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Abstract

Background: Fatty acids (FA) play a critical role in energy homeostasis and metabolic diseases; in the context of
livestock species, their profile also impacts on meat quality for healthy human consumption. Molecular pathways
controlling lipid metabolism are highly interconnected and are not fully understood. Elucidating these molecular
processes will aid technological development towards improvement of pork meat quality and increased knowledge
of FA metabolism, underpinning metabolic diseases in humans.

Results: The results from genome-wide association studies (GWAS) across 15 phenotypes were subjected to an
Association Weight Matrix (AWM) approach to predict a network of 1,096 genes related to intramuscular FA
composition in pigs. To identify the key regulators of FA metabolism, we focused on the minimal set of transcription
factors (TF) that the explored the majority of the network topology. Pathway and network analyses pointed towards a
trio of TF as key regulators of FA metabolism: NCOA2, FHL2 and EP300. Promoter sequence analyses confirmed that
these TF have binding sites for some well-know regulators of lipid and carbohydrate metabolism. For the first time in a
non-model species, some of the co-associations observed at the genetic level were validated through co-expression at
the transcriptomic level based on real-time PCR of 40 genes in adipose tissue, and a further 55 genes in liver. In
particular, liver expression of NCOA2 and EP300 differed between pig breeds (Iberian and Landrace) extreme in
terms of fat deposition. Highly clustered co-expression networks in both liver and adipose tissues were observed.
EP300 and NCOA2 showed centrality parameters above average in the both networks. Over all genes, co-expression
analyses confirmed 28.9% of the AWM predicted gene-gene interactions in liver and 33.0% in adipose tissue. The
magnitude of this validation varied across genes, with up to 60.8% of the connections of NCOA2 in adipose tissue
being validated via co-expression.

Conclusions: Our results recapitulate the known transcriptional regulation of FA metabolism, predict gene
interactions that can be experimentally validated, and suggest that genetic variants mapped to £P300, FHL2, and
NCOA2 modulate lipid metabolism and control energy homeostasis in pigs.
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Background

Fatty acids (FA) are a major energy source and important
constituents of cell membranes, playing a relevant role as
cellular signaling molecules in various metabolic pathways,
including metabolic diseases [1]. Environmental and gen-
etic effects determining FA composition in pigs have been
the subject of many studies. Supporting a genetic influence
on FA composition moderate to high heritability estimates
have been reported [2,3]. However, the molecular process
controlling FA composition and metabolism is far from
being fully understood. Technological, nutritional and
organoleptic properties of pork meat quality are highly
dependent on lipid content and FA composition [4-6].
Thus, elucidating this molecular process could aid im-
prove meat quality for healthy human consumption and
increase knowledge of FA metabolism, underpinning
metabolic diseases. Pigs are important models for meta-
bolic diseases such as obesity, type II diabetes (T2D)
and atherosclerosis [7-10].

Molecular pathways controlling lipid metabolism are
highly interconnected. Also, they interact with other re-
lated pathways, such as carbohydrate metabolism and
energy homeostasis pathways. Together, these pathways
and its interactions constitute an essential metabolic net-
work for homeostatic control and normal organism devel-
opment [11]. In this context, a system biology approach
focused on the connections and functional interactions be-
tween genes that underpin these metabolic pathways is an
attractive alternative to the classical “single-gene-single-
trait” approach found in most genome-wide association
studies (GWAS) using single nucleotide polymorphisms
(SNP).

The main goal of this study was to employ a previously
described system biology approach termed Association
Weight Matrix (AWM) [12] and, based on a SNP-to-SNP
co-association evidence, infer a gene network for intra-
muscular (IMF) FA composition in pigs. This multi-trait
approach was applied to data from 15 phenotypes related
to FA composition and metabolism from an Iberian x
Landrace intercross. Iberian pigs are a local Mediterranean
breed extreme for obesity and appetite [13], whereas
Landrace is a lean international breed. The analysis of the
predicted gene network revealed key transcription factors
that are network hubs and would be critical to determin-
ing meat quality, FA composition and controlling energy
homeostasis. Finally, we experimentally validated some of
the AWM network predictions using real-time PCR gene
co-expression analyses in adipose and liver tissues.

Results

Genotyping data from 48,119 SNPs in 144 backcross
pigs (25% Iberian x 75% Landrace) was employed for
GWAS of fatty acid related traits in the Longissimus
dorsi muscle. For all 15 phenotypes, estimated SNP
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additive effects were standardized (z-scores) by subtract-
ing the mean and dividing by the phenotype-specific
standard deviation. After applying a series of selection
criteria (see Methods), a total of 1,096 SNPs were retained
to build the AWM matrix. Correlations between pheno-
types were calculated using AWM columns (standardized
SNP effects across traits) and were visualized as a hier-
archical tree cluster, in which strong positive and negative
correlations are displayed as proximity and distance, re-
spectively (Figure 1). The observed cluster distribution is
in concordance with the physiological similarities and rela-
tionships among FA. Hence, palmitic acid with saturated
FA (SFA), oleic with monounsaturated FA (MUFA), and
linoleic with polyunsaturated FA (PUFA) cluster together
(Figure 1). Linoleic acid and PUFA are clearly differenti-
ated from other FAs. This result can be explained by the
inability of mammals to synthesize linoleic and «-linoleic
FAs, which must be provided by the diet. Gene interac-
tions were predicted using pair-wise correlation analysis
of the SNP effects across pair-wise rows of the AWM.
Hence, the AWM predicted gene interactions based on
significant co-association between SNPs. In the network,
every node represents a gene (or SNP), whereas every edge
connecting two nodes represents a significant interaction.
In total, 111,198 significant edges (or 18.5% of all the pos-
sible edges) between the 1,096 nodes were identified as
significant by the PCIT algorithm [14] (Figure 2A). For
every node we computed the total number of connections
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Figure 1 Hierarchical cluster analysis of the 15 phenotypes
analyzed in this study. Palmitic acid (C16), Stearic acid (C18),
Palmitoleic acid (C161N7), Oleic acid (C181N9), Linoleic acid
(C182N6), a-Linolenic acid (C183N3), Eicosadienoic acid (C202N6),
Eicosatrienoic acid (C202N6), Arachidonic acid (C204N6), Saturated
FA (SFA), Monounsaturated FA (MUFA), Polyunsaturated FA (PUFA),
Unsaturated indices (Ul), Elongase activity (C202|C182), Percentage

intramuscular fat (IMF).
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Figure 2 Co-association network based on the AWM approach. (A)

(TF), ellipse (other genes).

A B i

interactions. The color spectrum ranges from green to red for low and hi
of transcription factors: NCOA2, EP300 and FHL2. Node color corresponding with the functional classification of the in-silico predicted target gene
as follows: TF (red), lipid metabolism process (blue), carbohydrate metabolisms (green), development process (orange) and finally, white nodes
represent genes with others functional classification. Node shape indicates classification as: diamond (TF involved in lipid metabolism), triangle

GA0019655.

Entire network with 1,096 nodes (i.e., genes or SNPs) and 111,198
igh density, respectively. (B) Subset of the network showing the best trio

based on significant interactions. Table 1 lists the ten most
connected nodes and Additional file 1: Table S1 their
positional concordance with fat-related QTL deposited
in the Pig QTL Database.

Gene ontology (GO) and pathway enrichment ana-
lyses were performed to gain insight into the predicted
gene network. Overrepresented GO terms in the network
included: “Cellular component organization” (P =4.02 x
10°, FDR=3.95 x 107?), “Cellular component organi-
zation or biogenesis” (P =7.34 x 107% FDR=3.6 x 1072,

“Cell projection morphogenesis” (P=9.59 x 107°, FDR =
9.42 x 1072), “Fatty acid metabolic process” (P =5.89 x
107%, FDR=1.03 x 107?), “Glycerolipid metabolic
process” (P=1.2371 x 107°, FDR=1.66 x 1072),
“Sphingolipid metabolic process” (P=7.45 x 107%
FDR = 1.16 x 10~%) and “Unsaturated fatty acid biosyn-
thetic process” (P=2.13 x 1072, FDR =2.27 x 1072).
Additional file 2: Table S2 provides the full list of overrep-
resented GO terms. Pathway analyses revealed an enrich-
ment for “Regulation of actin cytoskeleton (hsa04810)”,
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Table 1 Description of the ten most connected nodes in the co-association network

SNP/Gene Illumina Chip SNP Associated Traits Connections Consequence
ALGA0061664 ALGA0061664 3 376 Intergenic variant
SLC30A9 H3GA0024739 1 373 Intronic variant
SEMA3F DIAS0001129 3 370 Intronic variant
ARHGEF2 ASGA0021047 3 368 Downstream variant
NTRK3 MARC0045253 3 367 Intronic variant
ZFHX4 ALGA0025325 1 366 Intronic variant
SLC22A3 ALGA0117149 6 365 Intronic variant
ARMC4 ALGA0059185 4 356 Intronic variant
C9orf171 ASGA0008154 6 355 Intronic variant
PPP2R2A DIAS0004697 5 353 Splice region variant

“Focal adhesion (hsa04510)”, “Pathways in cancer
(hsa05200)”, “Chemokine signalling pathway (hsa04062)”,
“Phosphatidylinositol signalling system (hsa04070)” and
“Inositol phosphate metabolism (hsa00562)” (Additional
file 3: Table S3).

To identify potential regulators of the above-mentioned
pathways and GO categories, we focused on TF found in
the gene network. We applied an information lossless ap-
proach that explored the 64,824 possible trios among the
available 74 TF (see Methods and Additional file 4: Table
S4 for complete list of TF) and identified the TF trio that
spanned most of the network topology with minimum
redundancy. These three TF were: Nuclear receptor coacti-
vator 2 (NCOA2, alias TIF2), E1A binding protein p300
(EP300, alias p300) and four and a half LIM domains 2
(FHL2, alias SLIM-3). Interestingly, the promoter region of
these TF contain binding sites for some well-known TF
that are considered as important regulators of lipid and
carbohydrate metabolism such as: SREBP-1, PPARG,
PPAR-a, HNFIA, HNF4-a, ER-a and GR-a. In the pre-
dicted network, a total of 730 genes show co-association
with the three key TF (Figure 2B). A detailed examination
of the most representative pathways related to these
730 predicted target genes showed a significant over-
representation for “HIF-1 signaling pathway (hsa04066)”,
“Acute myeloid leukemia (hsa05221)”, “Colorectal cancer
(hsa05210)”, “Renal cell carcinoma (hsa05211)” and “Type
II diabetes mellitus (hsa04930)” (Additional file 5:
Figure S1). Admittedly, some of the above-mentioned
GO terms and pathways could have been expected from a
network predicted from GWAS of FA-related phenotypes
and this gives confidence in the reliability of the results.
Others, however, were unexpected and might lead to new
insights on FA physiology.

Experimental validation: From co-association to
co-expression analysis in liver and adipose tissues

The expression of the three TF across Longissimus dorsi
muscle (LD), adipose and liver tissues was explored. In

concordance with previous results suggesting that highly
connected TF are in general broadly expressed across
tissues [15], the three TF were expressed across all the
studied tissues. Further, a comparison between Iberian
and Landrace pig breeds revealed significant increase fold
changes (FC) in the liver of Iberian pigs for the expression
of NCOA2 (FC=1.56, P<0.01) and EP300 (FC =1.23,
P <0.05) (Figure 3).

The expression patterns of 43 genes in liver and 40
genes in adipose tissue were successfully measured across
55 backcross animals. In liver, the expression data of
twelve additional genes were also included in the co-
expression analysis (see Methods). Co-expression analysis
revealed highly connected networks in both liver and adi-
pose tissue, suggesting strong functional interconnections
among the studied genes. Topology of liver co-expression
network showed 55 nodes connected by 425 edges
(Additional file 6: Figure S2A) and in adipose tissue 40
nodes and 261 edges were observed (Additional file 6:
Figure S2B). Network parameters such as average de-
gree (Deg) and average distance (AvDg) were slightly
higher in liver co-expression network compared to
adipose tissue network (Degpiyer = 1545 AvDg =1.81 vs
Degadipose = 13.05 and AvDg = 1.75). Based on network
centrality, the relevance of individual genes differs within
each network. For example, topological properties of the
liver co-expression network suggest an important role
for ARNT in the regulation of hepatic lipogenic and
glucoconeogenesis activity, and these findings agree
with published results [16,17]. It should be noted that
BCL9 showed the highest centrality value in the liver
co-expression network (Additional file 6: Figure S2A).
In addition, degree analysis showed that BCL9, EP300,
PBX1, SIRT1, PIP5KIA and ARNT were the most cen-
tral genes in the liver co-expression network. However,
in the adipose co-expression network, degree analysis
suggested that ANK2, NCOA2, SIRT1, EIF4E, HMBOX1I
are the most central genes (Additional file 6: Figure S2B).
When analysing a sub-network of the liver co-expression
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Figure 3 Results of the liver differential expression analysis comparing the best TF trio in the Iberian and Landrace breeds.
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network, formed only by the same 40 genes included in
the adipose co-expression network, five genes (BCLY,
EP300, PBX1, PIPSKIA, and SIRTI) were still the most
central genes and this finding underscores their relevant
role in the function and structure of the liver co-
expression network.

Beyond the study of the topological properties of the
liver and adipose tissue co-expression networks, we were
concerned with those, if any gene interactions predicted
via SNP co-association were corroborated through co-
expression analyses. In line with recent results in yeast
[18], we observed that interacting loci could jointly regu-
late the co-expression patterns of pairs of genes. For the
first time in a not model species, co-expression analyses
confirmed gene-gene interactions predicted based on
SNP co-association. However, the magnitude of this val-
idation varied in a tissue-specific manner. For instance,
with respect to the liver module formed by 48 AWM
nodes and 359 edges (based on co-association analysis) we
observed that 28.9% (104/359) of the predicted gene-gene
interactions were validated by the co-expression results.
Whereas in the adipose tissue, the observed percentage of
the AWM validated interactions was slightly higher repre-
senting 33.0% of the possible combinations (Figure 4B).
When we limited this comparison to the intersecting 39
genes included in both co-expression networks, the pro-
portion of the AWM gene-gene interactions validated
in liver (29.5%) was still lower than in adipose tissue
(33.0%). Comparing both networks, we observed that
approximately 35.7% (or 30 out of 84) of the interac-
tions validated in the adipose tissue were also validated
in the liver co-expression analysis (Additional file 7:
Table S5). Interestingly, these always co-associated and
co-expressed genes belong to biological processes re-
lated to lipid metabolism including: Negative Regulation

of Fat Cell Differentiation (INSIGI, TCF7L2, ZFPM2),
Androgen Receptor Signalling Pathway (EP300, FHL2,
NCOA?2), Response to Hormone Stimulus (ABCCS,
ANGPT1, FABP3, EP300, SORT1, FHL2) and Lipid
Metabolic Process (PBXI, INSIG1, FABP3, FDFTI,
PIPSK1A, MAX, AASDH).

When we focused on the best TF trio, we observed
that 60.8% (or 14 out of 23) of the interactions of
NCOA2 predicted by the AWM co-association network
were corroborated in the co-expression network of the
adipose tissue. This percentage dropped to 34.6% (or 9
out of 26) in the co-expression network of the liver tissue.
For EP300, 44.4% (or 4 out of 9) of the AWM predicted
interactions were observed in the adipose co-expression
network and 41.6% (5 out of 12) in the liver co-expression
network. Finally, for FHL2 we observed the lowest per-
centage of validated interactions: 20.0% (or 2 out of 10) in
adipose tissue and 14.3% (2 out of 14) in liver (Table 2).

Discussion

Molecular processes controlling FA metabolism are highly
interconnected and linked with related pathways, such as
lipid, carbohydrate and energy metabolism. In fact, FA are
a major energy source and together with several factors,
such as total energy intake, dietary fat/carbohydrate ratio,
or glucose and/or insulin concentration, regulate de novo
lipogenesis [19,20]. As a consequence, it is expected that
at the selected threshold (P < 0.035) our best trio of TF
(NCOA2, EP300, FHL2) show co-association with a large
number of genes and other TF relevant for lipid, carbo-
hydrate and energy metabolism. For instance, 39 of the
predicted target genes via SNP co-association (Additional
file 8: Table S6) have been recently reported in two large-
scale meta-analysis studies for plasma lipids in humans
[21,22]. Interestingly, many of these genes, including our
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Figure 4 Connections from the co-association network that were confirmed by the co-expression network in liver (A) and adipose
(B) tissue. Nodes color relate to the functional classification of genes as follows: TF (red nodes), lipid metabolism (blue nodes), carbohydrate

metabolism (green), development process (orange) and white nodes represent genes with others functional classification. The size of the nodes
corresponding to the best trio of transcription factors (NCOA2, EP300 and FHL2) has been enlarged to facilitate their location.
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Table 2 Concordance validation between the co-association and the co-expression networks for the best TF trio and in

adipose and liver tissues

Tissue TF Connections in the AWM Connections in the qPCR Validated connections % Validation
co-association network® co-expression network®

Adipose NCOA2 23 21 14 60.8
EP300 9 19 4 444
FHL2 10 9 2 20.0
Liver NCOA2 26 18 9 34.6
EP300 12 28 5 416
FHL2 14 13 2 14.3

AConnections deemed significant according to the PCIT algorithm.

TF trio and other FA relevant genes, would have been
missed by traditional single-trait GWAS due to the lack of
an acceptably significant association level (ie. P> 0.05
after correction for multiple testing). As noted before [12]
and confirmed by this study, AWM points to new candi-
date genes, TF and gene interactions via exploring SNP
co-associations across multiple traits beyond the one-
dimensional approach for identifying genes affecting single
traits. However, results should be interpreted with caution
due to the limited sample size used in our study (144 pigs),
which reduces the power to identify small effects and may
introduce spurious results. Therefore, these TF might
regulate other important genes for IMF FA composition
not represented in this network and false positive results
may be included in the network. However, only the SNPs
associated with a large number of phenotypes were in-
cluded in the AWM analysis and, due the multi-trait
nature of the AWM methodology, the probability that
the same SNP was associated with several phenotypes
by chance is much lower than the probability of being
associated with a single phenotype.

In the predicted network, NCOA2, a key TF regulating
energy homeostasis [20,23] and adipogenesis [24], showed
co-association with a total of 326 genes, including relevant
TF and genes associated with lipid and carbohydrate me-
tabolisms, such as PROX1, PBX1, ARNT, MYB, MTF2,
TCF7L1, SCD5, ABCC2, INSIGI1, ACACB, FABP4, FABP3,
MEI, AASDH, ABCCS and SORTI. A role for PROXI in
the control of energy homeostasis has been proposed [25].
Moreover, association of SNPs mapped to PROXI and
SLC30A8 with fasting glucose levels and increased risk for
T2D has been reported in humans [26]. Both PROX1 and
SLC30A8, together with other T2D risk loci (IL6R,
TCF7L2, HNFIA) and 21 genes reported as associated
with plasma lipids in humans [22] were predicted as target
genes of NCOA2 in our study. Co-expression analysis in
adipose tissue validated 60.8% of the NCOA2 co-
association target genes, including INSIGI (rco-expression =
068)’ FDFTI (rco»expression = 0'70)) SETD2 (rco»expression =
0.59) and ABCCS5 (co-expression = 0.65). In liver, 34.6% of
the predicted targets of NCOA2 were validated, including

the above-mentioned PROXI (Ico-expression = 0-48), HNFIA
(rco»expression = 0'56) and TCF7L2 (rco»expression = 0'50)' It
should be noted that previous studies in pigs show a cor-
relation between NCOA2 expression (r=0.605, P<0.01)
and IMF content of LD muscle [24]. Also, NCOA2 was
reported as modulating an AWM-network predicted for
puberty in cattle [27], which included fat deposition
measurements as traits related to puberty. Furthermore,
knockout NCOA2 ~'~ mice are protected against obes-
ity, showing lean phenotype and decreased expression
of genes involved in the uptake and storage of FA [20].
A decreased expression of genes required for FA syn-
thesis in liver tissue of NCOA2 ~'~ mice was observed
[28]. In agreement with these previous results and the
phenotypic difference in fat deposition between Iberian
and Landrace breeds, a significant higher activity of
NCOA2 in the liver of Iberian pigs was detected (FC =
1.56, P < 0.01) relative to Landrace pigs (Figure 3).
Another TF predicted as critical for FA regulation was
EP300, which encodes the adenovirus E1A-associated cel-
lular p300 transcriptional co-activator protein. It functions
as histone acetyltransferase that regulates transcription by
chromatin remodelling. Via histone acetyltransferase ac-
tivity, EP300 regulates the transcription of liver X receptor
(LXR) [29]. EP300 is also required for adipocyte differenti-
ation through the regulation of peroxisome proliferator-
activated receptor gamma (PPARG) [30]. Remarkably,
EP300 has been reported as transcriptional co-activator of
estrogen receptor (ER), hepatocyte nuclear factor 4 «o
(HNF4-a), aryl hydrocarbon receptor nuclear translocator
(ARNT) and hepatocyte Nuclear Factor-1 a (HNFIA)
[31-33]. All these above-mentioned TF co-regulated by
EP300 (PPARG, LXR, HNF4, HNFIA, ER, ARNT) influ-
ence lipid and carbohydrate metabolisms and have been
extensively studied in this context [17,34-41]. Among the
180 AWM-predicted target genes for EP300, there are 30
genes known to be involved in lipid metabolism including
ARNT a member of the HIF-1 pathway. ARNT is a rele-
vant TF regulating hepatic gluconeogenesis and lipogenic
gene expression [16]. Interestingly, we observed a signifi-
cant co-expression between ARNT and EP300 (r = 0.61) in



Ramayo-Caldas et al. BMC Genomics 2014, 15:232
http://www.biomedcentral.com/1471-2164/15/232

the liver network. Additionally, other genes related to
carbohydrate and lipid metabolism were predicted as
EP300 AWM-target genes. These included: ADCY?2,
MMP9, ECHS1, ARRBI, EIF4E, ANK2, NR2E1, SLC2A6,
SLC5A2, LEB, ELOVL6, MTTR ACSMS5, UCP2 and
CYP2E1 (for a full list see Additional file 9: Table S7).
Similarly to NCOA2, a significant higher expression of
EP300 in the liver of Iberian pigs was detected (FC =1.23,
P<0.05) in comparison with Landrace pigs (Figure 3).
Our results, predicting targets for EP300 and studying
their co-expression contributes to the knowledge on
lipid and carbohydrate metabolism. It is well known
that TF require co-regulators to modify and epigeneti-
cally remodel chromatin structure to facilitate the
basal transcriptional machinery. EP300 is a chromatin
remodeling gene opening new possibilities to study the
roll of epigenetic modifications in the regulation of
pork meat quality and the molecular control of energy
homeostasis.

The third key TF was FHL2, an evolutionarily con-
served gene that can interact with an important range of
proteins from different functional classes, including re-
ceptors, signal transducers, TF and cofactors [42]. FHL2
plays an important role as molecular transmitter linking
various signalling pathways to transcriptional regulation.
For instance, FHL2 is involved in the co-activation of
human androgen receptor (AR), ER and peroxisome
proliferator-activated receptor alpha (PPARa) [42-44]. In
addition, FHL2 mediates interaction with -catenin and
promotes myoblast C2C12 differentiation in mice [45].
The gene B-cell CLL/lymphoma 9 (BCL9), an activator
of the Wnt/B-catenin [46] and Wingless-type MMTV
integration site family, member 4 (WNT4) was among
the 251 targets predicted for FHL2 in our network. The
growth factor WNT4 is a member of the Wnt signaling
pathway involved in developmental processes and rele-
vant for gonad development and sex-determination [47].
Liver expression analyses provided supporting evidence
for the predicted interaction between FHL2 and WNT4,
as a significant co-expression (r=0.44, P <0.001) was
observed. Other genes and TF associated with develop-
ment process, lipid and carbohydrate metabolism, such
as FHLS, MYOIE, MYB, RORC, JARID2, ZFHX4, WNKI,
LIPC, CREBS, CDC42, ACSL1, FABPS5, ABCBI11, FLT1 and
HTR2A were also predicted as targets of FHL2 according
to the co-association network. FHL2 was not differentially
expressed in the comparison between Iberian and Land-
race pigs. Also, FHL2 showed a proportion of validated
interactions in the co-expression analysis (20% adipose
tissues and 14.3% in liver) lower than for the other two
TEF, NCOA2 and EP300. These somewhat less promising
results could be a consequence of the tissue-specific activ-
ity of FHL2, as it has been reported for the co-activation
of AR [43].
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Although, some gene to gene interactions predicted by
the AWM approach were not corroborated by the co-
expression analysis, the possibility of these interactions
occurring in other spatial temporal and/or tissues cannot
be ruled out, or indeed manifesting their joint effect
through other means than co-expression. TF and their
target genes interact in a temporal and tissue dependent
manner, so the examination of networks spanning mul-
tiple tissues is critical to highlight interactions that could
otherwise be unknown from individual tissue analysis
[48]. In spite of this tissue/time limitation, two of the
three TF from the best trio (EP300 and NCOA2) showed
higher than average centrality values in both liver and
adipose tissue co-expression networks. Moreover, we ob-
served a significant co-expression between NCOA2 and
EP300 in the liver network with some other TF consid-
ered master regulators of the lipid metabolism. For in-
stance, NCOA2 was significantly co-expressed with PPAR«a
(r=0.39, P<0.01), HNFIA (r = 0.56, P < 0.001) and HNF4«a
(r=0.36, P<001), and EP300 was co-expressed with
PPARD (r=0.38, P <0.01) and HNFIA (r = 0.64, P < 0.001)
(Additional file 6: Figure S2 A, B). The liver plays a central
role in maintaining overall energy balance by controlling
lipid and carbohydrate metabolism. In pigs, the liver is the
primary site of de novo cholesterol synthesis and fatty acid
oxidation and, together with adipose tissue, has a crucial
role in regulating lipid metabolism [49,50]. All these obser-
vations, together with the higher expression of NCOA2
and EP300 observed in the liver of the Iberian pigs com-
pared with Landrace pigs, suggest a relevant role of these
genes in the hepatic transcriptional regulation of lipid me-
tabolism in pigs.

Overall, our GWAS and network predictions, sup-
ported by literature and co-expression analysis in liver
and adipose tissue, suggest a co-operative role for the
three TF (NCOA2, EP300, FHL?2) in the transcriptional
regulation of IMF, FA composition and the control of
energy homeostasis in pigs. We hypothesize that these
TF mediate a highly inter-connected regulatory cas-
cade including pathways such as HIF-1, AR, ER and
Wnt/B-catenin that seem pivotal for lipid metabolism.
The role of these pathways in the transcriptional regu-
lation of lipid metabolism is a subject of intense stud-
ies [17,38,39,51-54]. A functional cooperation between
the three TF in the modulation of these pathways is
evident from our results and supported by literature
evidence. For example, according to String database
[55,56] (http://string-db.org/), experimental data con-
firmed that protein-protein interaction exists among,
EP300, NCOA2, FHL2, AR and ESRI (Additional file 10:
Figure S3). In addition, EP300 and NCOA2 take part on
the AR and ER pathways and both, NCOA2 and FHL2
are AR co-regulators [43,57,58]. Studying the combined
effect of NCOA2, EP300, and FHL?2 in the regulation of
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specific genes will lead to new knowledge related to FA
pathways.

The most overrepresented pathway corresponding to
the 730 AWM-predicted target genes of the three TF
was HIF-1 (Additional file 5: Figure S1). The HIF-1
pathway is central to adaptive regulation of cellular energy
metabolism; by regulating the expression of glycolytic en-
zymes and hepatic lipid metabolism [17,54,59,60]. Our
liver co-expression analysis supports previously reported
evidence [16] for the relevance of ARNT gene (member of
HIF pathway) in the hepatic lipogenic gene expression.
Additionally, HIF-1a, which is another member of HIF
pathway and B-catenin co-ordinately enhance AR trans-
activation. The interaction between p-catenin and both
HIF-1 and AR pathways has been documented [61-63].
Moreover, -catenin is a ligand-dependent co-activator
of AR and a functional cooperation in the synergistic
activation of AR-mediated transcription among EP300,
FHL2 and B-catenin have been reported [64]. Ours re-
sults showing the interactions between the three key TF,
recapitulate these pathways interactions that are known
mammalian biology, extending its significance to pigs.

Conclusions

In summary, our results suggest that common genetic var-
iants mapped to (or in linkage disequilibrium with) EP300,
FHL2 and NCOA2 together with other candidate genes
including ARNT, BCL9, SIRT1, PBXI, PROX1, HNFIA,
SLC30A8, TCF7L2 and ANK2 modulate lipid metabolism
and control energy homeostasis in pigs. Furthermore, epi-
static predicted interactions between TF and their target
genes are likely to contribute to the complex inheritance
of FA composition and related polygenic traits (lipid me-
tabolism and energy homeostasis). It is generally accepted
that metabolic diseases such as obesity and T2D are linked
to disturbance of energy homeostasis or homeostatic im-
balance. It should be noted that among the 730 predicted
target genes, an overrepresentation of genes from the T2D
pathway was observed (Additional file 5: Figure S1). Also,
39 of the 730 genes are known to control plasma lipid
content in humans [21,22].

Further studies will be required to elucidate the specific
cellular and molecular processes of interaction among the
three TF and its target genes that determine FA compos-
ition and control energy homeostasis in pigs. The implica-
tions of research in this area are broad, ranging from
applications from pork meat quality to modeling mammal
biology.

Methods

Phenotypic traits, animals and genotypes

Data from 144 pigs (25% Iberian x 75% Landrace), repre-
senting 26 full-sib families, from backcrossing five F1
males with 26 Landrace sows was utilized. Details about
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the management conditions and the phenotype informa-
tion have been previously reported [65-67]. For this
study and based on an previous principal components
analysis [66] we selected 15 of the total 48 traits repre-
senting the most informative phenotypes within the
dataset. Nine of the 15 traits were related to IMF fatty
acid (FA) composition in LD muscle, seven correspond
to indices of FA metabolism and the last one is the IMF
percentage (Additional file 11: Table S8). The Porcine
SNP60K BeadChip (Illumina) [68] was used to genotype
a total 197 pigs, including the 144 phenotyped animals
and the founder population. Quality control excluded
SNPs with minor allele frequency<5% and with call
rate < 95%. A subset of 48,119 SNPs were retained for
subsequent analysis, in addition, previously detected
polymorphisms in the MTTP FABP4, FABPS, and
ELOVL6 genes were also tested [67,69,70]. The genomic
coordinates of the SNP correspond to the Sus scrofa
genome sequence assembly (Sscrofal0.2, August 2011)
[71] and were annotated using as reference the pig assem-
bly 10.2 [ftp://ftp.ncbi.nlm.nih.gov/genomes/Sus_scrofa/
GFF/].

Ethics statement

Animal care and procedures were performed following
national and institutional guidelines for the Good Experi-
mental Practices and approved by the Ethical Committee
of the Institution (IRTA- Institut de Recerca i Tecnologia
Agroalimentaries).

Statistical analysis

The GWAS was performed using Qxpak 5.0 software [72].
The additive effect of a SNP on each trait was estimate by
mixed model [73,74] following the model:

Yy =XB+ Zu+ sjx + e,

where: y;; represents the vector of observations from the
i'™ pig at the j™ trait ; X is the incidence matrix relating
fixed effects in f3 with observation in y;; Z is the inci-
dence matrix relating random additive polygenic effects
in u with observation in yj; s;i represents the additive
association of the k™ SNP on the j™ trait and e; is the
vector of random residual effects. Fixed effects included
in 3 were, sex (two levels), batch (five levels) and carcass
weight as covariate. Polygenic effects were treated as ran-
dom and distributed as N(0, Ac,) where A is a numerator
of kinship matrix. Then, the allele substitution effect of
the i™ SNP on the j™ trait was z-score standardized and
employed to constructing the AWM [12].

An R script, available from the authors, was written to
automate the process of building an AWM. Palmitoleic
acid (C16:1 (n-7)) was used as the key phenotype and
the procedure described by Fortes and colleagues [12]
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was followed, but we introduced a few modifications,
specifically regarding the P-value threshold for selecting
SNP from GWAS. The P-value threshold was chosen by
exploring the sensitivity of the data instead of simply
accepting the nominal P<0.05. We took advantage of
the biological knowledge concerning TF related to the
analyzed traits and used it as a priori information.

In essence, instead of applying a hard-coded nominal
P-value of, for instance, 0.05 or 0.01 or 0.001, we employed
a knowledge-based approach to identify the P-value
threshold at which the information content, in terms of
fatty acid regulation, is maximized. To this effect, we
mined the literature and relevant databases to compile a
list of 340 TF of which 34 were known to be related to
FA metabolism. The distribution of these 34 TF relative
to the entire set of 340 was explored at various P-value
thresholds. The P-value threshold that maximized the
number of FA-related TF was used as the optimal P-
value to apply when developing the Association Weight
Matrix. Quite importantly, others in the past have
employed a knowledge-based approach to identify the
critical P-value threshold. More recently, and in the
context of GWAS, Yang et al. [75] used an approach
similar to ours to find the P-value that maximise the
correlation between the proportion of significant SNPs
and the heritability across 47 traits.
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In detail, the process for choosing the threshold was as
follows:

Stepl: A total of 340 TF were located within 2.5 Kb of
a SNP and therefore included in the initial dataset. For
all these TF included in our dataset, those that are well
known key regulators of the lipid metabolism were
initially selected.

Step2: For each gene, those involved in the lipid
metabolism and also reported in the census of human
TF by Vaqueriza et al. [76] were included.

Step3: The Human Protein Reference Database
(HPRD) and the Biomolecular Object Network
Databank (BIND) were mined. Then other TF that
have been reported to interact with some of the TF
retained in the two previous steps were selected. After
these first 3 steps, a total of 34 TF were retained
(Additional file 12: Table S9).

Step4: Subsequently we compare the distribution of the
34 TF at different P-values from P=1to P=10"*
versus the distribution of the total number of TF
included in the AWM (340). As a result, we have
chosen P < 0.035 as the threshold. This specific P-value
maximizes the difference between both groups of TF
(Figure 5), imposing an informed bias towards lipid
metabolism to the network.

100
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340 TF included in the dataset.

Figure 5 Sensitivity analysis of the 34 lipid-related TF at different P-values (form P <1 to P < 10™*) against the distribution of the total
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After defining the threshold of P <0.035, the selection
of SNPs for building AWM continued. Those SNPs that
were either associated (P <0.035) with palmitoleic acid
or with any > 3 traits, and were located either < 2,500 bp
to or > 850 kb from the nearest annotated gene (Sscrofal0.2
assembly), were selected to build the AWM matrix. Per-
mutMatrix software [77] was employed to visualize
hierarchical clustering of traits (AWM columns) and
genes (AWM rows) using Euclidean distance and the
Average linkage method. To identify and report gene-
gene or gene-SNP interactions we used PCIT algorithm
[14]. Cytoscape software [78] was used to visualize the
gene network and also to perform overrepresented GO
terms analysis, using BINGO plugin [79]. Node centrality
values and network topological parameters were calculated
using CentiScaPe plugin [80]. Pathway enrichment analysis
were performed using FATIGO tool form BABELOMICS
[81,82]. Further, pathways analyses of the 730 predicted
target genes (co-associated with the key TF) were per-
formed using ClueGO, Cytoscape plugin [83]. Pathway
information was retrieved from the KEGG (http://www.
genome.jp/kegg/) and BioCarta (http://www.biocarta.com/)
databases. In all cases, the cut-off for considering a signifi-
cance overrepresentation was established by Benjamini &
Hochberg multiple testing correction of the P-value
(FDR < 0.05) [84].

Expression and co-expression analysis

In order to provide supporting evidence for the in-silico
AWM-network predictions we obtained and explored
gene expression data by reverse transcription quantita-
tive Real-Time PCR (RT-qPCR). The expression pattern
of the 3 Key TF (NCOA2, EP300, FHL2) in LD muscle,
liver and adipose tissues was tested in two phenotypic-
ally divergent breeds for fat deposition traits (Iberian
and Landrace which are also the founders of our studied
population, five animals per breed). Finally, liver and adi-
pose co-expression analyses of 55 (43 from the present
study, and twelve: ACSM5, APOA2, ARNT, CYP7Al,
FABPS5, FADS3, HNF4a, LIPC, MTTP PPARA, PPARD
and ELOVL6 genes from Ballester et al., 2013 submitted)
and 40 genes, respectively, were performed using the
PCIT algorithm [14] in 55 backcross animals. Since sex
differences in liver transcriptome have been reported
[85] only females were considered in the co-expression
analyses of both tissues.

From the 55 genes explored in the liver co-expression
analysis, 48 were present in the AWM network. The
remaining seven were incorporated due to their bio-
logical relevance, including three well-know TF related
to lipid metabolism (PPARa, PPARD, HNF4a) and four
genes related to lipid metabolism (SIRT1, FADS3, APOA2,
CYP7AI). Similarly, from the 40 genes employed in the
adipose co-expression analysis, 39 were present in the
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AWM network. The one gene out, SIRT, was also included
due to its relevant controlling lipolysis [86,87] and pro-
moting fat mobilization in white adipose tissue [88].

Total RNA was obtained from liver, muscle and adi-
pose tissues using the RiboPure kit (Ambion), following
the manufacturer’s recommendations. RNA was quanti-
fied using the NanoDrop ND-1000 spectrophotometer
(NanoDrop products) and the RNA integrity was assessed
by Agilent Bioanalyzer-2100 (Agilent Technologies). Ap-
proximately, one microgram of total RNA was reverse-
transcribed into ¢cDNA using the High-Capacity cDNA
Reverse Transcription kit (Applied Biosystems) in 20 pl of
reactions, following the manufacturer’s instructions.

To analyze the expression pattern of the 3 key transcrip-
tion factors, an ABI PRISM 7900 Sequence Detection Sys-
tem (Applied Biosystems) in combination with FastStart
Universal Sybr green master (Rox; Roche Applied Science)
was used. PCR amplifications were performed in a total
reaction volume of 20 pl containing 5 pl of cDNA diluted
1:25. All primers were used at 300 nM. The thermal cycle
was 10 min at 95°C, 40 cycles of 15 s at 95°C and 1 min at
60°C. A dissociation curve was drawn for each primer pair
to assess the specificity of the amplification. Three refer-
ence genes (ACTB, HPRT1, TBP) frequently used in RT-
qPCR experiments were tested as endogenous controls.
Using the GeNorm software [89], the ACTB and TBP
genes were selected as the best endogenous controls for
all tissues. After ensuring the possibility to use the 224"
method [90], data was analyzed using the RQ manager
v1.2.1 and the DataAssist™v3.0 softwares (Applied Biosys-
tems). The 22T values were used to compare our data.

The 48.48 microfluidic dynamic array IFC chip (Fluidigm)
was used to analyze the expression of 48 genes (44 tar-
get genes and 4 reference genes) in liver and adipose
tissue of 55 backcross animals belonging to the same
population in which the GWAS was performed. Two pl of
1:5 diluted ¢cDNA was pre-amplified using 2X Tagman
PreAmp Master Mix (Applied Biosystems) and 50 nM
of each primer pair in 5 pl reaction volume, according
to the manufacturer’s directions. The cycling program
was 10 min at 95°C followed by 16 cycles of 15 s at 95°C
and 4 min at 60°C. At the end of this pre-amplification step,
the reactions were diluted 1:5 (diluted pre-amplification
samples). RT-qPCR on the dynamic array chips was con-
ducted on the BioMark™ system (Fluidigm). Five ul sample
pre-mix containing 2.5 ul of SsoFast EvaGreen Supermix
with Low ROX (Bio-Rad), 0.25 ul of DNA Binding Dye
Sample Loading Reagent (Fluidigm) and 2.25 ul of diluted
pre-amplification samples (1:16 or 1:64 from the diluted
pre-amplification samples from liver and backfat, re-
spectively), as well as 5 pl assay mix containing 2.5 pl
of Assay Loading Reagent (Fluidigm), 2.25 pl of DNA
Suspension Buffer (Teknova) and 0.25 pl of 100 pM
primer pairs (500 nM in the final reaction) were mixed
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inside the chip using the IFC controller MX (Fluidigm).
The thermal cycle was 60s at 95°C followed by 30 cycles
of 5 s at 96°C and 20s at 60°C. A dissociation curve was
also drawn for each primer pair.

Data was collected using the Fluidigm Real-Time PCR
analysis software 3.0.2 (Fluidigm) and analyzed using the
DAG expression software 1.0.4.11 [91] applying the rela-
tive standard curve method (see Applied Biosystems user
bulletin #2). Standard curves with a four-fold dilutions
series (1/4, 1/16, 1/64, 1/256, 1/1024) of a pool of 10
c¢DNA samples were constructed for each gene to ex-
trapolate the quantity values of the studied samples. The
PCR efficiencies were almost 100% in both tissues for all
the assays (Additional file 13: Table S10) with low coeffi-
cients of inter-assay variation of threshold cycle (<2.4%
in liver and <3.5% in adipose tissue). Of the four en-
dogenous genes tested (ACTB, B2M, HPRTI, TBP),
ACTB and TBP were the genes with the most stable ex-
pression [89] in both tissues. The normalized quantity
values of each sample and assay were used to compare
our data.

All the primers used in this study were designed using
PrimerExpress 2.0 software (Applied Biosystems) and are
shown in Additional file 13: Table S10. Prior to perform
the Fluidigm Real-Time PCR, all the assays were tested for
PCR specificity in an ABI PRISM 7900 Sequence Detec-
tion System (Applied Biosystems) using two-fold dilutions
(1/20, 1/200) of a pool of ten cDNA samples and a minus
RT control to check the presence of DNA contamination.
Melting curve analysis was performed for all the assays.

Data availability
The relevant information and full data sets are included

as additional files.

Additional files

Additional file 1: Table S1. Positional concordance among the ten top
connected nodes and QTL deposited in the pig QTL database for fatness
related traits.

Additional file 2: Table S2. Overrepresented GO terms indentified in
the network using BinGO Cytoscape plugin.

Additional file 3: Table S3. Overrepresented pathways identified with
Fatigo.

Additional file 4: Table S4. Complete list of the 74 available TF in the
AWM.

Additional file 5: Figure S1. Overrepresented pathways related to the
730 AWM-target genes according ClueGO results. ClueGO visualizes the terms
in a functionally grouped annotation network, reflecting the relationships
between the terms (based on the similarity of their associated genes).
The size of the nodes reflects the statistical significance of the terms.
The group leading term is the most significant term of the group.

Additional file 6: Figure S2. Gene co-expression network in liver (A)
and adipose (B) tissue. Nodes color relate to the functional classification
of genes as follows: TF (red nodes), lipid metabolism (blue nodes),
carbohydrate metabolism (green), development process (orange) and
white nodes represent genes with others functional classification.
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Additional file 7: Table S5. Predicted AWM gene-gene interactions
confirmed by the co-expression analysis in both liver and adipose tissues.
Additional file 8: Table S6. List of the 39 AWM-predicted target genes
that have been recently reported in two large-scale meta-analysis studies
for plasma lipids in humans.

Additional file 9: Table S7. List of the 30 genes involved in lipid
metabolism predicted as target genes of £P300.

Additional file 10: Figure S3. Protein-protein interaction among EP300,
FHL2 and NCOA2 with ESRT and AR inferred from String database.
Additional file 11: Table S8. Brief description, mean, standard
deviation (SD) and estimated heritability (h?) of the 15 analyzed traits.
Additional file 12: Table S9. List of 34 TF retained after Step 3 for
choosing the threshold.

Additional file 13: Table S10. Primers used in the experimental
validation by real-time PCR.

Competing interests
The authors declare that they have no competing of interests.

Authors’ contributions

YR-C, AR and JMF conceived and designed the experiment. JMF was the
principal investigator of the project. YR-C, MB, MF, MP-E and AR performed
the data analysis. AE annotated the SNPs. YR-C, MB, MF, AR and JM drafted
the manuscript. AC, N, AF, MP-E and JMF collected the samples. AC and MB
performed DNA and RNA isolation. MB and AC performed the gPCR and
RT-PCR assays. All authors read and approved the final manuscript.

Acknowledgments

This work was funded by MICINN project AGL2011-29821-C02 (Ministerio de
Economia y Competitividad), and by the Innovation Consolider-Ingenio 2010
Program (CSD2007-00036, Centre for Research in Agrigenomics). We thank
Dr. Nick Hudson for insightful suggestions and manuscript proofread. Y.
Ramayo-Caldas was funded by a FPU PhD grant from the Spanish Ministerio
de Educacion (AP2008-01450).

Author details

Centre de Recerca en Agrigenomica (CRAG), Consorci CSIC-IRTA-UAB-UB,
Campus UAB, Bellaterra 08193, Spain. “Departament de Ciencia Animal i dels
Aliments, Facultat de Veterinaria, Universitat Autonoma de Barcelona,
Bellaterra 08193, Spain. 3The University of Queensland, Queensland Alliance
for Agriculture and Food Innovation, Center for Animal Science, Gatton,
Queensland 4343, Australia. “IRTA, Genética i Millora Animal, Lleida 25198,
Spain. °INIA, Mejora Genética Animal, Madrid 28040, Spain. ®Institucio
Catalana de Recerca i Estudis Avancats, ICREA, Barcelona, Spain.
’Commonwealth Scientific and Industrial Research Organisation, Division of
Animal, Food and Health Sciences, Brisbane, Queensland 4067, Australias.

Received: 19 July 2013 Accepted: 21 March 2014
Published: 26 March 2014

References

1. Wakil SJ, Abu-Elheiga LA: Fatty acid metabolism: target for metabolic
syndrome. J Lipid Res 2009, 50(Supplement):5138-5143.

2. Casellas J, Noguera JL, Reixach J, Diaz I, Amills M, Quintanilla R: Bayes factor
analyses of heritability for serum and muscle lipid traits in Duroc pigs.

J Anim Sci 2010, 88(7):2246-2254.

3. Ntawubizi M, Colman E, Janssens S, Raes K, Buys N, De Smet S: Genetic
parameters for intramuscular fatty acid composition and metabolism in
pigs. J Anim Sci 2010, 88(4):1286-1294.

4. Wood JD, Enser M: Factors influencing fatty acids in meat and the role of
antioxidants in improving meat quality. Br J Nutr 1997,
78(Suppl 1):549-S60.

5. Wood JD, Enser M, Fisher AV, Nute GR, Richardson RI, Sheard PR:
Manipulating meat quality and composition. Proc Nutr Soc 1999,
58(2):363-370.

6. Wood JD, Enser M, Fisher AV, Nute GR, Sheard PR, Richardson RI, Hughes SI,
Whittington FM: Fat deposition, fatty acid composition and meat quality:
A review. Meat Sci 2008, 78(4):343-358.


http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S1.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S2.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S3.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S4.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S5.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S6.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S7.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S8.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S9.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S10.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S11.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S12.doc
http://www.biomedcentral.com/content/supplementary/1471-2164-15-232-S13.xls

Ramayo-Caldas et al. BMC Genomics 2014, 15:232
http://www.biomedcentral.com/1471-2164/15/232

20.

21.

22.

23.

24.

Ekser B, Ezzelarab M, Hara H, van der Windt DJ, Wijkstrom M, Bottino R,
Trucco M, Cooper DK: Clinical xenotransplantation: the next medical
revolution? Lancet 2012, 379(9816):672-683.

Seki Y, Williams L, Vuguin PM, Charron MJ: Minireview: Epigenetic
programming of diabetes and obesity: animal models. Endocrinology
2012, 153(3):1031-1038.

Bendixen E, Danielsen M, Larsen K, Bendixen C: Advances in porcine
genomics and proteomics-a toolbox for developing the pig as a model
organism for molecular biomedical research. Brief Funct Genomics 2010,
9(3):208-219.

Houpt K, Houpt T, Pond W: The pig as a model for the study of obesity
and of control of food intake: a review. Yale J Biol Med 1979,
52(3):307-329.

Hardie DG: Organismal carbohydrate and lipid homeostasis. Cold Spring
Harb Perspect Biol 2012, 4(5). doi:10.1101/cshperspect.a006031.

Fortes MR, Reverter A, Zhang Y, Collis E, Nagaraj SH, Jonsson NN, Prayaga
KC, Barris W, Hawken RJ: Association weight matrix for the genetic
dissection of puberty in beef cattle. Proc Nat/ Acad Sci U S A 2010,
107(31):13642-13647.

Serra X, Gil F, Perez-Enciso M, Oliver MA, Vazquez JM, Gispert M, Diaz |,
Moreno F, Latorre R, Noguera JL: A comparison of carcass, meat quality
and histochemical characteristics of Iberian (Guadyerbas line) and
Landrace pigs. Livestock Prod Sci 1998, 56(3):215-223.

Reverter A, Chan EK: Combining partial correlation and an information
theory approach to the reversed engineering of gene co-expression
networks. Bioinformatics 2008, 24(21):2491-2497.

Ravasi T, Suzuki H, Cannistraci CV, Katayama S, Bajic VB, Tan K, Akalin A,
Schmeier S, Kanamori-Katayama M, Bertin N, Carninci P, Daub CO, Forrest
AR, Gough J, Grimmond S, Han JH, Hashimoto T, Hide W, Hofmann O,
Kamburov A, Kaur M, Kawaji H, Kubosaki A, Lassmann T, van Nimwegen E,
MacPherson CR, Ogawa C, Radovanovic A, Schwartz A, Teasdale RD, et al:
An Atlas of Combinatorial Transcriptional Regulation in Mouse and Man.
Cell 2010, 140(5):744-752.

Wang XL, Suzuki R, Lee K, Tran T, Gunton JE, Saha AK, Patti M-E, Goldfine A,
Ruderman NB, Gonzalez FJ, Kahn CR: Ablation of ARNT/HIF1{ in liver alters
gluconeogenesis, lipogenic gene expression, and serum ketones. Cel/
Metab 2009, 9(5):428-439.

Rankin EB, Rha J, Selak MA, Unger TL, Keith B, Liu Q, Haase VH: Hypoxia-
inducible factor 2 regulates hepatic lipid metabolism. Mol Cell Biol 2009,
29(16):4527-4538.

Wang L, Zheng W, Zhao H, Deng M: Statistical analysis reveals co-
expression patterns of many pairs of genes in yeast are jointly regulated
by interacting Loci. PLoS Genet 2013, 9(3):1003414.

Parks EJ, Krauss RM, Christiansen MP, Neese RA, Hellerstein MK: Effects of a
low-fat, high-carbohydrate diet on VLDL-triglyceride assembly,
production, and clearance. J Clin Invest 1999, 104(8):1087-1096.

Picard F, Gehin M, Annicotte J-S, Rocchi S, Champy M-F, O'Malley BW,
Chambon P, Auwerx J: SRC-1 and TIF2 control energy balance between
white and brown adipose tissues. Cell 2002, 111(7):931-941.

Teslovich TM, Musunuru K, Smith AV, Edmondson AC, Stylianou IM, Koseki
M, Pirruccello JP, Ripatti S, Chasman DI, Willer CJ, Johansen CT, Fouchier SW,
Isaacs A, Peloso GM, Barbalic M, Ricketts SL, Bis JC, Aulchenko YS,
Thorleifsson G, Feitosa MF, Chambers J, Orho-Melander M, Melander O,
Johnson T, Li X, Guo X, Li M, Shin Cho Y, Jin Go M, Jin Kim Y, et al:
Biological, clinical and population relevance of 95 loci for blood lipids.
Nature 2010, 466(7307):707-713.

Asselbergs FW, Guo Y, van Iperen EP, Sivapalaratnam S, Tragante V, Lanktree
MB, Lange LA, Aimoguera B, Appelman YE, Barnard J, Baumert J, Beitelshees
AL, Bhangale TR, Chen YD, Gaunt TR, Gong Y, Hopewell JC, Johnson T,
Kleber ME, Langaee TY, Li M, Li YR, Liu K, McDonough CW, Meijs MF,
Middelberg RP, Musunuru K, Nelson CP, O'Connell JR, Padmanabhan S, et al:
Large-scale gene-centric meta-analysis across 32 studies identifies
multiple lipid loci. Am J Hum Genet 2012, 91(5):823-838.

Duteil D, Chambon C, Ali F, Malivindi R, Zoll J, Kato S, Geny B, Chambon P,
Metzger D: The transcriptional coregulators TIF2 and SRC-1 regulate
energy homeostasis by modulating mitochondrial respiration in skeletal
muscles. Cell Metab 2010, 12(5):496-508.

Wang X, Chen J, Liu H, Xu Y, Wang X, Xue C, Yu D, Jiang Z: The pig p160
co-activator family: Full length cDNA cloning, expression and effects on
intramuscular fat content in Longissimus Dorsi muscle. Domest Anim
Endocrinol 2008, 35(2):208-216.

25.

26.

27.

28.

29.

30.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

Page 13 of 15

Dufour CR, Levasseur M-P, Pham NHH, Eichner LJ, Wilson BJ, Charest-
Marcotte A, Duguay D, Poirier-Héon JF, Cermakian N, Giguére V: Genomic
Convergence among ERRa, PROX1, and BMALT in the Control of
Metabolic Clock Outputs. PLoS Genet 2011, 7(6):e1002143.

Dupuis J, Langenberg C, Prokopenko |, Saxena R, Soranzo N, Jackson AU,
Wheeler E, Glazer NL, Bouatia-Naji N, Gloyn AL, Lindgren CM, Mégi R, Morris
AP, Randall J, Johnson T, Elliott P, Rybin D, Thorleifsson G, Steinthorsdottir V,
Henneman P, Grallert H, Dehghan A, Hottenga JJ, Franklin CS, Navarro P,
Song K, Goel A, Perry JR, Egan JM, Lajunen T, et al: New genetic loci
implicated in fasting glucose homeostasis and their impact on type 2
diabetes risk. Nat Genet 2010, 42(2):105-116.

Fortes MRS, Reverter A, Nagaraj SH, Zhang Y, Jonsson NN, Barris W, Lehnert
S, Boe-Hansen GB, Hawken RJ: A single nucleotide polymorphism-derived
regulatory gene network underlying puberty in 2 tropical breeds of beef
cattle. J Anim Sci 2011, 89(6):1669-1683.

Jeong J-W, Kwak |, Lee KY, White LD, Wang X-P, Brunicardi FC, O'AdMalley
BW, DeMayo FJ: The genomic analysis of the impact of steroid receptor
coactivators ablation on hepatic metabolism. Molecular Endocrinology
2006, 20(5):1138-1152.

Huuskonen J, Fielding PE, Fielding CJ: Role of p160 coactivator complex in
the activation of liver X receptor. Arterioscler Thromb Vasc Biol 2004,
24(4):703-708.

Takahashi N, Kawada T, Yamamoto T, Goto T, Taimatsu A, Aoki N, Kawasaki
H, Taira K, Yokoyama KK, Kamei Y, Fushiki T: Overexpression and ribozyme-
mediated targeting of transcriptional coactivators CREB-binding protein
and p300 revealed their indispensable roles in adipocyte differentiation
through the regulation of peroxisome proliferator-activated receptor y.
J Biol Chem 2002, 277(19):16906-16912.

Torres-Padilla ME, Weiss MC: Effects of interactions of hepatocyte nuclear
factor 4 a isoforms with coactivators and corepressors are promoter-
specific. FEBS Lett 2003, 539(1-3):19-23.

Chen D, Huang S-M, Stallcup MR: Synergistic, p160 coactivator-dependent
enhancement of estrogen receptor function by CARM1 and p300.

J Biol Chem 2000, 275(52):40810-40816.

Ban N, Yamada Y, Someya Y, Miyawaki K, Ihara Y, Hosokawa M, Toyokuni S,
Tsuda K, Seino Y: Hepatocyte nuclear factor-1 a recruits the transcriptional
Co-activator p300 on the GLUT2 gene promoter. Diabetes 2002,
51(5):1409-1418.

Li AC, Glass CK: PPAR- and LXR-dependent pathways controlling lipid
metabolism and the development of atherosclerosis. J Lipid Res 2004,
45(12):2161-2173.

Ulven SM, Dalen KT, Gustafsson J-O, Nebb HI: LXR is crucial in lipid
metabolism. Prostaglandins Leukot Essent Fatty Acids 2005, 73(1):59-63.
Palanker L, Tennessen JM, Lam G, Thummel CS: Drosophila HNF4
regulates lipid mobilization and B-oxidation. Cell Metab 2009,
9(3):228-239.

Marcil V, Seidman E, Sinnett D, Boudreau F, Gendron F-P, Beaulieu J-F,
Menard D, Precourt L-P, Amre D, Levy E: Modification in oxidative stress,
inflammation, and lipoprotein assembly in response to hepatocyte
nuclear factor 4CE + knockdown in intestinal epithelial cells. J Biol Chem
2010, 285(52):40448-40460.

Alaynick WA: Nuclear receptors, mitochondria and lipid metabolism.
Mitochondrion 2008, 8(4):329-337.

Huss JM, Torra IP, Staels B, Giguere V, Kelly DP: Estrogen-related receptor a
directs peroxisome proliferator-activated receptor a signaling in the
transcriptional control of energy metabolism in cardiac and skeletal
muscle. Mol Cell Biol 2004, 24(20):9079-9091.

Xie X, Liao H, Dang H, Pang W, Guan Y, Wang X, Shyy JY-J, Zhu Y, Sladek
FM: Down-regulation of hepatic HNF4 a gene expression during
hyperinsulinemia via SREBPs. Mol Endocrinol 2009, 23(4):434-443.

Liu Y, Qiu DK, Ma X: Liver X receptors bridge hepatic lipid metabolism
and inflammation. J Dig Dis 2012, 13(2):69-74.

Johannessen M, Moller S, Hansen T, Moens U, Ghelue MV: The
multifunctional roles of the four-and-a-half-LIM only protein FHL2.

Cell Mol Life Sci 2006, 63(3):268-284.

Muller JM, Isele U, Metzger E, Rempel A, Moser M, Pscherer A, Breyer T,
Holubarsch C, Buettner R, Schule R: FHL2, a novel tissue-specific
coactivator of the androgen receptor. EMBO J 2000, 19(3):359-369.

Ciarlo JD, Flores AM, McHugh NG, Aneskievich BJ: FHL2 expression in
keratinocytes and transcriptional effect on PPARGE+/RXRCE+. J Dermatol
Sci 2004, 35(1):61-63.



Ramayo-Caldas et al. BMC Genomics 2014, 15:232
http://www.biomedcentral.com/1471-2164/15/232

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

Martin B, Schneider R, Janetzky S, Waibler Z, Pandur P, Kuhl M, Behrens J,
von der Mark K, Starzinski-Powitz A, Wixler V: The LIM-only protein FHL2
interacts with B-catenin and promotes differentiation of mouse
myoblasts. J Cell Biol 2002, 159(1):113-122.

Brack AS, Murphy-Seiler F, Hanifi J, Deka J, Eyckerman S, Keller C, Aguet M,
Rando TA: BCL9 is an essential component of canonical Wnt signaling
that mediates the differentiation of myogenic progenitors during muscle
regeneration. Dev Biol 2009, 335(1):93-105.

Bernard P, Harley VR: Wnt4 action in gonadal development and sex
determination. Int J Biochem Cell Biol 2007, 39(1):31-43.

Eisen MB, Spellman PT, Brown PO, Botstein D: Cluster analysis and display
of genome-wide expression patterns. Proc Nat/ Acad Sci U S A 1998,
95(25):14863-14868.

O'Hea EK, Leveille GA: Significance of adipose tissue and liver as sites of
fatty acid synthesis in the Pig and the efficiency of utilization of various
substrates for lipogenesis. J Nutr 1969, 99(3):338-344.

Nafikov RA, Beitz DC: Carbohydrate and lipid metabolism in farm animals.
J Nutr 2007, 137(3):702-705.

Willert K, Brown JD, Danenberg E, Duncan AW, Weissman IL, Reya T, Yates
JR, Nusse R: Wnt proteins are lipid-modified and can act as stem cell
growth factors. Nature 2003, 423(6938):448-452.

Zhou D, Strakovsky RS, Zhang X, Pan YX: The skeletal muscle Wnt pathway
may modulate insulin resistance and muscle development in a
diet-induced obese rat model. Obesity (Silver Spring) 2012, 20(8):1577-1584.
Abiola M, Favier M, Christodoulou-Vafeiadou E, Pichard A-L, Martelly |,
Guillet-Deniau I: Activation of Wnt/B-catenin signaling increases insulin
sensitivity through a reciprocal regulation of Wnt10b and SREBP-1c in
skeletal muscle cells. PLoS ONE 2009, 4(12):e8509.

Goda N, Kanai M: Hypoxia-inducible factors and their roles in energy
metabolism. Int J Hematol 2012, 95(5):457-463.

Snel B, Lehmann G, Bork P, Huynen MA: STRING: a web-server to retrieve
and display the repeatedly occurring neighbourhood of a gene. Nucleic
Acids Res 2000, 28(18):3442-3444.

Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P,
Doerks T, Stark M, Muller J, Bork P, Jensen LJ, von Mering C: The STRING
database in 2011: functional interaction networks of proteins, globally
integrated and scored. Nucleic Acids Res 2011, 39(suppl 1):D561-D568.
Heinlein C, Chang C: Androgen receptor (AR) coregulators: An overview.
Endocr Rev 2002, 23:175-200.

Urbanucci A, Waltering K, Suikki H, Helenius M, Visakorpi T: Androgen
regulation of the androgen receptor coregulators. BMC Cancer 2008,
8(1):219.

Hamaguchi T, lizuka N, Tsunedomi R, Hamamoto Y, Miyamoto T, lida M,
Tokuhisa Y, Sakamoto K, Takashima M, Tamesa T, Oka M: Glycolysis module
activated by hypoxia-inducible factor 1alpha is related to the aggressive
phenotype of hepatocellular carcinoma. Int J Oncol 2008, 33(4):725-731.
Ke Q, Costa M: Hypoxia-inducible factor-1 (HIF-1). Mol Pharmacol 2006,
70(5):1469-1480.

Mitani T, Harada N, Nakano Y, Inui H, Yamaji R: Coordinated action of
hypoxia-inducible factor-1 a and B-catenin in androgen receptor
signaling. J Biol Chem 2012, 287(40):33594-33606.

Kaidi A, Williams AC, Paraskeva C: Interaction between B-catenin and HIF-1
promotes cellular adaptation to hypoxia. Nat Cell Biol 2007, 9(2):210-217.
Yang F, Li X, Sharma M, Sasaki CY, Longo DL, Lim B, Sun Z: Linking
f-catenin to androgen-signaling pathway. J Biol Chem 2002,
277(13):11336-11344.

Labalette C, Renard C-A, Neuveut C, Buendia M-A, Wei Y: Interaction and
functional cooperation between the LIM protein FHL2, CBP/p300, and
B-catenin. Mol Cell Biol 2004, 24(24):10689-10702.

Ramayo-Caldas Y, Mercade A, Castello A, Yang B, Rodriguez C, Alves E, Diaz
I, Ibanez-Escriche N, Noguera JL, Perez-Enciso M, Ferndndez Al, Folch JM:
Genome-wide association study for intramuscular fatty acid composition
in an lberian x Landrace cross. J Anim Sci 2012, 90(9):2883-2893.
Ramayo-Caldas Y, Mach N, Esteve-Codina A, Corominas J, Castello A,
Ballester M, Estelle J, Ibanez-Escriche N, Fernandez Al, Perez-Enciso M, Folch
JM: Liver transcriptome profile in pigs with extreme phenotypes of
intramuscular fatty acid composition. BMC Genomics 2012, 13:547.
Corominas J, Ramayo-Caldas Y, Puig-Oliveras A, Perez-Montarelo D, Noguera
JL, Folch JM, Ballester M: Polymorphism in the ELOVL6 gene is associated
with a major QTL effect on fatty acid composition in pigs. PLoS ONE
2013, 8(1):53687.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

Page 14 of 15

Ramos AM, Crooijmans RP, Affara NA, Amaral AJ, Archibald AL, Beever JE,
Bendixen C, Churcher C, Clark R, Dehais P, Hansen MS, Hedegaard J, Hu ZL,
Kerstens HH, Law AS, Megens HJ, Milan D, Nonneman DJ, Rohrer GA,
Rothschild MF, Smith TP, Schnabel RD, Van Tassell CP, Taylor JF, Wiedmann
RT, Schook LB, Groenen MA: Design of a high density SNP genotyping
assay in the pig using SNPs identified and characterized by next
generation sequencing technology. PLoS ONE 2009, 4(8):e6524.

Estelle J, Fernandez Al, Perez-Enciso M, Fernandez A, Rodriguez C, Sanchez
A, Noguera JL, Folch JM: A non-synonymous mutation in a conserved site
of the MTTP gene is strongly associated with protein activity and fatty
acid profile in pigs. Anim Genet 2009, 40(6):813-820.

Mercade A, Perez-Enciso M, Varona L, Alves E, Noguera JL, Sanchez A, Folch
JM: Adipocyte fatty-acid binding protein is closely associated to the
porcine FAT1 locus on chromosome 4. J Anim Sci 2006, 84(11):2907-2913.
Groenen MAM, Archibald AL, Uenishi H, Tuggle CK, Takeuchi Y, Rothschild
MF, Rogel-Gaillard C, Park C, Milan D, Megens H-J, Li S, Larkin DM, Kim H,
Frantz LAF, Caccamo M, Ahn H, Aken BL, Anselmo A, Anthon C, Auvil L,
Badaoui B, Beattie CW, Bendixen C, Berman D, Blecha F, Blomberg J, Bolund
L, Bosse M, Botti S, Bujie Z, et al- Analyses of pig genomes provide insight
into porcine demography and evolution. Nature 2012, 491(7424):393-398.
Perez-Enciso M, Misztal I: Qxpak.5: old mixed model solutions for new
genomics problems. BMC Bioinformatics 2011, 12:202.

Henderson CR: Best linear unbiased estimation and prediction under a
selection model. Biometrics 1975, 31(2):423-447.

Henderson CR: Applications of Linear Models in Animal Breeding. Guelph,
Ontario, Canada.: University of Guelph; 1984.

Yang J, Lee T, Kim J, Cho M-C, Han B-G, Lee J-Y, Lee H-J, Cho S, Kim H:
Ubiquitous polygenicity of human complex traits: genome-wide analysis
of 49 traits in Koreans. PLoS Genet 2013, 9(3):21003355.

Vaquerizas JM, Kummerfeld SK, Teichmann SA, Luscombe NM: A census of
human transcription factors: function, expression and evolution. Nat Rev
Genet 2009, 10(4):252-263.

Caraux G, Pinloche S: PermutMatrix: a graphical environment to arrange
gene expression profiles in optimal linear order. Bioinformatics 2005,
21(7):1280-1281.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N,
Schwikowski B, Ideker T: Cytoscape: a software environment for
integrated models of biomolecular interaction networks. Genome Res
2003, 13(11):2498-2504.

Maere S, Heymans K, Kuiper M: BINGO: a Cytoscape plugin to assess
overrepresentation of gene ontology categories in biological networks.
Bioinformatics 2005, 21(16):3448-3449.

Scardoni G, Petterlini M, Laudanna C: Analyzing biological network
parameters with CentiScaPe. Bioinformatics 2009, 25(21):2857-2859.
Medina I, Carbonell J, Pulido L, Madeira SC, Goetz S, Conesa A, Tarraga J,
Pascual-Montano A, Nogales-Cadenas R, Santoyo J, Garcia F, Marba M,
Montaner D, Dopazo J: Babelomics: an integrative platform for the
analysis of transcriptomics, proteomics and genomic data with advanced
functional profiling. Nucleic Acids Res 2010, 38(suppl 2):W210-W213.
Al-Shahrour F, Minguez P, Tarraga J, Medina |, Alloza E, Montaner D, Dopazo
J: FatiGO +: a functional profiling tool for genomic data. Integration of
functional annotation, regulatory motifs and interaction data with
microarray experiments. Nucleic Acids Res 2007, 35(suppl 2):W91-W96.
Bindea G, Mlecnik B, Hackl H, Charoentong P, Tosolini M, Kirilovsky A,
Fridman W-H, Pagés F, Trajanoski Z, Galon JRM: ClueGO: a Cytoscape
plug-in to decipher functionally grouped gene ontology and pathway
annotation networks. Bioinformatics 2009, 25(8):1091-1093.

Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J Royal Stat Soc Series B
(Methodological) 1995, 57(1):289-300.

Zhang Y, Klein K, Sugathan A, Nassery N, Dombkowski A, Zanger UM,
Waxman DJ: Transcriptional profiling of human liver identifies Sex-biased
genes associated with polygenic dyslipidemia and coronary artery
disease. PLoS ONE 2011, 6(8):e23506.

Chakrabarti P, English T, Karki S, Qiang L, Tao R, Kim J, Luo Z, Farmer SR,
Kandror KV: SIRT1 controls lipolysis in adipocytes via FOXO1-mediated
expression of ATGL. J Lipid Res 2011, 52(9):1693-1701.

Schug TT, Li X: Sirtuin 1 in lipid metabolism and obesity. Ann Med 2011,
43(3):198-211.

Picard F, Kurtev M, Chung N, Topark-Ngarm A, Senawong T, Machado De
Oliveira R, Leid M, McBurney MW, Guarente L: Sirt1 promotes fat



Ramayo-Caldas et al. BMC Genomics 2014, 15:232
http://www.biomedcentral.com/1471-2164/15/232

89.

90.

mobilization in white adipocytes by repressing PPAR-gamma. Nature
2004, 429(6993):771-776.

Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A,
Speleman F: Accurate normalization of real-time quantitative RT-PCR data
by geometric averaging of multiple internal control genes. Genome Biol
2002, 3(7):RESEARCH0034.

Livak KJ, Schmittgen TD: Analysis of relative gene expression data using
real-time quantitative PCR and the 2- AACT method. Methods 2001,
25(4):402-408.

Ballester M, Corddn R, Folch JM: DAG Expression: high-throughput gene
expression analysis of Real-Time PCR data using standard curves for
relative quantification. Plos One 2013, 8(11):¢80385.

doi:10.1186/1471-2164-15-232

Cite this article as: Ramayo-Caldas et al: From SNP co-association to
RNA co-expression: Novel insights into gene networks for intramuscular
fatty acid composition in porcine. BVIC Genomics 2014 15:232.

Page 15 of 15

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

Submit your manuscript at
www.biomedcentral.com/submit

( BiolVied Central




	Abstract
	Background
	Results
	Conclusions

	Background
	Results
	Experimental validation: From co-association to co-expression analysis in liver and adipose tissues

	Discussion
	Conclusions
	Methods
	Phenotypic traits, animals and genotypes
	Ethics statement
	Statistical analysis
	Expression and co-expression analysis
	Data availability

	Additional files
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <>
    /FRA <>
    /GRE <>

    /HRV <>
    /HUN <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f3007700200050004400460020007a002000770079017c0073007a010500200072006f007a0064007a00690065006c0063007a006f015b0063006901050020006f006200720061007a006b00f30077002c0020007a0061007000650077006e00690061006a0105006301050020006c006500700073007a01050020006a0061006b006f015b0107002000770079006400720075006b00f30077002e00200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [595.440 793.440]
>> setpagedevice


