observed in this image, its 351 

structure mostly composed by spherical primary particles which internally present a 352 

certain degree of graphitic short-range order. This sort of ordered structure results, in 353 

fact, in an enhanced ability of this carbon material to disperse the electronic charge of 354 

the loaded metal, which may explain the good distribution of Pt particles achieved in 355 

spite of other structural drawbacks, in comparison to the synthesized carbon xerogel. 356 

 357 
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Pt crystal size was calculated from the [220] peaks, applying Scherrer’s equation, 358 

as shown in Table 5. Catalyst prepared using Vulcan carbon black as support shows a Pt 359 

crystal size of 3.4 nm, slightly lower than the one calculated for the catalyst prepared 360 

using the carbon xerogel. XPS analysis for both catalysts, also shown in Table 5, 361 

evidences a slightly lower content in reduced Pt for the catalyst supported on the 362 

commercial support, Pt/Vulcan, in comparison to the Pt/CXG catalyst.  363 

Differences of carbon structure are shown in Figure 10, in the XPS spectra of 364 

carbon materials. C1s band was deconvoluted into five components [40]. The 365 

contribution at 284.5-284.6 eV can be ascribed to the presence of C-C bonds in 366 

graphitic carbon. A peak at ca. 284.9-285.3 eV is related to the presence of defects in 367 

the graphitic structure of the carbon material. Whereas, peaks at ca. 286.7 eV and 287.8 368 

eV account for the presence of oxidized carbon, in the form of C-O and C=O species, 369 

respectively. Finally, a low intensity and broad band at ca. 290 eV is traditionally 370 

attributed to π-π* transition characteristic of pure graphitic samples, sometimes 371 

considered as an indirect measure of the graphitic character of carbon blacks.C-C peak 372 

centred at 284.6 eV is predominant in the C1s band, as a consequence of a high degree 373 

of cross-linking in the organic gel, leading to a carbon material which possesses a 374 

certain degree of short range order, as previously described in [47]. However, this C-C 375 

peak is accompanied by a significant contribution corresponding to functionalized C; C-376 

O and C=O peaks. Such contributions appear less intense in the case of the commercial 377 

carbon black Vulcan, pointing to poor surface chemistry for this material, almost 378 

lacking of oxygen heteroatoms. 379 

With respect to the electrochemical behavior of the carbon black-supported 380 

catalyst, in comparison to the carbon xerogel-based one, Figure 11 shows the 381 

polarization and power curves at 30°C and 60 ºC for the DMFC equipped with the 382 

Pt/CXG-i-FAM and Pt/CB-Vulcan-i-FAM catalysts at the cathode. The catalyst 383 

supported on CXG, prepared following the formic acid route, Pt/CXG-i-FAM, 384 

evidences higher performance than the catalyst supported on the commercial support, 385 

Pt/CB-Vulcan-i-FAM, prepared by using the same method at 30ºC, Figure 11a. At 60 386 

ºC, Figure 11b, both catalysts shows very similar performances, being slightly higher 387 

for the Pt/CB-Vulcan-i-FAM, given the more graphitic character of the carbon material, 388 

making it slightly more resistant to the more stringent conditions of the cell at 60ºC.  389 
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Electrochemical impedance spectroscopy was studied at 0.2 V, 30 ºC and 60 ºC in 390 

the same conditions than polarization curves. The Nyquist plots are represented in 391 

Figure 12. The catalyst prepared by means of the formic acid route, Pt/CXG-i-FAM 392 

presented the lowest Rct, in comparison to Pt/Vulcan-i-FAM. On the contrary, the 393 

lowest series resistance was observed for the catalyst prepared with the commercial 394 

support, Pt Pt/Vulcan-i-FAM given its highly conductive character, as previously 395 

described in [31, 46] resulting in lower ohmic resistance.  396 

Further analyses in a half-cell system provided with a gas diffusion electrode 397 

(GDE) in a 0,5 M H2SO4 solution at room temperature, were carried out, in order to 398 

determine the mechanism of the ORR by means of the Tafel plot. Figure 13a shows 399 

polarization curves in terms of specific activity, that was calculated dividing mass 400 

activity by the electrochemically active surface area (ECSA, m2/g Pt) determined from 401 

the integration of the area under the peak of the H adsorption during cyclic 402 

voltammetry. 403 

Figure 13a clearly shows how the carbon xerogel-supported catalyst presents 404 

higher specific activity than the carbon-black supported catalyst. Besides, accelerated 405 

degradation tests (ADT) were carried out in order to determine the stability of both 406 

catalysts. The inset in Figure 13a shows the specific activity at 0.8 V vs RHE of both 407 

catalysts before and after the ADT. As clearly seen, Pt/CB-Vulcan-i-FAM shows higher 408 

resistance to corrosion than the Pt/CXG-i-FAM. The specific activity of the Pt/CB-409 

Vulcan-i-FAM catalyst decreases a 23% after ADT, whereas for the Pt/CXG-i-FAM, 410 

the specific activity decreases a 45%. One must take into account that the surface area 411 

of the carbon xerogel doubles the one of Vulcan, and so is more prone to corrosion. 412 

However, the carbon xerogel supported catalyst shows higher specific activity after the 413 

degradation test in comparison to Pt/CB-Vulcan-i-FAM. Figure 13b shows Tafel plots 414 

for both catalysts, that present very similar performances in the activation controlled 415 

region, but slightly higher for the carbon xerogel supported catalyst. Tafel slopes are 416 

very similar, 67 mV·dec-1 for the Pt/CB-Vulcan-i-FAM and 71 mV·dec-1 for the 417 

Pt/CXG-i-FAM, indicating a Temkin-type mechanism for the ORR of 4 electrons.  418 

Carbon xerogel possesses a remarkable porous texture, but on the contrary lacks 419 

on electrical conductivity and graphitic structure, in comparison to the commercial 420 

support. This leads to higher ohmic losses and higher corrosion when using carbon 421 

xerogels as supports, but also to the possibility of using high metal loadings. Further 422 
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studies will concern not only on increasing metal loading, but also on the improvement 423 

of the structural features of the carbon xerogel in order to miminize the ohmic losses 424 

and corrosion. Higher carbonization temperatures will be used during the pyrolysis step 425 

in order to increase the short range order of this carbon material. Besides the 426 

introduction of dopants such as nitrogen, boron [48, 49] or WO3 [50], previously 427 

reported in literature as effective ways of improving carbon’s electrical conductivity 428 

[50, 51], will be taken in consideration. 429 
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4. Conclusions 

A highly mesoporous carbon xerogel was used as the carbon support in the 

preparation of Pt-catalysts, following several synthesis routes: two impregnation 

methods using both sodium borohydride (SBM) and formic acid (FAM) as reducing 

agents, and a microemulsion method. 

Different synthesis routes led to catalysts having different physico-chemical 

properties. The catalyst prepared through the formic acid impregnation method showed 

the lowest crystal size and slightly higher amount of reduced Pt on its surface. TEM 

analysis pointed to a better dispersion of the metallic particles in this case. The FAM 

catalysts presented the highest electrocatalytic activity. Both polarization and power 

density curves together with the impedance study evidenced enhanced performance for 

this catalyst over the rest of the catalysts of this series. 

When compared to an analogously prepared Vulcan carbon black-supported 

catalyst, the xerogel based-catalyst still showed enhanced activity. The advanced 

textural properties of the xerogel carbon support allow the conservation of an important 

amount of wide mesopores (around 23 nm), even upon active phase loading. Not so 

many differences were observed between the two catalysts in terms of Pt crystal size. 

Moreover, Pt dispersion looks adequate in the Vulcan-supported catalysts. XPS pointed, 

however, to an enhanced presence of Pt reduced species on the surface of the carbon 

xerogel-based catalyst. Though polarization and power density curves evidenced a 

better performance of the carbon xerogel-based catalyst, impedance studies showed that 

ohmic losses are more important when using this material as support, than when using 

the commercially available carbon black. This can be due to the higher electrical 

conductivity of Vulcan, in comparison to the carbon xerogel. However, the good results 

obtained point to this synthetic carbon material, carbon xerogel, as a highly promising 

electrocatalyst support. Its enhanced textural features make it possible to load higher 

amounts of Pt than the one used in the present work. There is still plenty of room for 

improvement, in terms of i.e. increasing the electrical conductivity of the materials, 

which would lead to a promising material for such applications. 
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Figure captions. 

Figure 1. (a) N2 isotherms at 77K and (b) Pore size distributions, obtained for both 

carbon xerogel and Pt-catalysts. 

Figure 2. XRD patterns for the Pt-catalysts. 

Figure 3. XPS spectra for the catalyst Pt/CXG-ME. 

Figure 4. TEM images and histograms for a) Pt/CXG-i-SBM, b) Pt/CXG-i-FAM and c) 

Pt/CXG-ME. 

Figure 5. (a) Polarization (empty symbols) and power density (filled symbols) curves 

expressed in terms of A·g-1
Pt, in direct methanol single cell at 30ºC. (b) Polarization 

(empty symbols) and power density (filled symbols) curves in direct methanol 

single cell at 60ºC (c) Zoom of the low current-density area from the polarization 

curves in direct methanol single cell at 30 ºC. Conditions: 2 M CH3OH. Pure 

oxygen; Pt loading at both anode and cathode 0.5 mg·cm-2 

Figure 6. (a) Polarization (empty symbols) and power density (filled symbols) curves 

expressed in terms of mA·cm-2, in direct methanol single cell at 30ºC. (b) 

Polarization (empty symbols) and power density (filled symbols) curves in direct 

methanol single cell at 60ºC. Conditions: 2 M CH3OH. Pure oxygen; Pt loading at 

both anode and cathode 0.5 mg·cm-2 

Figure 7. Electrochemical impedance spectra obtained in single cell. 0.2 V at (a) 30 ºC 

and (b) 60 ºC. 

Figure 8. (a) N2 isotherms at 77K and (b) Pore size distributions obtained for both 

commercial support, Vulcan and Pt/Vulcan-i-FAM catalyst. 

Figure 9. XRD pattern for the Pt/Vulcan-i-FAM catalyst, along with a micrograph 

obtained by TEM, with its corresponding histogram. 

Figure 10. XPS spectra for both carbon supports, CXG and Vulcan, and for Pt/C 

catalysts, Pt/CXG-i-FAM and Pt/Vulcan-i-FAM. 

Figure 11. Polarization (empty symbols) and power density (filled symbols) curves in 

direct methanol single cell for both Pt-catalysts synthesized by impregnation and 
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reduction with formic acid at (a) 30 ºC and (b) 60 ºC in a 2 M CH3OH solution, 

feeding pure oxygen; Pt loading at both anode and cathode 0.5 mg·cm-2. 

Figure 12. Electrochemical impedance spectra obtained in single cell for both Pt-

catalysts synthesized by impregnation and reduction with formic acid. 0.2 V at (a) 

30ºC and (b) 60ºC. 

Figure 13. (a) Polarization curves and (b) Tafel plots performed in a gas diffusion 

electrode, feeding pure oxygen at room temperature in a 0,5M H2SO4 solution. 

Inset shows the specific activity of both catalysts before and after accelerated 

degradation tests. Specific activity was calculated dividing mass activity by the 

electrochemically active surface area (ECSA, m2/g Pt) determined from the 

integration of the area under the peak of the H adsorption during cyclic 

voltammetry. 
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Figure 2. 
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Figure 3. 
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Figure 4. 
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Figure 5. 
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Figure 6 

 

0 20 40 60 80 100
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8  

P
ow

er
 d

en
si

ty
 / 

m
W

·c
m

-2

P
ot

en
tia

l /
 V

Current density / mA·cm-2

0

4

8

12

16
 Pt/CXG-i-FAM
 Pt/CXG-ME
 Pt/CXG-i-SBM

(a)

 

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9  

P
ow

er
 d

en
si

ty
 / 

m
W

·c
m

-2

P
ot

en
tia

l /
 V

Current density / mA·cm-2

(b)

0

8

16

24

32

40

48
 Pt/CXG-i-FAM
 Pt/CXG-ME
 Pt/CXG-i-SBM

 
 

 



Submitted, accepted and published in Applied Catalysis B: Environmental 147 (2014) 947-957. 
Post-print of: 
 

31 
 

Figure 7. 
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Figure 8. 
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Figure 9. 
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Figure 10. 
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Figure 11. 

0 20 40 60 80 100 120
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
ow

er
 d

en
si

ty
 / 

W
·g

-1 P
t

 

 
P

ot
en

tia
l /

 V

Mass activity / A·g-1
Pt

 Pt/CXG-i-FAM
 Pt/Vulcan-i-FAM

0

2

4

6

8

10

12

14

16
 

 

(a)

 

0 50 100 150 200 250 300 350
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

P
ow

er
 d

en
si

ty
 / 

W
·g

-1 P
t

P
ot

en
tia

l /
 V

Mass activity / A·g-1
Pt

 Pt/CXG-i-FAM
 Pt/CB-Vulcan-i-FAM

(b)

0

10

20

30

40

50

 
 

 

 

 



Submitted, accepted and published in Applied Catalysis B: Environmental 147 (2014) 947-957. 
Post-print of: 
 

36 
 

Figure 12. 
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Figure 13. 

SPECIFIC ACTIVITY BEFORE AND AFTER
ACCELERATED DEGRADATION TESTS
(ADT) at 0.8 V vs. RHE.
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Table 1. Surface area (SBET), total (Vpore), micropore (Vmicro) and mesopore (Vmeso) pore 

volumes, as well as average pore size, determined for the carbon xerogel and the Pt-

catalysts. 

Sample 
SBET 

(m2/g) 

Vpore 

(cm3/g) 

Vmicro 

(cm3/g) 

Vmeso 

(cm3/g) 

Av. pore size 

(nm) 

CXG 528 1.79 0.15 1.64 23.4 

Pt/CXG-i-SBM 389 1.33 0.13 1.20 24.4 

Pt/CXG-i-FAM 380 1.08 0.14 0.94 23.5 

Pt/CXG-ME 129 0.53 0.00 0.52 17.1 
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Table 2. Crystal sizes and Pt load as determined from XRD and ICP for the different 

catalysts prepared. 

Catalyst Crystal size (nm) Pt load (% wt.) 

Pt/CXG-i-SBM 4.2 20.2 

Pt/CXG-i-FAM 3.6 17.9 

Pt/CXG-ME 3.9 17.1 
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Table 3. Pt chemical state as determined from XPS characterization for the different 
catalysts prepared. 

Sample 
Pt 4f7/2 

Species B.E. (eV) FWHM (eV) Intensity (%) 

Pt/CXG-i-SBM 
Pt 71.4 1.5 63.3 
PtO 72.7 2.4 26.6 
PtO2 75.1 3.1 10.1 

Pt/CXG-i-FAM 
Pt 71.5 1.5 65.6 
PtO 72.7 2.4 26.8 
PtO2 75.1 3.1 7.6 

Pt/CXG-ME 
Pt 71.1 1.6 60.5 
PtO 72.5 2.5 24.1 
PtO2 74.1 3.1 15.3 
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Table 4. Textural properties determined for the commercial support and the Pt-catalyst 

synthesized by impregnation and reduction with formic acid. 

Catalyst 
SBET 

(m2/g) 

Vpore 

(cm3/g) 

Vmicro 

(cm3/g) 

Vmeso 

(cm3/g) 

Av. pore size 

(nm) 

Vulcan 224 0.47 0.04 0.46 11.0 

Pt/Vulcan-i-FAM 173 0.38 0.03 0.35 11.9 
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Table 5. Crystal sizes and Pt load as determined from XRD and ICP for the catalysts 

prepared by impregnation and reduction with formic acid. 

Catalysts 
Crystal 

size 
(nm) 

Pt load 
(% wt.) 

Species  Pt0 Pt2+ Pt4+ 
Binding 

energies (eV) 71.5 72.7 75.1 

Pt/CXG-i-FAM 3.6 17.9 Intensity (% at) 65.6 26.8 7.6 
Pt/Vulcan-i-FAM 3.4 16.7 61.0 26.6 12.4 

 


