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We show that whenever an electron transfers between closed-shell molecular fragments, the exact
correlation potential of time-dependent density functional theory develops a step and peak structure
in the bonding region. This structure has a density-dependence that is non-local both in space and
time, that even the exact adiabatic ground-state exchange-correlation functional fails to capture it. For
charge-transfer between open-shell fragments, an initial step and peak vanish as the charge-transfer
state is reached. The inability of usual approximations to develop these structures leads to inaccurate
charge-transfer dynamics. This is illustrated by the complete lack of Rabi oscillations in the dipole
moment under conditions of resonant charge-transfer for an exactly-solvable model system. The
results transcend the model and are applicable to more realistic molecular complexes.

Charge-transfer (CT) dynamics play a critical role in
many processes of interest in physics, chemistry, and
biochemistry, from photochemistry to photosynthesis,
solar cell design and biological functionality. The quan-
tum mechanical treatment of such systems calls for
methods that can treat electron correlations and dy-
namics efficiently for relatively large systems. Time-
dependent density functional theory (TDDFT) [1, 2] is
the leading candidate today, and has achieved an un-
precedented balance between accuracy and efficiency in
calculations of electronic spectra [2, 3]. CT excitation
energies over medium to large distances are, however,
notoriously underestimated by the usual exchange-
correlation (xc) functionals, and recent years have wit-
nessed intense development of many methods to treat
it [4–7]. There is recent optimism for obtaining ac-
curate CT excitations between closed-shell fragments
[5, 6], but no functional approximation developed so
far works for CT between open-shell fragments [8–
10]. Here standard approximations predict even an
unphysical ground-state with fractional occupation in
the dissociation limit. For open-shell fragments the ex-
act ground-state correlation potential has step and peak
structures [11, 12], while the exact xc kernel has strong
frequency-dependence and diverges as a function of the
fragment separation; lack of these features in the xc-
approximation is responsible for their poor predictions.

In contrast to linear response phenomena, the de-
scription of photoinduced processes generally requires
a complete electron transfer from one state to another, or
from different regions of space. This is the case in photo-
voltaic materials (organic, inorganic, and hybrids), pho-
tocatalysis, biomolecules in solvents, reactions at the
interface between different materials, nanoscale con-
ductance devices (see e.g. Refs [13–18] and references
therein). These processes are clearly nonlinear and re-
quire a non-perturbative time-resolved study of electron
dynamics rather than a simple calculation of their ex-

citation spectrum. TDDFT is increasingly used, of-
ten within an Ehrenfest or surface-hopping scheme to
handle coupled electron-ion motion [2, 13, 14, 16? –
18]. In the TDDFT scheme, a one-body time-dependent
Kohn-Sham (KS) potential is used to evolve a set of
non-interacting KS electrons, reproducing the exact one-
body density of the true interacting system, from which
all properties of the interacting system may be exactly
extracted. In practise, approximations are required for
the xc potential, vXC[n; Ψ0,Φ0](r, t), a functional of the
one-body density n, the initial interacting state Ψ0 and
the initial KS state Φ0. Almost all calculations today
use an adiabatic approximation, that inserts the instan-
taneous density into a ground-state xc approximation,
vadia
XC

[n; Ψ0,Φ0](r, t) = vg.s.XC [n(t)](r, t), neglecting the de-
pendence of vXC on the past history and initial states [2].
Further, the exact vXC has in general a non-local depen-
dence on space [19].

A critical question is: Are the available functionals
suitable for modeling the CT processes mentioned ear-
lier? In this paper, we show that when an electron trans-
fers at long range from a ground- to an excited CT- state,
a time-dependent step and peak are generic and essen-
tial features of the exact xc potential. When the donor
and acceptor are both closed shells, the initial xc poten-
tial has no step nor peak, but a step and peak struc-
ture in the bond midpoint region builds up over time.
Although in the initial stages of the CT dynamics the
usual approximations may perform well, they are in-
creasingly worse as time evolves, leading to completely
wrong long-time dynamics. On the other hand, when
the donor and acceptor are both open-shell species, an
initial step and peak structure wanes. Thus these time-
dependent steps and peaks that are difficult to capture
in functional approximations, play a significant role in
CT even between neutral closed-shell fragments, unlike in the
calculation of excitation energies. Further, we show that
although an adiabatic approximation to the xc poten-
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tial may yield a step structure, the step will, at best, be
of the wrong size. Accompanying the step and peak
associated with charge transfer there is also a dynami-
cal step [21], that depends on how the CT is achieved.
The exact vXC thus has a complicated non-local space-
and time-dependence that adiabatic functionals fail to
capture, with severe consequences for time-resolved CT.
Although our results are demonstrated for two elec-
trons, we expect they can be generalized to real molec-
ular systems, as many cases of CT dominantly involve
two valence electrons. The other electrons act as a gen-
eral buffer that introduces some additional dynamical
screening that can change the net size of the step and
peak but not their presence.

To illustrate the mechanism of CT processes and the
relevance of spatial and time non-locality we use a “two-
electron molecule” in one-dimension. The Hamiltonian
is (atomic units are used throughout):

H(x1, x2, t) = −
1

2

∂2

∂x21
−

1

2

∂2

∂x22
+ vmol(x1) + vmol(x2)

+vee(x1 − x2) + E(t) · (x1 + x2) (1)

where vee(y) = 1/
√

y2 + 1 is the “soft-Coulomb”
electron-electron interaction [22–28], and E(t) =
A cos(ωt) is an applied electric field. The molecule is
modeled by:

vmol(x) =
−Z

√

(x+ R
2 )

2 + a
−

U0

cosh2(x− R
2 )

(2)

Asymptotically the soft-coulomb potential (donor) on
the left decays as −Z/x, similar to a true atomic po-
tential in 3D, while the cosh-squared (acceptor) on the
right is short-ranged, decaying exponentially away from
the “atom”. The acceptor potential mimics a closed-
shell atom without core electrons. We model CT be-
tween two closed-shell fragments, by choosing Z = 2
andU0 = 1 such that, at large separationsR, the ground-
state has two electrons on the donor and zero on the ac-
ceptor, while the first singlet excited state, Ψ∗, is a CT
excited state with one electron in each well (see Fig. 1).
Choosing Z = 2, U0 = 1.5 places one electron in each
well in the ground-state, with a CT excited state having
both electrons in the acceptor well; such a system would
model CT between two open-shell fragments.

If we start the KS simulation in a doubly-occupied sin-
glet state, the KS evolution retains this form for all later
times, Φ(x1, x2, t) = φ(x1, t)φ(x2, t). Requiring the exact
density to be reproduced at all times leads to φ(x, t) =
√

n(x, t)/2ei
∫

x dx′u(x′,t) ,where u(x, t) = j(x, t)/n(x, t) is
the local “velocity”. Inverting the KS equation yields the
exact KS potential as:

vS(x, t) =
∂2xn(x, t)

4n(x, t)
−
(∂xn(x, t))

2

8n2(x, t)
−
u2(x, t)

2
−

∫ x

∂tu(x
′, t)dx′

(3)

The xc potential is then

vXC(x, t) = vS(x, t) − vext(x, t)− vH(x, t) (4)

where vH(x, t) =
∫

dx′n(x′, t)vee(x − x′) is the Hartree
potential and the external field is given by vext(x, t) =
vmol(x)+E(t)x. Further, for this case, vC = vXC−vX, may
easily be isolated since vX = −vH/2.

Before discussing the dynamics, we first consider the
final CT state, and focus on CT between closed-shell
fragments. Let us assume we have complete transfer of
an electron at some time T into the excited state Ψ∗ (for
example applying a tailored laser pulse), and the system
then stays in this state for all times t > T . The density,
n(t > T ) = n∗, is then static in the excited state and
node-less, and the current and velocity u(x, t) are zero.
It follows that the exact vXC(t > T ) is static and that the
exact KS potential is given by first two terms of Eq. (3)
only.
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FIG. 1: Density (black solid), vS (red long-dashed), vC (blue
dashed), and vext (pink dotted) for the ground-state (left) and
for the CT state (right) in our model molecule of closed-shell
fragments at separation R = 7au.

In Fig. 1, we show the density and the exact KS and
correlation potentials for the ground and CT states for
R = 7au. A clear step and peak structure has developed
in the correlation potential in the region of low-density
between the ions in the CT state. There is no such struc-
ture in the initial potential of the ground-state. As the
separation increases, the step in vC saturates to a size

∆ = |IND−1
D − INA+1

A | , (5)

where IND−1
D = IN=1

D is the ionization energy of the

donor containing one electron, INA+1
A = IN=1

A is that of
the one-electron acceptor ion, and the result is written
for a general ND(NA)-electron donor(acceptor). Eq. (5)
can be shown by considering the asymptotics of the
donor and acceptor orbitals, adapting the argument
made for the case of the ground-state of a molecule made
of open-shell fragments [11, 12]. Here instead, we have a
step in the potential of a CT excited-state of a molecule
made of closed-shell fragments.

Somewhat of the reverse picture occurs for the case of
CT between open-shells: the initial ground-state corre-
lation potential contains a step and peak, as shown ear-
lier in [11, 12, 29–31], that disappears as the CT state is
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reached. In either case, the step is a signature of of the
strong correlation due to the delocalization of the KS or-
bital.

The step requires a spatially non-local density-
dependence in the correlation functional, as in the
ground-state case [11, 12, 29–31]. The inability of usual
ground-state approximate functionals to capture this
step results in them incorrectly predicting fractionally
charged species. In the present case, we have an ex-
cited state of the interacting system, where the KS orbital
corresponding to the excited-state density n∗ shown in

Fig. 1 is in fact a ground-state orbital, φ(x) =
√

n∗(x)/2,
because n∗ has no nodes. Given the static ground-state
nature of the orbital and KS potentials after time T , does
the adiabatic approximation become exact?

To answer this, we examine the adiabatically-exact xc
potential for t > T , vadia−ex

XC
[n∗], i.e. evaluating the ex-

act ground-state xc functional on the instantaneous CT
density. This is (see Refs. [35, 36]):

vadia−ex
XC

[n] = vadia
S

[n]− vadiaext [n]− vH[n] (6)

where vadiaext [n](vadia
S

[n] ) is the external(exact ground-
state KS) potential for two interacting electrons in a
ground-state of this density (vadia

S
[n] corresponds to first

two terms of Eq. (3)). Fig. 2 shows vadia−ex
C

[n∗] for two
separations R = 7au and 10au (see Supporting Infor-
mation for numerical methods). Evidently, the adiabatic
approximation does yield a step, but of the wrong size.

To understand this, first consider the functional de-
pendence of the exact xc potential. We may write ([37])

vXC[n](t > T ) = vXC[n
∗,Ψ∗,Φgs

CT ](t > T ) , (7)

where, on the left, the dependence is on the entire his-
tory of the density, n(0 < t < T ), and initial-state de-
pendence is not needed since at t = 0 we start from the
ground-state [2, 37]. On the right, time T is considered
as the “initial” time, and the functional depends on just
the static density n∗ after this time, but, crucially, the in-
teracting state and KS states at time T . The former is
the CT excited state Ψ∗, while the latter is the doubly-

occupied orbital: Φ(x1, x2, T ) =
√

n∗(x1)n∗(x2)/2 ≡
Φgs

CT , a ground-state wavefunction, as discussed above.
On the other hand, the adiabatic approximation

vadia
XC

[n∗] ≡ vadia
XC

[n∗,Ψgs
CT ,Φ

gs
CT ] , (8)

differs from the exact xc potential Eq. (7), in its depen-
dence on the time-T interacting state: here Ψgs

CT is the
ground-state wavefunction of an interacting system with
density n∗, not the true excited state wavefunction. There-
fore, Eqs. (7) and (8) show that the adiabatically-exact xc
potential is not the same as the exact xc potential: the
initial-state dependence in the exact functional reflects
a nonlocal time-dependence that persists forever. In the
infinite-separation limit, we expect Ψ∗ and Ψgs

CT to be
very similar, both having a Heitler-London form with

one electron in each well, but the fact that Ψ∗ is an ex-
cited state is encoded in the nodal structure of its wave-
function. The correlation potential is extremely sensitive
to this tiny difference in the two interacting wavefunc-
tions, which accounts for the different step size in Fig. 2.

The magnitude of the step in vadia−ex
XC

in the infinite-
separation limit can be derived by examining the terms
in Eq. (6). In this limit, locally around each well vadiaext

must equal the atomic potential, up to a spatial constant,
in order for Ψgs

CT [n
∗] to satisfy Schrödinger’s equation

there. It cannot simply be the sum of the atomic po-
tentials, because the ground-state Ψ0 of that potential
(Eq. 2) places two electrons in the donor well. For Ψgs

CT

to be the ground state, vadiaext has a step in the region of
negligible density that pushes up the donor well relative
to the acceptor well; the size of this step, C, is the lowest
such that energetically it is favorable to place one elec-
tron on each well, as Ψgs

CT [n
∗] does. So,

Egs,N=1
D + Egs,N=1

A + C < Egs,N=2
D + 2C (9)

where Egs,N

D(A) is the ground-state energy of the N-

electron donor(acceptor). This leads to

C ≥ Egs,N=1
D + Egs,N=1

A − Egs,N=2
D = IND

D − INA+1
A (10)

where in the last line, we have generalized the result to
a donor(acceptor) with ND(NA) electrons.

Now that we have the step in vadiaext [n∗], we use Eq. (6)
to quantify the step in vadia−ex

XC
[n∗]. Since vadia

S
= vexact

S

here, Eq. 5 tells us that the step in vadia−ex
C

is

∆adia = |IND−1
D −AND−1

D | (11)

which is equal to the derivative discontinuity of the (ND−
1)-electron donor. (As before, the entire step is con-
tained in the correlation potential). For our system
IN=1
D = 1.483au, AN=1

D = 0.755au and IN=1
A = 0.5au,

thus in the infinite separation limit we get a step of
0.983(0.729)au in the exact vC(vadia

C
). The numerical re-

sults verify this analysis; the steps shown in Figure 2 for
separationR = 7(R = 10)au have values of 0.61 (0.76)au
in the exact vC and 0.42 (0.55)au in vadia

C
. For larger sep-

arations, the steps tend towards the asymptotic values
predicted by the analysis above.

In the above analysis, the adiabatically-exact poten-
tial was evaluated on the exact density, as is commonly
done when assessing functionals [35], rather than on
that obtained from a self-consistent adiabatic propaga-
tion. The latter would likely lead to an erroneous den-
sity at time T , but the analysis shows that even with the
exact density at time T , the wrong step-size means that
subsequent propagation using the adiabatically-exact
potential will yield the wrong dynamics.

Having studied how the xc potential looks for the fi-
nal CT state, we now study how the potential evolves in
time to reach such a state. To simplify the analysis we
exploit Rabi physics to reduce this problem to a two-
state system. This approach is justified for weak res-
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exact vadia−ex
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au(right). Note that the potential eventually rolls back down
to zero far enough away from the system. In the infinite sepa-
ration limit ∆(∆adia)is given by Eq. (5)(Eq. (11)).
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line) and density (solid black) shown at snapshots of time in-
dicated. Lower panel: Vc at snapshots over an optical cycle
centered around TR/8.

onant driving field, and verified numerically by com-
paring the results with the exact time-dependent wave-
function found using octopus [32–34]. The interacting
wavefunction may be written as |Ψ(t)〉 = ag(t)|Ψ

gs〉 +
ae(t)|Ψ

∗〉, where

i∂t

(

ag(t)
ae(t)

)

=

(

Eg − dggE(t) −degE(t)
−degE(t) Ee − deeE(t)

)(

ag(t)
ae(t)

)

(12)
with deg = dge = 0.231, dgg = 7 and dee = 0 for our
system. The electric field is resonant with the first exci-
tation: E(t) = 0.006 cos(0.112t).

Fig. 3 displays the correlation potential at snapshots
in time over a half-Rabi period TR/2 [38]. The step, ac-
companied by a peak, develops over time as the excited
CT state is reached; at TR/2 the correlation potential
agrees with the static prediction earlier (Fig. 2, left). No-
tice that making a time-dependent constant shift does
not affect the dynamics, just adds a time-dependent
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FIG. 4: Absolute value dipole moments |d(t)| for the CT be-
tween closed-shell fragments at separation R = 7au for exact
(solid black line), adiabatic exact-exchange (AEXX) (dashed
red line) and self-interaction-corrected adiabatic local density
approximation (SIC-ALDA)(dotted blue line). The calcula-
tions were performed in the presence of a resonant field of
frequency ω = 0.112 and amplitude A = 0.00667.

overall phase. During the second half of the Rabi cy-
cle, the step gradually disappears. A closer inspection
indicates that superimposed to this smoothly develop-
ing step, is an oscillatory step structure, whose dynam-
ics is more on the time-scale of the optical field (lower
panel). This faster, non-adiabatic, non-local dynamical
step appears generically in electron dynamics, as shown
in Ref. [21]. To distinguish between the two steps we re-
fer to the more gradually developing step due to CT, as
the “CT step”.

The impact that the development of the CT step has
on dynamics is significant. The same adiabatic approxi-
mations that for local resonant excitations showed faster
but still Rabi-like oscillations [39], fail dramatically to
capture any Rabi-like oscillations between the ground
and CT state. This is illustrated by the dipole moments,
d(t) = 〈ψ(t)|x̂1 + x̂2|ψ(t)〉, in Figure (4). The approxi-
mate correlation functionals lack the non-local spatial-
dependence necessary to develop the CT step ([40]).

Given the ubiquity of CT dynamics in topical appli-
cations of TDDFT, it is critical to develop approxima-
tions with spatially non-local and non-adiabatic depen-
dence. None of the available functionals today captures
the peak and step structure that develop in the exact vC

as the charge transfers, and they lead to drastically in-
correct dynamics, as illustrated in Figure 4. Even an ex-
act adiabatic approximation will be incorrect: a step and
peak feature are captured but of the wrong size. The
performance of a self-consistent propagation in such a
potential is left for a future investigation, as is the role
of the peak that accompanies the step. Superimposed
on the development of the CT step, are the generic dy-
namical step and peak features of Ref [21]: this features
depends on the details of how the CT is induced, e.g.
oscillating on the time-scale of a resonant optical field.
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Note that the CT step recedes asymptotically far from
the molecule [11, 12], while the dynamical step persists
[21]. The relation of these structures to the derivative
discontinuities of the xc kernel for CT excitations [7] will
also be investigated in the future.

In modeling real systems the vibronic coupling intro-
duces a mixture of excited states that are not, in princi-
ple, fully populated. Still our findings apply, since for
an ensemble of states CT steps and dynamical steps ap-
pear that account for the population of each excited state
contributing to the wave packet. Note that the step re-
sponsible for the CT appears as soon as the state starts
to be populated. Recent work has shown that TDDFT
describes the CT process in an organic photovoltaic [42];
our findings may explain the observed incomplete CT
of the electron to the fullerene [43]. The step feature
is a fundamental one for describing processes where
electron-hole splitting is key. Our work highlights an
essential new feature that must be considered in the de-

velopment of nonadiabatic functionals able to capture
dynamical electron transfer processes.
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In this supporting material we give additional numerical details behind the results presented in
the paper. In the first part computational details on the ground state calculation and on the real-time
propagation are given. Next the procedure to find the exact Kohn Sham potential Eq.(3) and the
adiabatic-exact XC potential Eq.(6) are discussed.

In all cases we work in 1D, which significantly reduces the computational cost, in particular, simple numerical
integration techniques can be used. We also use a regular real-space grid with spacing at most 0.1a.u., the entire
simulation is then contained within a box of total length 100a.u.
The ground-state Hamiltonian, Eq. (1) with E(t) = 0, consists of two interacting electrons in the molecular potential,
this can be solved exactly using the open-source electronic structure program OCTOPUS [1–3] by considering the
problem as a single electron in a complicated 2D potential [4]. By this method, we can find the exact energies and
wavefunctions for the ground-state and charge-transfer state. Imaginary time propagation using the time-dependent
methods discussed below was also used to find the exact ground-state, Gram-Schmidt orthogonalization may be
used to find for excited states.
Time-dependent calculations to find the density and current were done by three different methods. The first is, again,
OCTOPUS, which can perform many different propagation schemes. For these calculations we used approximate
enforced time-reversal symmetry or AETRS) with a time-step of 0.01a.u. The second method is an in-house code
utilizing the exponential mid-point rule to approximate the time-evolution operator and then a forth order expansion
of the exponential. A discussion of these techniques can be found in Ref. 5 . A 9 point finite-difference rule is used
for the laplacian. In this case, a time-step of 0.001a.u. was used. Both the time propagation methods discussed so far
are exact and agree with eachother. The current, j(x, t), was extracted from the wavefunction via standard center-
space 2 point finite-difference for the first derivative. The third and final method is the two-state model of Eq. (12) as
introduced in the text. The coefficients ag(t) and ae(t) are found using mathematica[6] and to verify accuracy, also with
a coupled 4th order Runge-Kutta algorithm. The two-state method is used as the time-derivatives of the coefficients,
which are needed to find the current, etc, are given analytically by Eq. (12). It also produces less noise in regions
with less density. The calculated densities and currents from the two-state model agree with the exact propagation
results up to some small deviations in the low-density tail regions where higher states which are slightly populated
by the oscillating field become dominant. This is to be expected and the calculated potentials are not significantly
affected in these regions. The self-consistent time-dependent Kohn-Sham calculations shown in Fig. 4 are performed
with OCTOPUS but with a time-step of 0.025.
The exact time-dependent Kohn-Sham potential is found from the density and current using Eq. (3). The first two
terms are given by applying the 9-point finite-difference laplacian to the square-root of the density, then dividing by
the density. Obviously care must be taken here to avoid numerical noise if the density is too small. Similarly for the
local velocity u(x, t) = j(x, t)/n(x, t). Standard numerical integration and differentiation techniques, such as those
already discussed are used to calculate the last term of Eq. (3), and for the Hartree potential needed in Eq. (4) to
extract the exact XC potential.
The exact-adiabatic XC potential is found using Eq. (6). The only missing piece is to find the external potential
for which a given density is the ground-state. We use the method given in Refs. 7, 8 (and refs. therein) whereby
a trial potential is updated based on the difference between the ground-state density and the target density with a
prefactor than can be spatial dependent. This is then iterated until convergence. A measure of the difference between

the calculated ground-state density for the k-th iteration cycle, n(k)(x), and the target density, n(x),

∆ =

∫

|n(k)(x)− n(x)|dx (1)

is calculated as the check for convergence. The imaginary time propagation mentioned above is used to find n(k).
Anecdotally we have found that a prefactor of 0.001/∆ converges relatively quickly but this depends heavily on the

http://arxiv.org/abs/1211.2849v2


initial guess for the potential. A weighting based on the inverse of the density was also used to speed up convergence
in certain regions.
The charge-transfer problem is particularly demanding as it requires convergence in regions with low density in
order to resolve any peak and/or step structure. Often a large peak in vadiaext [n] will cancel a peak in vadia

S
[n] and so

care is needed to ensure convergence is reached and the calculated potential is smooth.
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