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Abstract 

Polymer-based composites have been prepared using different concentrations of 

nanostructured carbons (NCs), produced by catalytic decomposition of methane (CDM). 

Four carbonaceous nanostructures were produced using different catalysts (with Ni and 

Fe as active phases), in a rotary bed reactor capable of producing up to 20 g of carbon 

per hour. The effect of nanostructured carbon on the thermal and electrical behaviour of 

epoxy-based composites is studied. An increase in the thermal stability and the decrease 

of electrical resistivity were observed for the composites at carbon contents as low as 1 

wt%. The highest reduction of the electrical resistivity was obtained using multi-walled 

carbon nanotubes (MWCNTs) obtained with the Fe based catalysts. This effect could be 

related with the high degree of structural order of these materials. The results were 

compared with those obtained using a commercial carbon nanofibre, showing that the 

use of carbon nanostructures from CDM can be a valid alternative to the commercial 

nanofibres. 
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1. Introduction 

The catalytic decomposition of methane (CDM) is being studied for the simultaneous 

co-production of CO2-free hydrogen and carbonaceous nanostructures. The catalysts 

traditionally used in CDM consist of transition metals belonging to groups 8 - 10 (such 

as Ni, Fe and Co) supported over different metal oxides (such as Al2O3 and MgO) [1]. 

These catalysts promote the formation of nanostructured carbon (NC) materials such as 

carbon nanofibres (CNFs) or carbon nanotubes (CNTs) with textural and structural 

properties that vary as a function of the catalyst composition and the operational 

conditions [2, 3]. These carbon materials and their possible applications play a key role 

in the economic feasibility of hydrogen production by CDM. 

The packed bed reactor (PBR) and the fluidized bed reactor (FBR) are commonly used 

to perform CDM at a laboratory scale. The main drawback regarding PBR is the fact 

that the produced carbon is accumulated on the bed, which eventually causes reactor 

blockage [4-6]. This blockage can be avoided by working with an FBR because the 

catalyst and carbon mixture is continuously fluidized, increasing the height of the bed as 

the reaction proceeds. A third type of reactor configuration, a rotary bed reactor (RBR), 

has been suggested for the large-scale production of hydrogen and carbon nanofibres by 

CDM. Pirard et al. [7, 8] have used an inclined mobile-bed rotating reactor with rather 

slow carbon synthesis kinetics. They concluded that it is one of the most appropriate 

technologies for large-scale nanostructured carbon production. Our research group has 

compared the results obtained using nickel- and iron-based catalysts [9, 10] in an RBR 

and in an FBR under the same operating conditions. Tests conducted in the RBR 

showed higher hydrogen yields and more sustainable catalyst performance along with a 

more homogenous carbonaceous material compared to those obtained in the FBR.  

Carbon produced by CDM has additional benefits due to its microstructure. For 

example, the morphology and textural (mainly mesopores-like) characteristics of CNFs 

or CNTs provide different potential applications, such as double layer capacitors, 
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electrocatalysts, carbon nanofibre-based composites or precursors of graphitic materials 

to be used as anodes within Li-ion batteries [11-14]. 

As regarding the preparation of composites, some authors [15] have shown how 

different types of CNFs can be used to reduce the electrical resistivity of the neat 

materials by several orders of magnitude; this effect has also been reviewed in [16]. 

Resistivities below 0.15 Ω·cm with a fibre loading near 15 wt% and a percolation 

threshold below 1 wt% have been reported [17]. The properties of nanocomposite 

materials are influenced by several factors like the size of its components and the degree 

of mixing between them. Therefore, the nature of the components and the method used 

to prepare them greatly influence the final properties. It is well known that epoxy resins 

are used as thermosetting matrices for manufacturing composites, since they provide 

good stiffness, specific strength, chemical resistance and good adhesion to the filler [18-

24], making them suitable for applications in the electronic and aeronautic industries.  

In a preliminary work, CNFs prepared using a Ni:Cu:Al catalyst in an FBR were tested 

as additives of epoxy resins, and the new material showed large decreases in electrical 

resistivity [21]. This study aims to investigate the influence of the structural and 

morphological properties of different as-produced nanostructured carbons on the 

electrical and thermal properties of epoxy-based composites. The NCs (CNFs and 

MWCNTs) were prepared by CDM in a rotary bed facility that allows hundreds of 

grams of very homogeneous materials to be produced every day. These materials were 

produced using four different catalysts under optimised experimental conditions, 

according to our previous results [2, 10, 21], and the effects caused by the as-prepared 

carbon material on the electrical and thermal properties of the composite were 

evaluated. The composites were compared with those obtained using commercial CNFs 

to assess the feasibility of using the NCs produced by CDM for this application. 
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2. Experimental 

2.1 Materials 

Carbon nanofilaments were prepared by CDM using four catalysts. Two of the catalysts 

selected for this study were Ni-based catalysts widely used in previous works [2, 21]: 

one used alumina as the textural promoter (denoted as Ni:Al2O3), and the other was 

nickel doped with copper over magnesia (denoted as Ni:Cu:MgO). The other two 

catalysts were iron over alumina (denoted as Fe:Al2O3) and iron doped with 

molybdenum and magnesia (denoted as Fe:Mo:MgO). The catalysts were prepared by 

the fusion method, which was described elsewhere [25]. To summarise, the respective 

nitric salts of the metals were mixed to form a powder that was subsequently heated at 

350 °C for 1 h to promote the formation of the oxides, and the powders were calcined at 

450 ºC for 8 h. The composition of each catalyst, expressed as the molar content of the 

reduced active phase and the textural promoter, was 80:20 (Ni:Al2O3), 78:6:16 

(Ni:Cu:MgO), 67:33 (Fe:Al2O3) and 67:3:30 (Fe:Mo:MgO).  

The CDM experiments were conducted in a rotary reactor installation that consists of a 

cylindrical drum made of Kanthal rotating around its horizontal axis. The diameter and 

length of the cylinder are 0.065 and 0.80 m, respectively, and the rotation speed can be 

varied from 1 to 20 rpm. More details of the experimental apparatus can be found in [9].  

Prior to the reaction, the catalysts were reduced in a hydrogen atmosphere. The CDM 

reaction temperature was established at 700 ºC for the Ni-based catalysts and 800 ºC for 

the Fe-based ones. Ten grams of each catalyst were used for each run. Pure methane 

was fed for 3 h adjusted to a weight hourly space velocity (WHSV, defined here as the 

methane flow rate at normal conditions per gram of catalyst initially loaded) of 12 Nl 

CH4·(h·gcat)-1.Additionally, a commercial CNF (PR-24-XT-LHT, produced by Applied 

Sciences, Inc.) has also been used for comparison. According to the manufacturer, the 

sample is produced in a floating catalyst system with iron pentacarbonyl using natural 

gas, H2S, air and NH3. The fibres are debulked and thermally treated at a temperature of 
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1500 ºC to provide the best compounding properties and the highest electrical 

conductivity in the nanocomposites.  

 

2.2 Characterisation of the NCs 

X-ray diffraction (XRD) analysis of the carbon nanostructures was performed in a 

Bruker D8 Advance Series 2 diffractometer using a Bragg-Brentano θ-θ  configuration, 

Ni –filtered Cu Kα radiation and a secondary graphite monochromator. The angle range 

scanned was 3–80º, with a step size of 0.05º and a scan step of 3s.  

The textural properties of the carbon nanostructures were measured by N2 adsorption at 

77 K in a Micromeritics ASAP 2020 apparatus. The specific surface area and pore 

volume were calculated by applying the BET method.  

Electrical conductivity measurements were performed while applying pressures from 

0.5 to 80 MPa on the powder NCs using a manual hydraulic press. The electrical 

resistance was measured by applying electrical currents up to 0.015 A. The height of the 

cylinder in which the powder is introduced and pressed was determined with a digital 

Mitutoyo micrometer with an accuracy of ± 0.02 mm. 

Transmission electron microscopy (TEM) was performed using a Jeol 2011 microscope 

equipped with an LaB6 gun operating at 200 kV on the carbon sample obtained with the 

Ni:Al2O3 catalyst and the commercial CNF, whereas a Jeol-2000 FXII microscope was 

used for those obtained with the Ni:Cu:MgO, Fe:Al2O3 and Fe:Mo:MgO catalysts. The 

samples were first finely ground and dispersed in ethanol. A drop of this solution was 

then deposited on a standard TEM copper grid previously coated with a lacy amorphous 

carbon film.  

 

2.3 Preparation and characterisation of the nanocomposites 
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A commercial epoxy resin named Triepox LM (supplied by GAIRESA) was used as the 

polymer matrix. This resin is based on a highly functionalised epoxy resin with non-

modified cycloaliphatic amines. Triepox LM is polymerised by a hardener with the 

same name in a ratio of 2,35/1 by weight (matrix/hardener). The final product has a low 

viscosity of 200 mPa according to ASTM D2393-86. 

To prepare the composites, 0.5 to 14 wt% of as-grown carbonaceous material was 

dispersed in the resin. First, the carbonaceous material and the epoxy were mixed by a 

100 W ultrasonic bath for 30 minutes at room temperature. Then, the hardener was 

added to the mixture, which was sonicated at room temperature for an additional 15 

minutes. The composites were cured for 24 h at room temperature and post-cured for 5 

h at 70 ºC following the manufacturer’s recommendations. 

The specimens were processed into tablets that were 17 mm in diameter and 3 mm in 

thickness (e). Their electrical resistance (R) was averaged from the I-V curves measured 

at different applied voltages. To obtain a good electrical contact, both surfaces (each 

with an area of A) of the specimen were coated with a conductive silver paint. The 

electrical resistivity corresponds to the inverse of the electrical conductivity (ρ) of the 

composites, which is calculated according to equation (1): 

e

R·A
ρ =  (1) 

Thermal gravimetric analysis (TGA) were conducted using a SETARAM analyser. 10 

mg of the composites were placed in a platinum crucible and heated in air. The heating 

rate was 10 ºC/min up to 800 ºC under a constant air flow of 20 ml/min. 

A Hitachi S-3400 scanning electron microscope was used to analyse the distribution of 

the NC within the polymer matrix. The specimens were covered by a layer of gold to 

make them electrically conductive. 

 

3. Results and discussion 
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3.1 Characterisation of the NCs 

As mentioned in an earlier section, the catalysts and operation parameters used to 

prepare the NCs were selected according to previous results obtained by our research 

group [2, 25]. A summary of NCs main properties can be found in [10] and in Table 1; 

some examples of typical TEM micrographs of the structure of these NCs are given in 

Fig 1. Also the properties of the commercial nanofibres used for comparison (section 

3.2.3.2) are included in Table 1 and Fig 1. The four carbon materials are named as 

follows: those produced using the Ni:Al2O3 catalyst as NC1, the ones obtained using the 

Ni:Cu:MgO catalyst as NC2, those obtained with the Fe:Al2O3 catalyst as NC3 and 

NC4 refers to the materials prepared using Fe:Mo:MgO catalyst. 

The specific surface area of these materials range from 37 to 76 m2/g, mainly due to the 

presence of mesopores. The four carbon materials produced (labelled in the format 

“catalyst-NC”; e.g., “Ni:Al2O3-NC”) show a significant degree of structural order 

corresponding to a turbostratic carbon structure. Of the two types of catalysts, the 

carbonaceous structures produced with Fe-based catalysts were more ordered compared 

to those produced with Ni-based catalysts, according to the value of the interlaying 

spacing d002 and the crystal domain size Lc. The textural properties of the carbon 

materials are mainly mesoporous, with the pores located in the interior of the fibre and 

in the spaces between the filaments. The electrical conductivity of the four materials 

range from 21 S/cm for NC1 and NC2,  to 30 S/cm for NC4 which is in complete 

agreement with the structural order data.  

The four carbon materials were deposited mainly in the form of nanostructures with 

varying morphology (diameter and length) depending on the catalyst used. The diameter 

of the filaments correlates with  the size of the catalyst particle. The effect of the 

presence of Mo and Cu, the use of different catalyst supports (Al2O3 or MgO) and also 

the reaction temperature on the size and shape of catalyst particles should be considered 

[2, 25]. Anyway, it is difficult to establish a general conclusion about the exact nature of 
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each material, because in a sample, different morphologies, diameters and lengths of 

CNs can be observed. 

 Both NC1 (Fig 1a) and NC2 (Fig 1b) exhibit a fishbone structure characterised by the 

presence of sloping graphitic layers with respect to the longitudinal axis of the fibre. 

Although these two NCs have similar structures, some interesting differences related to 

the diameter of the nanofibres could be observed. The NC1 samples are quite 

homogeneous (Fig 1a), and they are approximately 50 nm in diameter. On the other 

hand, the NC2 samples showed two main sizes, as observed in Fig 1b. The larger 

nanofibers had diameters up to 400 nm, whereas the smaller ones did not exceed 25 nm. 

For the NCs obtained with the two Fe-based catalysts (Fig 1c-1d), multi-walled carbon 

nanotubes (MWCNTs)  and chain-like CNFs were observed, as previously noted by 

other authors [3, 27]. NC3 shows the highest aspect ratio (length/diameter) and the 

absence of amorphous carbon while NC4 is formed by carbon nanofilaments with a 

higher heterogeneity in diameter and length [10]. Commercial CNFs were also analysed 

by TEM (Fig 1e-1f). Two different structures were observed, fishbone and chain-like 

CNFs. Due to the heat treatment at which commercial CNFs have been submitted 

(1500ºC), the walls have almost no defects and a great homogeneity is observed. These 

nanofibres present an average diameter of 100nm with huge hollow core which 

represents almost the entire width and no catalyst particles are noticed. 

 

3.2 Characterisation of the epoxy composites 

3.2.1 Microstructure 

SEM analyses of the composites are shown in Fig 2-4. According to Fig 2a, the NCs are 

dispersed and form clusters or agglomerates along the sample (Figure 2a). In Figure 2b 

is shown an example of a cluster in which the fibres are dispersed in the epoxy matrix 

forming a network. However, these kinds of clusters cannot be observed in the 

composites filled with NC2 (Fig 3a) because the fibres are mainly isolated, as seen in 
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Fig 3b; nevertheless, some NCs with larger diameters are inserted into the matrix. Fig 4 

shows the micrographs of the composites filled with different contents of NC4 (2, 8 and 

14 wt% NC). In the low magnification micrographs (named with the suffix “l”), the 

NC4 are seen to agglomerate and form clusters within the resin.. The size of these 

clusters increases with the NC content in both cases, as seen in Fig 4a-l, 4b-l and 4c-l. 

These clusters are not so easily identified in NC3 (Figure not shown). 

As mentioned in section 3.1 the NC1 sample consists of more homogeneous 

nanofilaments narrower than NC2.  Regarding the nanofilaments obtained with the Fe-

based catalysts, the NC3 show highest aspect ratio (length/diameter) and NC4 are 

nanofilaments with a higher heterogeneity in diameter and length  In conclusion it 

seems that the different morphology, diameter and homogeneity (consequence of the 

different type of catalyst used to prepare them) could be responsible of the different 

dispersion behaviour observed. 

In the high magnification micrographs (Fig 4, named with the suffix “h”), gaps and 

voids can also be observed. The existence of voids and pores is an undesired 

phenomenon that appears to be more frequent as the NC content increases what 

emphasises the need to improve the preparation process if high filler content is 

necessary. 

 

3.2.2 Thermal properties 

Fig 5a shows the TGA curves for the pure epoxy matrix, the NC1 sample and the 

composites with different NC1 contents plotted after substractiong the TGA data from 

the NC1 without the matrix. The epoxy resin starts to decompose at temperatures 

around 220 ºC while for the NC1 sample, the starting decomposition temperature is 

490ºC. The composites prepared withNC1 decomposed at higher temperatures with 

increasing filler content and the effect was observed even at the starting temperature of 

decomposition . For example, 1% of the epoxy resin is decomposed at 224ºC while 
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more than 250ºC are needed to obseve the same weight loss for the 14%-NC1 

composite. The epoxy resin is almost completely decomposed at 540ºC (95% weight 

lost) while 597º and 620ºC are needed for the 10%wt and 14%wt-NC1 composites 

respectively. Therefore, the incorporation of the NCs helps to stabilise the matrix and 

prevents decomposition. Similar effects have been reported in the past for composites 

prepared with epoxy resins and also other polymer based composites [20]. 

Regarding the composites prepared with NC3, shown in Figure 5b, a similar trend was 

observed, although the effect was not so important for the lowest content composites or 

at the starting temperature of decomposition. For the composites prepared with 10 and 

14%wt and especially for temperatures above 400ºC the estabilization effect was noted. 

For example a 75% wt is obtained at 402ºC for the pure epoxy resin while 439º and 

463ºC are needed for the two composites. 

 

3.2.3 Electrical properties 

3.2.3.1 Composites prepared using NCs from CDM 

The electrical resistivity curves of the composites filled with the four NCs are shown in 

Fig 6. The value of the electrical resistivity of the neat resin lies beyond the detection 

limit of our measurement device, and it is estimated at approximately 1011 Ω·cm.  

In the two series of composites filled with NC prepared with Ni-based catalysts, the 

electrical resistivity of those prepared with NC2 starts to decrease at a NC load of 4 

wt%, reaching a value of 1.5 × 107 Ω·cm with 10 wt%. The electrical resistivity stopped 

decreasing at higher NC loads. For the composites prepared with NC1, the electrical 

resistivity (1.0 × 109 Ω·cm) begins decreasing at an NC content of 10 wt%; it continued 

to decrease as the NC content increased, reaching a value of 2.6 × 107 Ω·cm at 

approximately 14 wt%.  
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On the other hand, the electrical resistivity of the composites with NC3 and NC4 

decreased considerably with very low amounts of filler. For instance, 1 wt% of NC4 is 

required to obtain a composite with an electrical resistivity of 2.88 × 105 Ω·cm, and 1 

wt% of NC3 is needed to obtain an electrical resistivity of 1.5 × 106 Ω·cm. Once this 

minimum content of NC has been added, the electrical resistivity of the composites 

decreases progressively until a minimum of 94 Ω·cm for the NC4 sample (14 wt%). The 

percolation theory can be applied to explain the behaviour of these composites because 

their measured electrical resistivity sharply decreases by several orders of magnitude 

when a critical amount of filler has been added. The decrease is due to the formation of 

continuous electron paths, and the resistivity continues to decrease slowly with 

increasing NC content [16, 28]. 

It has been reported [29] that conventional conducting fillers need contents as high as 

10 – 15 wt%, resulting in a composite with poor mechanical properties and high 

density. Lower nanofilament concentrations will allow better dispersion and higher 

mechanical performance in future applications [15, 17] and so, NCs obtained by CDM 

with Fe-based catalysts seem to be promising additives at low loadings. 

According tho the data shown in Table 1, the NC´s used to prepare the composites have 

an important  residual metal content, especially high for the composites prepared with 

NC3 and NC4. To reduce the metal content of the samples and discard its possible 

effect on the electrical properties, NC1 and NC4 were chemically treated with 

concentrated (65% wt) nitric acid (100 ml) at room temperature for two hours under 700 

rpm.  These two new types of NCs are named as NC1- HNO3 and NC4-HNO3. The 

metal content was reduced form 12.01 to 4.51 for the NC1 sample and from 30.60 to 

11.9% (wt) for the NC4. New composites were prepared using the acid treated samples 

without significantly varying the rest of properties as shown in previous works [29, 30], 

and the results obtained for the electrical resistivity are presented in Figure 7 and 
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compared to those obtained for the non-treated samples. Very similar results were 

obtained and so, it is possible to establish that the good results obtained with CNF from 

Fe-based catalysts are not due to the high metal content.The large differences observed 

between the electrical resistivity of the composites filled with NC made from Ni-based 

and Fe-based catalysts can be explained by the morphologies and structures of those 

materials. The NCs produced with the Fe catalysts show a higher degree of structural 

order. In addition, these carbon materials had a mixture of chain-like NCs and MWNTs, 

as observed in Fig 1f - h.  

 

3.2.3.2 Comparison of the electrical properties of the composites filled with CDM-NCs 

and commercial CNFs 

In addition, Fig 6 shows the electrical resistivity of the composites filled with the 

commercial NC (named PR24-XT-LHT). For the composites prepared with low NC 

content (up to 2 wt%), the lowest electrical resistivity is obtained when the NCs made 

with the Fe catalysts are used as additives. The electrical resistivity of the composites 

filled with NC3 and NC4 at 1 wt% was 1.5 × 106 Ω·cm and 2.8 × 105 Ω·cm, 

respectively; whereas the resistivity of the composite filled with the PR24-XT-LHT at 1 

wt% was 4.1 × 1010 Ω·cm. On the other hand, once the NC content is over 2 wt%, the 

best results are obtained with the PR24-XT-LHT nanofibre. In fact, more than double 

the percentage of NC4 (14 wt%) is necessary to obtain results similar to the results 

when PR-24-XT-LHT is used (6 wt%).   

Considering that the goal of this work is to produce electrically conductive composites 

with the lowest possible filler concentration without diminishing the mechanical 

properties, the as-prepared NC from CDM using Fe-based catalysts may be an 

interesting alternative to commercial NCs when working at low NC content.  
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Additional work is in progress to improve the dispersion of NCs into the matrix by 

modifying the initial properties of the carbon material and also by optimizing the 

preparation process. 

 

4. Conclusions 

Nanostructured carbons obtained at a large scale have been used as additives to prepare 

epoxy-composites by CDM. Compared to pure resin, the thermal stability of these 

composites was enhanced; in addition, their electrical resistivity decreased even at low 

filler contents. The best results were observed for the nanostructured carbon prepared 

using Fe-based catalysts, mainly composed by chain like NCs and MWCNT and 

showing a higher degree of structural order as compared to those materials produced 

with Ni-based catalysts. The composites prepared using these carbon materials have 

similar properties to those prepared using commercial NCs. 
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FIGURE CAPTIONS 

Fig 1. TEM micrographs of the NC obtained by CDM with  (a) NC1, (b) NC2, (c) NC3, 

(d) NC4 and of the commercial PR-24-XT-LHT (e)-(f). 

Fig 2. SEM micrographs of the composites filled with 14 wt%  NC1. Low (l) and high 

magnification (h);  

Fig 3. SEM micrographs of the composites filled with 14 wt% NC2. Low (l) and high 

magnification (h). 

Fig 4. SEM micrographs of the composites filled with 2 (A), 8 (B) and 14 wt% (C) 

NC4. Low (l) and high magnification (h). 

Fig 5. TGA curves of pure epoxy resin, NC and composites at various loadings. (a) 

NC1 composites; (b) NC3 composites  

Fig 6. Electrical conductivity of the composites filled with both CDM-NC and 

commercial NC. 
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Table 1.  BET surface area (SBET), interlaying spacing (d002), crystal domain size (Lc) 1 

and metal content (%) of the nanostructured carbon.  2 

Sample Catalyst used SBET 

(m
2
/g) 

d002 

(nm) 

Lc 

(nm) 

Metal 

content (%) 

NC1 

NC1-HNO3 

NC2 

NC3 

NC4 

NC4-HNO3 

PR-24-XT-LHT 

Ni:Al2O3 

Ni:Al2O3 

Ni:Cu:MgO 

Fe:Al2O3 

Fe:Mo: MgO 

Fe:Mo: MgO 

Iron based 

76 

83 

72 

65 

89 

104 

37 

0.3420 

0.3390 

0.3386 

0.3382 

0.3356 

0.3365 

0.3382 

5.7 

5.9 

8.4 

10.3 

11.3 

11.0 

5.4 

12.0 

4.5 

7.3 

36.2 

30.7 

11.9 

4.7 

 3 

 4 

  5 

 6 

Table(s)
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Figure 1 1 
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Figure 3 
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Figure 4 

 

 
 

 
 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

 

a-l 

b-l 

c-l 

a-h 

b-h 

c-h 

Figure(s)



  1 

Figure 5 1 
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Figure 6 1 
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Figure 7 1 
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