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The long-range proximity effect in superconductor-ferromagnet (S/F) hybrid nanostructures is observed

if singlet Cooper pairs from the superconductor are converted into triplet pairs which can diffuse into the

ferromagnet over large distances. It is commonly believed that this happens only in the presence of

magnetic inhomogeneities. We show that there are other sources of the long-range triplet component

(LRTC) of the condensate and establish general conditions for their occurrence. As a prototypical

example, we consider first a system where the exchange field and spin-orbit coupling can be treated as

time and space components of an effective SU(2) potential. We derive a SU(2) covariant diffusive

equation for the condensate and demonstrate that an effective SU(2) electric field is responsible for the

long-range proximity effect. Finally, we extend our analysis to a generic ferromagnet and establish a

universal condition for the LRTC. Our results open a new avenue in the search for such correlations in S=F

structures and make a hitherto unknown connection between the LRTC and Yang-Mills electrostatics.
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The odd-triplet superconductivity in superconductor-
ferromagnet (S=F) structures has been intensively studied,
both theoretically and experimentally, since its prediction
in 2001 [1,2]. In that context, it is of crucial interest to
understand the process of converting the singlet Cooper
pairs from the superconductor into triplet pairs of electrons
with equal spins in the ferromagnet. Apart from its interest
for fundamental research, the study of triplet super-
conducting correlations might find useful applications for
spintronics [3].

It is well established that triplet pairs, once created,
diffuse into the ferromagnetic materials over distances
much larger than the singlet ones. This leads to the long-
range proximity effect which explains the observation of
Josephson currents through S=F=S junctions over large
distances [4–10] and the long-range propagation in S=F
structures of superconducting correlations [11]. The usual
theoretical interpretation of these experiments assumes
that the singlet-triplet conversion is mediated by a mag-
netic inhomogeneity in the vicinity of the S=F interface
[12]. This can be caused by a domain wall [2], a spin-active
S=F interface [13], or by a multilayered ferromagnetic
structure with different magnetic orientations [14].

Formally, the existence of the long-range triplet compo-
nent (LRTC) can be inferred by inspecting the spin struc-
ture of the quasiclassical condensate (anomalous) Green’s

function (GF) f̂ ¼ fs þ ft�̂. Here, fs is the amplitude of

the singlet component, and the vector ft describes the
triplet correlations (�̂ is the vector of Pauli matrices).
The component of the vector ft parallel to the magnetiza-
tion describes the triplet state with zero spin projection
(i.e., j "; #i þ j #; "i) [15,16]. The LRTC corresponding to
the pairs with spin projections �1 only exists if ft is
noncollinear with the magnetization direction, which is
the case for certain magnetic inhomogeneities [15–17].
Indeed, it is commonly believed that the only way to
generate the LRTC in S=F hybrids is by means of creating
a nonhomogeneous magnetic configuration.
In this Letter, we study the LRTC in S=F structures from

amore general perspective and demonstrate that, besides an
inhomogeneous magnetization, there are other sources of
long-range triplet correlations. In particular, themomentum
dependence of an effective exchange field, which can be
attributed to the spin-orbit (SO) coupling, naturally gener-
ates LRTC, provided that certain conditions are fulfilled.
We also show that the physical mechanism of the singlet-
triplet conversion can be linked to the local SU(2) invari-
ance ofmagnetized systemswith SO interaction [19,20]. To
reveal this physics, we first analyze a prototypical example
of a spin dependent field consisting of a momentum inde-
pendent Zeeman term and a SO coupling that is linear in
momentum. These two contributions act as the time and
space components of the SU(2) gauge potential, which
ensures that that the Zeeman and SO fields enter physical
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quantities only in gauge covariant combinations [21]. We
derive a SU(2) covariant Usadel equation and identify the
SU(2) electric field as a key object responsible for the long-
range triplet proximity effect and for the existence of the
LRTC in S=F structures. By solving the Usadel equation
for a lateral S=F junction, we demonstrate that, even in the
case of a uniform exchange field, the LRTC is present in the
system. In the second part, we generalize our results to
systems with possibly anisotropic Fermi surfaces and
generic spin dependent fields with an arbitrary momentum
dependence.We derive the general quasiclassical equations
for the anomalousGF,which allows us to establish universal
conditions for the creation of triplet long-range supercon-
ductivity in diffusive S=F hybrids.

We consider a hybrid structure consisting of a conven-
tional s-wave superconductor (S) with the order parameter
� in contact with a ferromagnet (F) with a SO coupling.
Let us first assume that SO effects can be modeled by a

generic form HSO ¼ 1
2m fpj;Âjg that is linear in momen-

tum, where Âj ¼ Aa
j�

a are the components of a 2� 2

matrix valued vector that parametrizes the SO coupling.
In this case, the Hamiltonian in the F region can be
represented in the form

H ¼ 1

2m
ðpj � ÂjÞ2 � Â0 þ Vimp; (1)

where Â0 ¼ Aa
0�

a � ha�a is the exchange field and

Vimp is the spin independent impurity scattering term

[22]. The SO coupling and the Zeeman term enter the
problem as the space and time components of the SU(2)
gauge potential, which implies the SU(2) gauge invariance.
The Hamiltonian remains unchanged under any local

SU(2) rotation with a matrix ÛðrÞ supplemented with

the gauge transformation of the potentials Âj �

ÛÂjÛ
�1 � ið@jÛÞÛ�1 and Â0 � ÛÂ0Û

�1. Since we

are interested in equilibrium quantities, we work with the
Matsubara 4� 4 matrix (in the Nambu� spin space) GF
�G!ðr1; r2Þ at the discrete frequencies! ¼ �Tð2nþ 1Þ. To
keep track of exact SU(2) gauge symmetry, we employ a
technique developed in the context of quark-gluon kinetics
[24] and used recently to describe spin dynamics in semi-
conductors [25]. Namely, we introduce the covariant GF as

follows:
�~G!ðr1; r2Þ ¼ ŴðR; r1Þ �G!ðr1; r2ÞŴðr2;RÞ, where

ŴðR; r1Þ and Ŵðr2;RÞ are theWilson link operators which
‘‘covariantly connect’’ the arguments of the GF to the

‘‘center-of-mass’’ coordinate R ¼ r1þr2
2 [26]. The advan-

tage of the covariant GF is that its Wigner transform, and

thus the corresponding quasiclassical GF �~gðn;RÞ, trans-
form locally covariantly under a nonuniform SU(2) rota-

tion, i.e., �~g � Û �~g Û�1. By using the method of Ref. [24],

we can derive the equation of motion for
�~G! and then

proceed further to the quasiclassical limit and eventually to
the diffusive Usadel equation [27]. Here, we only show the

final linearized Usadel equation in the ferromagnet for the

covariant anomalous function ~̂f

D~rkð~rk
~̂fÞ � 2j!j ~̂f� isgn!fÂ0; ~̂fg ¼ 0: (2)

Here, ~rk is the covariant gradient operator defined by
~rk� ¼ @k�� i½Âk;��. At the S=F boundary, we use
the Kupriyanov-Lukichev boundary conditions [28] which
take the form

Nk
~rk

~̂fjI ¼ ��f�; (3)

where f� ¼ �=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
!2 þ�2

p
is the anomalous GF in the S

region and Nk is the k component of the vector normal to
the S=F interface. Hence, in the covariant formalism, the
usual gradients are replaces by the covariant ones, and this
is the only place where the SO coupling enters the theory.
Equations (2) and (3) are manifestly gauge covariant, and
their structure is very physically appealing. In fact, they
can be written immediately by using only the gauge sym-
metry arguments [29].

Next, we write ~̂f as the sum of the singlet fs and triplet

~̂ft contributions, splitting out of ~̂ft the part parallel to the

exchange field Â0:

~̂f ¼ fs þ ~̂ft ¼ fs þ Â0f
k
t þ ~̂f

?
t : (4)

For any matrix M̂, we have defined M̂? ¼
1
4 ½Â0; ½Â0; M̂��=jÂ0j2, where jÂ0j ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AaAa

p
is the

amplitude of the exchange field.
A trace of Eqs. (2) and (3) gives the equations for the

singlet amplitude fs coupled to the parallel triplet ampli-

tude fkt :

r2fs � �2
!fs � 2i

sgn!

D
jÂ0j2fkt ¼ 0;

Nk@kfsjI ¼ ��f�;

(5)

where r2 is the usual Laplace operator and �2
! ¼ 2j!j=D.

The traceless part of Eqs. (2) and (3), can be rearranged as
follows:

Â0

�
r2fkt � �2

!f
k
t � i2

sgn!

D
fs

�

þ ½~rkð~rk
~̂f
?
t Þ � �2

!
~̂f
?
t þ 2F̂ k0@kf

k
t þ fkt ~rkF̂ k0� ¼ 0;

(6)

NkðÂ0@kf
k
t þ ~rk

~̂f
?
t þ F̂ k0f

k
t ÞjI ¼ 0: (7)

Here, F̂ k0 is the SU(2) electric field, defined as

F̂ k0 ¼ @kÂ0 � i½Âk;Â0�: (8)
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An inspection of Eqs. (6) and (7) shows that F̂ k0 is the key

object for the long-range proximity effect: If F̂ k0 ¼ 0, the
homogeneity of the boundary condition (7) implies that

~̂f
?
t ¼ 0. In other words, no transverse triplet is generated

in the absence of the SU(2) electric field. F̂ k0 vanishes in
the case of a uniform magnetization and if the SO and
Zeeman terms commute.

If F̂ k0 is small, Eqs. (6) and (7) can be treated perturba-
tively. The leading contribution is given by the terms

proportional to Â0, i.e., by the first line in Eq. (6) and
by the first term in Eq. (7). This yields the well known

equations for the short-range triplet component fkt coupled
to the singlet one fs,

r2fkt � �2
!f

k
t � 2i

sgn!

D
fs ¼ 0; Nk@kf

k
t jI ¼ 0: (9)

Equations for the lowest in F̂ k0 correction to ~̂ft come from
the second line in Eq. (6) and the last two terms in Eq. (7):

r2 ~̂f
?
t � �2

!
~̂f
?
t ¼ �½2F̂ k0@kf

k
t þ fkt ~rkF̂ k0�?; (10)

Nkð@k ~̂f?t þ F̂?
k0f

k
t ÞjI ¼ 0: (11)

In the first terms in the left-hand sides, we replaced ~rk

with @k as the difference of these operators gives higher
order corrections compared to those determined by the

terms �fkt .
Equations (5) and (9)–(11) provide a complete descrip-

tion of S=F structures, which clearly demonstrates a com-
mon physical role of the SO coupling and inhomogeneous
magnetization in the problem of the singlet-triplet conver-
sion. As is expected on general grounds, they appear in the
theory in the form of a single gauge covariant object—the

SU(2) electric field F̂ k0 Eq. (8) entering the ‘‘source part’’

of Eq. (10) for ~̂f
?
t .

It is easy to see that the well known generation of LRTC
by magnetic inhomogeneities follows naturally from our
covariant formulation. Consider, for example, a transversal
multilayer S=F structure shown in Fig 1(a) in the absence

of SO coupling. In this case, a nonzero F̂ k0 is solely due to

inhomogeneity of the exchange field Â0. Assume that Â0

has only an in-plane component (eventually rotating).
Then, the first term in the right-hand side of Eq. (8) gen-
erates the LRTC for a Bloch domain wall parallel to the

interface [2], while the second term �~rkF̂ k0 is respon-
sible for the LRTC in the presence of a finite Néel wall
perpendicular to the interface plane [30]. It is interesting to

note that the covariant derivative ~rkF̂ k0 of the non-
Abelian electric field is exactly the right-hand side of the
Yang-Mills electrostatic equation. The general gauge sym-
metry arguments of Ref. [21] (used there to uncover the

nature of the equilibrium spin currents) show that ~rkF̂ k0 is
proportional to the magnetization induced in the F region

by a nonuniform exchange field and/or SO coupling. This
reveals the nature of the second term in Eq. (10) and
provides an interesting connection between the generation
of LRTC at the edges of Néel domain walls and the Yang-
Mills electrostatics.
We now analyze a SO-generated LRTC in the case of a

uniform magnetization. A special type of SO coupling in
Eq. (1) should naturally occur in the vicinity of hetero-
interfaces where inversion asymmetry exists [31–33].
Hence, we concentrate on the situation when the SU(2)
vector potential is localized around the S=F interface and

has in-plane components Âx and Ây. This implies that

only F̂ x0 and F̂ y0 are nonzero.

As a first example, we consider a transversal S=F
structure [Fig. 1(a)] assuming for definiteness a Rashba-

Dresselhaus SO term with Âx ¼ ��̂x � ��̂y and Ây ¼
ð��̂x � ��̂yÞ, where � and � are the Rashba and

Dresselhaus constants. We assume a contstant in-plane
magnetization. Thus, only the second term in the right-
hand side of Eq. (10) serves as source for the LRTC. One
can easily show that this term is nonzero only if �� � 0
and Ax

0 � Ay
0. This in particular means that a pure

Rashba or Dresselhaus SO coupling does not induce the
LRTC in a transversal geometry with an in-plane magne-
tization. We emphasize that the LRTC discussed here has
s-wave symmetry, in contrast with the odd in momentum
triplet component predicted in Refs. [32,33] for pure bal-
listic S=F and S=N systems in the presence of an interface
SO coupling.
Lateral S=F structures are more favorable for the exis-

tence of LRTC. Consider the structure shown in Fig. 1(b).

FIG. 1 (color online). Different geometers considered in the
text. (a) The transversal S=F=S junction. (b) The lateral S=F
structure and space dependence of F ¼ P

!jfj2 for the singlet
and LRTC normalized with the asymptotic value at x ¼ �1.

Here, �0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
D=�

p
, h ¼ 10�, T ¼ 0:05�, and � is the order

parameter in the superconductor. (c) The lateral Josephson
junction.
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Assuming for simplicity, but without loss of generality, that
the F film is thin enough, we integrate Eqs. (5) and (9)–(11)
over the z direction and obtain the following set of 1D
equations

@2xfs � �2
!fs � 2i

sgn!

D
jÂ0j2fkt ¼ ��ð�xÞ ��f�; (12)

@2xf
k
t � �2

!f
k
t � 2isgn!

D
fs ¼ 0; (13)

@2x ~̂f
?
t � �2

!
~̂f
?
t ¼ �2�ð�xÞ �̂F x0@xf

k
t ; (14)

where �� and �F x0 are effective values averaged over the
thickness. The boundary conditions at x ¼ 0 are the con-

tinuity of all functions and the continuity of @xfs, @xf
k
t , and

@x ~̂f
?
t þ F̂ x0f

k
t . This boundary problem can be solved

straightforwardly. In the interesting limiting case of the

exchange field jÂ0jmuch larger than the superconducting
gap �, the condensate function at x > 0 [cf. Fig. 1(b)] is
given by the expression

~̂fðxÞ¼X
�

C�e
���x½1þð�1Þ�Â0=jÂ0j�þ �̂F

?
x0Ce

��!x;

(15)

where � ¼ 1, 2; C1;2 � � ��f�D
2�2

2;1=ð4jA0j2Þ; and

�2
1;2 ¼ �2isgn!jA0j=D, with Re�1;2 > 0 and C �

�ð3i=2Þ ��f�Dsgn!=ðjA0j2�!Þ. All components decay
away from the edge plane x ¼ 0. The singlet and parallel

to Â0 triplet components [the first term in Eq. (15)] decay

over the short magnetic distance
ffiffiffiffiffiffiffiffiffiffiffiffi
D=2h

p
, while the triplet

component perpendicular to Â0 [the second term in
Eq. (15)] decays over a larger length of the order offfiffiffiffiffiffiffiffiffiffiffiffiffi
D=2T

p
, confirming its long-range character. Figure 1(b)

shows that the LRTC decays in both directions from the
inhomogeneity at x ¼ 0, which looks very similar to the
LRTC generated at the edge of a Néel domain wall [30].
This similarity is not accidental. In fact, in the particular

case of Ây ¼ 0, our system is gauge equivalent to the Néel

wall with an edge at x ¼ 0.
We now consider a lateral structure with two S

electrodes separated by a distance L [see Fig. 1(c)]. If

L � ffiffiffiffiffiffiffiffiffiffiffiffi
D=2h

p
, the Josephson coupling is only mediated

by the LRTC, and the critical current is given by

Ic ¼
�
S�F

e

�
trð �̂F?

x0Þ2T
X
!n

�!C
2ð!nÞe��!L; (16)

where S and �F are the cross section and conductivity of
the F region. From this equation, one concludes that a
finite SU(2) electric field with a component perpendicular
to the magnetization is the source of the long-range
Josephson effect. The lateral geometry shown in Fig. 1(c)
is equivalent to the one explored in the experiments of

Refs. [4,8]. Thus, our theory gives a plausible explanation
for the long-range effects observed in these experiments.
One argues in that case that the long-range Josephson
current is either due to a SO coupling at the S=F interfaces
[4] or to a Rashba-type SO coupling in the quasi-1D
geometry of Ref. [8]. A triplet component can also be
induced in a superconductor-normal metal-superconductor
lateral structure with Rashba SO coupling in an external
Zeeman field [34].
We finally generalize our results to ferromagnets with a

generic momentum dependent effective exchange field.
Our starting point is the following Hamiltonian in the F
region

H ¼ �p � ½baðpÞ þ haðpÞ��a: (17)

Here, �ðpÞ is the spin independent part of the quasiparticle
energy. The spin dependent contribution is written as the

sum of an even ĥð�pÞ ¼ ĥðpÞ and an odd b̂ð�pÞ ¼ �b̂ðpÞ
in momentum parts. ĥðpÞ describes the Zeeman-type
exchange term, which is, in general, momentum dependent

in realistic systems. The odd part b̂ðpÞ corresponds to a
generic SO interaction which preserves the time reversal
symmetry [35].
Following the standard procedure (see, for example,

Ref. [36]), one derives the Eilenberger equation [37] for
a generic spin dependent Hamiltonian

vF
k ðnÞ@k �gþ½!	3; �g�� i½ĥðnÞ	3þ b̂ðnÞ; �g�¼� 1

2	
½h �gi; �g�;

(18)

where n is a unit vector pointing in the direction of
momentum, vF

k ðnÞ are components of the Fermi velocity,

	 is the impurity scattering time, and the angled brackets
denote averaging over n. This equation allows for a general
anisotropy with different velocities and spin splittings at
different points on the Fermi surface. In the particular case
of an isotropic h, Rashba SO coupling, and a pure ballistic
system, we recover the equation used in Ref. [38]. We
focus here on the diffusive limit, in which 	�1 determines
the largest energy scale in Eq. (18). In this case, Eq. (18)
reduces to the Usadel equation for the angle-averaged GF
[27,39]. For a general anisotropic ferromagnet, the linear-
ized Usadel equation takes the form

Dkj@k@jf̂� 2!f̂� isgn!fhĥi; f̂g� 2i	½hvF
k b̂i; @kf̂�

� i	½@khvF
k b̂i; f̂�� 	h½b̂; ½b̂; f̂��i� 	hf
ĥ; f
ĥ; f̂ggi ¼ 0;

(19)

where Dkj ¼ 	hvF
k v

F
j i is the tensor of diffusion coeffi-

cients and 
ĥðnÞ ¼ ĥðnÞ � hĥi is the variation of the
Zeeman field at the Fermi surface. With the exception of

the last term containing 
ĥ, Eqs. (19) and the gauge
covariant Usadel equation, Eq. (2), are structurally equiva-
lent. The first three terms in Eq. (19) correspond to Eq. (2)
without the commutators coming from the covariant
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gradients. These terms in Eq. (2) correspond to the com-

mutators in Eq. (19) involving the SO field b̂. Because of
this similarity, our analysis of Eq. (2) is directly applicable
to Eq. (19). Hence, we conclude that the last four terms in
Eq. (19) serve as a the source for the LRTC. More pre-
cisely, the LRTC is generated if any of these terms has a

finite component perpendicular to the exchange field hĥi
averaged over the Fermi surface. We can draw a remark-
able conclusion from this result: From the knowledge of
the electronic properties at the Fermi level of S=F systems,

namely, from �ðpÞ, ĥðpÞ, and b̂ðpÞ in Eq. (17), one can
easily infer whether or not the LRTC would exist in the
hybrid structure. Moreover, Eq. (19) is quite general and
can be used in a broad context of problems involving
superconductivity and spin fields.

In conclusion, we presented a general description of the
long-range triplet superconductivity in S=F structures.
Starting from the linear in momentum SO coupling we
developed the SU(2) covariant theory describing the dif-
fusion of the condensate and identified the SU(2) electric
field as a physical source for the LRTC.We also considered
the case of an arbitrary momentum dependence of the spin
fields and derived a useful equation from which, by knowl-
edge of the electronic structure of the ferromagnet and the
interfaces, one can directly predict whether the LRTC is
generated or not. Our results not only unify in an elegant
way all models describing the long-range proximity effect
in S=F structures but also predict new sources for the
singlet-triplet conversion and provide a useful tool in the
search for triplet superconducting correlations.
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