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Lowest order in inelastic tunneling approximation: Efficient scheme for simulation
of inelastic electron tunneling data
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We have developed an efficient and accurate formalism which allows the simulation at the ab initio level of
inelastic electron tunneling spectroscopy data under a scanning tunneling microscope setup. It exploits fully the
tunneling regime by carrying out the structural optimization and vibrational mode calculations for surface and
tip independently. The most relevant interactions in the inelastic current are identified as the inelastic tunneling
terms, which are taken into account up to lowest order, while all other inelastic contributions are neglected. As
long as the system is under tunneling regime conditions and there is no physisorbed molecule on the surface
or tip apex, this lowest order in inelastic tunneling (LOIT) approach reduces drastically the computational cost
compared to related approaches while maintaining a good accuracy. Adopting the wide-band limit for both tip
and surface further reduces calculation times significantly, and is shown to give similar results to when the full
energy dependence of the Green’s functions is taken into account. The LOIT is applied to the Cu(111) + CO
system probed by a clean and a CO contaminated tip to find good agreement with previous works. Different
parameters involved in the calculations such as basis sets, k sampling, tip-sample distance, or temperature, among
others, are discussed in detail.
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I. INTRODUCTION

The electronic transport across single molecules has be-
come an active research field especially during the last years
due to its implications on the still promising molecular elec-
tronics technology.1,2 There exist several experimental tech-
niques that allow us to measure current versus voltage spectra
[I (V ) curves] in an electrode-molecule-electrode device, such
as embedding the molecules between crosswires3 or within
a mechanical break junction4,5 or employing the scanning
tunneling microscope (STM) setup whereby molecules are
deposited on a metallic surface and contacted by the tip
apex. Among them, the STM possesses the unique feature
of first allowing an accurate localization of the molecule via
topographic imaging and next measure its I (V ) characteristics
as a function of the tip-sample relative position. Analyzing the
second derivative ∂2I/∂V 2 yields relevant information on the
molecular vibrations,6–8 as peak/dips in the spectra may be
associated to inelastic processes involving the absorption or
emission of vibrational modes (VMs). Within the context of the
STM, this technique is denoted as inelastic electron tunneling
spectroscopy (STM-IETS) and is extensively employed to
characterize the molecule’s vibrational spectra.9–15

From the theoretical side, a wealth of formalisms dealing
with the inelastic transport have been developed in paral-
lel to these delicate experiments.16–30 The earliest models
for IETS employed a multiple scattering formalism (multi-
channels) with simplified semiempirical Hamiltonians16 or
a Tersoff-Hamman–(TH–) type approach.17 More recently,
most formalisms have been developed under the Born ap-
proximation (BA), either in its self-consistent version20–22

(SCBA) or perturbatively, typically exploiting the small e-VM
coupling and/or the small applied bias.20,23,26 Whereas the
SCBA requires large computational resources and therefore

its use is generally limited within simple one-dimensional
(1D) effective models, perturbative approaches permit lighter
implementations and the use of ab initio schemes for the
evaluation of the Hamiltonian terms. Apart from TH-based
approaches,17–19,29 which are specifically suited for the STM
setup albeit they neglect any tip features, it is surprising that
hardly any of the above-mentioned schemes, when applied
to the simulation of IETS spectra, take additional advantage
of the small tunneling terms typically involved in STM-IETS
experiments. An exception is the work of Teobaldi et al.,30

who under the assumptions of weak tip-sample interactions
implemented a plane-wave Bardeen-type formalism for the
inelastic currents explicitly including the tip structure.

In this work, we revisit the BA fully exploiting the tunneling
regime conditions (TRCs) in order to derive an efficient and
reliable formalism suited for the simulation of STM-IETS
spectra. Our approach is based on the so-called lowest order
expansion (LOE) of Paulsson and co-workers,26 which grasps
the leading terms of the BA and by further assuming flat
electronic bands around the Fermi level it becomes a com-
putationally very efficient, yet accurate, form of calculating
IETS. However, the LOE considers the entire STM interface
as a single block attached to the electrodes and, hence, does
not take advantage of the TRCs. In our case, and as sketeched
in Fig. 1, we split the interface into two blocks, the surface
and the tip apex, and generalize the SCBA equations for such
system. Upon assuming weak e-VM coupling, weak surface-
tip interactions, and a small applied bias, we arrive at a lowest
order in inelastic tunneling (LOIT) approximation which
consists of retaining only those terms coupling the tunneling
electron with a VM located either at the surface or the tip and
neglecting any inelastic events within each block. The accuracy
of the LOIT is found excellent as long as the molecules are
strongly binded (chemisorbed) to the surface or tip.
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The formalism has been implemented within the GREEN

(Refs. 31 and 32) package, which is specially designed for the
modelization of the complex STM interface. For instance,
the apex is described as a nonperiodic cluster stacked below
the tip electrode which may differ in nature from the sample
electrode. All Hamiltonian terms are evaluated in a localized
atomic orbital (AO) basis at the ab initio level via an interface
to the density functional theory (DFT) SIESTA (Ref. 33) code.
The simplifications brought in by the LOIT approximation
represent a considerable reduction in the computational cost
and allow the use of highly extended AOs which provide a
more accurate description of the electronic wave functions
in the tunneling region as well as to consider independent
k samplings at the surface and tip.31 It also enables a
particularly simple derivation of the IETS rules which govern
the inelastic activity of a given mode.34

The paper is organized as follows. In Sec. II, we deduce
the LOIT equations and prove its accuracy for an effective
one-dimensional (1D) model. Section III describes the details
of the LOIT implementation for realistic three-dimensional
(3D) models, while in Sec. IV we present an analysis of the
different parameters entering the IETS simulations. In Sec. V,
the formalism is applied to the Cu(111) + CO system probed
by a clean and a CO functionalized tip, also addressing the
fulfillment of the IETS selection rules and the dependence
of the peak/dip heights on the tip-sample distance. The last
section includes some final remarks and the conclusions.

II. 1D MODEL

A. Two-level system

Let us first focus on a simple one-dimensional (1D) model
for the STM system. In Fig. 1(a) we sketch the widely used one-
level system (1LS) consisting of a single impurity i embedded
between two electrodes. The left electrode L corresponds to the
sample, the right electrode R to the STM tip, and i refers to a
molecule or atom adsorbed on the surface. The electrodes act as
electronic reservoirs emitting electrons in thermal equilibrium
with chemical potentials μL/R . The coupling of the impurity
to the left and right electrodes is described by the HiL and HiR

interactions, respectively. Under the tunneling regime, the tip
will be some Å away from the molecule and one may assume
HiR/HiL � 1. Furthermore, all e-VM couplings are confined
within the impurity and will be denoted by Mλ

ii , with λ labeling
each VM. Such a system has been solved in various works,
often at the SCBA level, in order to establish the origin of
peaks and dips in the IETS spectra.21,22,25

Hss Haa

HsL Hsa HaR

λMss Maa
λ

Hii
Mii

λ

(a) (b)
RLRL

FIG. 1. (Color online) Sketch of a 1D model for the STM system
assuming (a) a one-level system (1LS) and (b) a two-level system
(2LS). The associated 3D models are drawn below. Rectangles
enclose the atomistic generalization of each level.

However, the 1LS is not particularly well suited for the
calculation and interpretation of STM-IETS data. First, the
Green’s function projection at the impurity is calculated with-
out taking advantage of the weak molecule-tip (HiR) interac-
tion and, second, inelastic processes are only considered within
the molecule disregarding any inelastic tunneling events. For
realistic calculations [bottom sketch in Fig. 1(a)], they are
actually taken into account but at a large computational cost.

These two shortcomings can be addressed by extending
the 1LS to a two-level system (2LS) as depicted in Fig. 1(b).
Here, the single impurity is replaced by two levels denoted by
s and a. The former represents the molecule adsorbed at the
surface, while the latter represents the tip apex, which may
either be a metallic atom or a molecule/atom attached to the
tip electrode. The vacuum gap responsible for the tunneling
corresponds to the region between the two molecules and,
therefore, the molecule-electrode interactions HsL and HaR

will be much larger than the molecule-molecule interaction
Hsa (Hsa/HsL/aR � 1). We allow for inelastic process within
either molecule Mλ

ss and Mλ
aa , and most importantly, we also

consider explicitly inelastic tunneling via Mλ
sa .

Neglecting any Coulomb blockade effects and after apply-
ing an external bias V between both electrodes, the current
I (V ) across the STM junction will reach a steady state, in
which case it becomes independent of the position in the chain
and may be expressed as:

I (V ) = 2e

h

∫ +∞

−∞
gα(E,V )dE, (1)

where gα(E,V ) is the out-of-equilibrium differential current
which may be calculated at either molecule α = s or a. We
will assume throughout this work spin degeneracy, although
the generalization to spin-polarized systems is straightforward.

A general form for gα(E,V ) is provided by the Meir-
Wingreen formula

gα(E,V ) = Tr
[
�<,γ

αα G>,ph
αα − �>,γ

αα G<,ph
αα

]
, (2)

where G
≷,ph
αα corresponds to the greater and lesser Green’s

functions of the complete chain dressed by the vibrational
modes and projected onto level α and �

≷,γ
αα stands for the

greater and lesser self-energies arising from the electrode to
which α is attached, i.e., γ = L(R) if α = s(a).

Solving Eq. (2) is a rather complex problem since both the
potential drop across the junction and the e-VM couplings
should be solved self-consistently. However, under tunneling
regime conditions (TRCs) we may assume that each molecule
remains in equilibrium with its electrode, which is equivalent
to assume that the adsorbed molecules completely screen the
electric field so that the entire potential drop occurs across
the vacuum region. This should be an accurate approximation
for small applied biases (V � 100 mV) which is the usual
picture in IETS experiments. Furthermore, given the large s-a
distance, we will assume throughout that the VMs at s and a

are decoupled.35

Under TRCs the lesser and greater self-energies at α = s,a

are simply given by

�≷,γ
αα = i n≷

α �γ
αα, (3)
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where n
≷
α is the Fermi-Dirac thermal distribution of occupied

and empty electronic states at α: n<
α = fFD(Eα/kT ) and n>

α =
n<

α − 1. In order to account for the applied bias eV = μL −
μR , we define the (complex) energies at each molecule as Eα =
E − μγ ± eV/2 + i limδ→0+ δ. Following the standard STM
convention, we use the + sign for the eV/2 term if α belongs
to the sample electrode (α = s and γ = L) and the − sign if
it belongs to the tip electrode (α = a and γ = R). Although
we omit the explicit E dependence throughout most of this
section, one must bear in mind that n

≷
α and the secular matrix

terms Fαβ = Eα δαβ − Hαβ are the only quantities where the
energy E is input.

�
γ
αα in Eq. (3) is the usual molecule-electrode coupling

which, under equilibrium conditions, is given by

�γ
αα = i

[
�γ

αα − H.c.
]
. (4)

The electrode derived retarded self-energies �
γ
αα can be

obtained from

�γ
αα = Hαγ Gs

γγ Hγα, (5)

where Gs
γγ is the retarded Green’s function projection onto

the surface of the γ electrode without the molecule α and
should be calculated taking into account that the electrode is
semi-infinite.31

We will consider first the case when the leads are decoupled,
while in the following sections we will present several
approaches to evaluate the G≷,ph terms.

B. Isolated leads in equilibrium

If all interlevel interactions are removed (Hsa = Msa = 0),
the left and right leads decouple and each lead may be
treated independently. We will use the s superscript to denote
the quantities associated to each isolated lead. The retarded
Green’s function projection onto molecule α = a/s, Gs

αα , is

Gs
αα = (

Fαα − �γ
αα

)−1
. (6)

Recalling that each isolated lead is in equilibrium we have

G≷,s
αα = in≷

α As
αα, (7)

where we have defined the spectral function As
αα by

As
αα = i

(
Gs

αα − H.c.
)
. (8)

It is easy to prove the two following identities, which will
become useful later:

i�γ
αα = [(Gs)−1 − c.c.], (9)

Aαα = Gs
αα�γ

αα

(
Gs

αα

)†
. (10)

We may also include at this point any vibrations at α with the
VM dressed Green’s function given by

Gs,ph
αα = (

Fαα − �γ
αα − �ph

αα

)−1
(11)

with �
ph
αα giving the self-energies arising from the VMs at α.

Since the molecule is in equilibrium with the lead, Eqs. (7)
and (8) can be generalized as

G≷,s,ph
αα = in≷

α As,ph
αα , (12)

As,ph
αα = i

(
Gs,ph

αα − H.c.
)
. (13)

At the SCBA level20 and after taking Eq. (12) into account,
we arrive at the following set of equations that should be solved
self-consistently in conjunction with Eq. (11):

�≷,s,ph
αα = i

∑
λ∈α

Mλ
αα

× [
Nλn≷,±λ

α As,ph,±λ
αα + N ′λn≷,∓λ

α As,ph,∓λ
αα

]
Mλ

αα,

(14)

�s,ph
αα = 1

2

[
�>,s,ph

αα − �<,s,ph
αα

]
(15)

with Nλ giving the boson occupation numbers Nλ =
fBE(
λ/kT ) and N

′λ = Nλ + 1. We have further employed
the short notation n

≷,±λ
α = n≷(Eα ± 
λ) and As,ph,±λ =

As,ph(E ± 
λ). Obviously, for the sample (tip) lead only the
VMs at s (a) should be included.

C. Full order + SCBA approach

We now consider the general case where the interlevel Hsa

and Msa interactions have been switched on and a small bias V

has been applied. The Green’s function of the coupled system
projected at the junction may be obtained after inverting the
following (2 × 2) matrix:(

G
ph
ss G

ph
sa

G
ph
as G

ph
aa

)
=

(
Fss − �L

ss − �
ph
ss −�sa − �

ph
sa

−�as − �
ph
as Faa − �R

aa − �
ph
aa

)−1

(16)

with �sa = �as = Hsa = Has and Fαα = Eα − Hαα .
The VM related self-energies are coupled to Eq. (16) via

the SCBA equations

�
≷,ph
αβ =

∑
λ,μν

Mλ
αμ

[
NλG≷,ph,±λ

μν + N
′λG≷,ph,∓λ

μν

]
Mλ

νβ, (17)

�
ph
αβ = 1

2

[
�

>,ph
αβ − �

<,ph
αβ

] − i

2
H

{
�

>,ph
αβ − �

<,ph
αβ

}
, (18)

G
≷,ph
αβ =

∑
μν

Gph
αμ�≷

μν

(
G

ph
βν

)†
, (19)

where H(f ) stands for the Hilbert transform of f and,
in analogy with Eq. (14) we have defined G

≷,ph,±λ

αβ =
G

≷,ph
αβ (Eαβ ± 
λ). In the last Eq. (19), �

≷
μν includes all

self-energies appearing in the second term of equality (16).
The so-called Fock term is not included in the SCBA equations
since it is common practice to skip it.

An efficient way to solve self-consistently Eqs. (16)–(19)
is to employ as initial conditions the quantities calculated for
the isolated surfaces: �

ph
αα = �

s,ph
αα and �

≷,ph
αα = �

≷,s,ph
αα , with

the VM mediated interlevel self-energy matrices initialized to
zero: �

ph
sa/as = 0.

D. LOIT + ILSCBA

A much more efficient approach to solve the 2LS model
is to exploit the small values of both Hsa/as and Mλ

sa/as . To
this end, we first expand the Dyson equation for the interface
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Green’s function up to first order in �sa/as :

Gph
αα ≈ Gs,ph

αα , (20)

G
ph
αβ ≈ Gs,ph

αα �αβG
s,ph
ββ for α 	= β. (21)

We next apply the first-order Born approximation (BA1) to
the inelastic tunneling self-energies �

ph
sa/sa instead of its self-

consistent version (17)–(19). This approach is justified since,
in general, not only Hsa , but also Mλ

sa are small with respect to
the intralevel interactions Hss and Haa . Still, Eq. (17) leads to
a rather large number of terms to be summed over. Fortunately,
after inspecting their values, one finds that by far the dominant
contributions introduced by the inelastic tunneling are those
quadratic in Mλ

sa . These terms, denoted hereafter by �≷,it ,
take the form

�≷,it
αα = i

∑
λ

Mλ
αβ

[
Nλn

≷,±λ

β A
s,ph,±λ

ββ

+ N
′λn

≷,∓λ

β A
s,ph,∓λ

ββ

]
Mλ

βα. (22)

The self-energies of the coupled system may then be approxi-
mated by

�≷,ph
αα ≈ �≷,s,ph

αα + �≷,it
αα , (23)

�
≷,ph
αβ ≈ 0 for α 	= β. (24)

Under approximations (20) through (24), the lesser and
greater Green’s functions may be expressed as

G≷,ph
αα = G≷,s,ph

αα + Gs,ph
αα �≷,it

αα

(
Gs,ph

αα

)†
+G

ph
αβ�

≷,s,ph
ββ

(
G

ph
αβ

)†
with α 	= β. (25)

Equations (22)–(25) constitute our lowest order in inelas-
tic tunneling (LOIT) approximation. Notice that all terms
involved include just one tunneling event, either elastic or
inelastic. Its accuracy and limits of applicability will be
discussed below in Sec. II G.

With the use of Eqs. (3) and (25) and after some algebra,
the differential current in (2) may be written as

gα(E,V ) = Tr
[(

ρ̂αα + ρ̂it
αα

)
�γ,ph

αα

]
(26)

with

ρ̂αα = (n<
α − n<

β )Gph
αβ

(
�

γ

ββ + �
s,ph
ββ

)(
G

ph
αβ

)†
, (27)

ρ̂it
αα = iGs,ph

αα

(
n<

α �>,it
αα − n>

α �<,it
αα

) (
Gs,ph

αα

)†
. (28)

Although the ph superscript should not appear in the electrode
derived broadening �

γ,ph
αα in Eq. (26), its insertion yields

a current-conserving formula and in selected cases it also
improves the accuracy of the approximation.

The interpretation of the above formula is straightforward
if we identify �

γ
αα as the velocity operator towards the

γ electrode and ρ̂ (ρ̂it ) as the net local density of propagating
states towards the electrode assuming only elastic (inelastic)
tunneling. Since intralevel (IL) inelastic transitions are treated
at the SCBA level, we will denote Eqs. (27) and (28) as the
LOIT + ILSCBA approach.

E. LOIT

Since in general the intralevel e-VM terms Mλ
αα will be

larger than the inelastic tunneling terms Mλ
αβ , one would

naively expect that the influence of the former in any IETS
curve is substantially larger than the latter. However, this is by
no means the case and from the test calculations (to be shown
in the following), we find that, in fact, the intralevel e-VM
couplings can be safely removed in most cases. Under this
approximation, the surface Green’s functions projected on the
levels Gs

αα need not be dressed by the VMs any more and one
can write the differential current fully decoupling the purely
elastic term gel

α from that arising solely from the inelastic
tunneling git

α :

gα = gel
α + git

α . (29)

Inserting the first-order approximation (21) and the LOIT
Eqs. (22) and (25) into (27) and (28) after dropping the ph

superscript and making use of identities (9) and (10), we finally
arrive at the compact expressions

gel
α = 2e

h
(n<

α − n<
β ) Tr

[
As

ααFαβAs
ββ(Fαβ)†

]
, (30)

git
α = −2e

h
×

[
As

αα

(∑
λ

Mλ
αβ

[(
f

e,−λ
αβ − f

a,−λ
αβ

)
A

s,−λ
ββ

+ (
f

a,+λ
αβ − f

e,+λ
αβ

)
A

s,+λ
ββ

]
Mλ

βα

)]
. (31)

Expression (31) shows that the inelastic tunneling signal
is quadratic in the e-VM couplings Mλ

αβ and allows us to
decompose the inelastic signal in terms of the contribution
of each individual VM. The bias-dependent emission and
absorption factors f

e/a,±λ

αβ are defined as

f
a,±λ
αβ = n≶

α Nλn
≷,±λ

β , (32)

f
e,±λ
αβ = n≷

α N ′λn≶,±λ

β . (33)

Their physical meaning is sketched in Fig. 2. The absorption
terms f

a,±λ
αβ are linear in Nλ and since at the usual tem-

peratures employed in IETS experiments (kT < 10 meV)
the VMs are essentially depopulated, their contribution to
git

α is in general negligible: only those VMs with very low
frequencies (below kT ) contribute to the inelastic features. The
emission factors f

e,±λ
αβ are, on the other hand, the dominant

terms as they open inelastic channels once |V | > 
λ, thus
leading to peak/dip features at positive/negative values (see
following).

F. LOIT + WBL

We may further assume that the electronic structure of
each lead behaves smoothly around the Fermi level. One may
then adopt the so-called wide band limit (WBL) whereby all

μ
L

μ
R

eVΩ

−λe,f +λa,f +λe,f −λa,f

FIG. 2. (Color online) Sketch of the four types of inelastic
tunneling processes included in the LOIT approximation, correspond-
ing to the factors in (32) and (33).
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Green’s function related terms are assumed constant within
the bias window and may be evaluated only at the Fermi level
μL/R . Under the WBL, the only terms that depend on energy
will be those related to the fermion occupations so that we
may reexpress the inelastic contribution to the current I it (V )
in a computationally optimal way:

I it (V ) = 2e

h
Tr

[
As

αα

(∑
λ

�it,λ
αα f

it,λ
αβ

)]
, (34)

�it,λ
αα = Mλ

αβAs
ββMλ

βα, (35)

f
it,λ
αβ =

∫
dE

(
f

e,+λ
αβ − f

a,+λ
αβ + f

a,−λ
αβ − f

e,−λ
αβ

)
. (36)

Recall that the energy E only enters the integral in Eq. (36),
while the rest of terms are evaluated at the Fermi level. Other
related approximations are to freeze the electronic structure
only at one of the leads, either the tip or the sample.

G. LOIT versus SCBA

Once we have formulated the LOIT approximation, we
now study its accuracy by applying it to the 2LS model of
Fig. 1(b) and comparing the results against those obtained
under the more accurate SCBA approach. We will constrain
the parameter space to be explored to values that mimic a
generic STM setup with metallic electrodes. First, we assume
that the WBL holds for both L and R, so that Eqs. (4) and
(5) reduce to �

γ
αα = 4 Hαγ /�γ , where �γ is the broadening

at the electrode surface, which should be of the order of
the eV. In practice, we fix �L = 1 eV, while HsL is either
increased or decreased in order to model a chemisorbed or
physisorbed level at the surface. The molecule onsite energy
is fixed as well to Hss = 80 meV in order to address both
the on- and off-resonance regimes (see below). For the tip,
we will assume that the a level is chemisorbed (HaR = 4 eV)
with onsite energy Haa = −80 meV, tuned to open a resonant
tunneling channel with the s level at a bias of V = −80 meV.
A low VM frequency of 
s = 30 meV is also assumed at s

throughout. In all simulations, TRCs are preserved by only
considering tip-sample interactions satisfying Hsa/�

γ
αα � 0.1

and Mλ
sa/M

λ
ss � 0.1 for the e-VM couplings.

Simulated (∂2I/∂V 2)/(∂I/∂V ) IETS curves for four dif-
ferent sets of parameters are presented in Fig. 3. In Fig. 3(a),
a typical off-resonance regime is considered after assuming
that s is chemisorbed (HsL = 4 eV). Despite the rather large
value of the intralevel e-VM coupling (Mλ

ss = 100 meV), the
LOIT approximation (blue line) is essentially exact compared
to the SCBA calculation (dark line), showing a sharp peak
(dip) at positive (negative) biases (V = ±30 mV). The regime
plotted in Fig. 3(b) is somewhat a generalization of the previous
case after adding a VM at the tip (
a = 10 meV). The LOIT
approach is still very close to the SCBA, both showing larger
peak/dip heights for the s level than for the a level since
we have set smaller e-VM couplings at a than at s. The subtle
differences between both approaches are due to an asymmetric
contribution in the SCBA curve which now becomes visible
due to the decreased value of HsL = 2 eV. Since the asymmetry
arises from the Hilbert transform20 in Eq. (18), neither the
LOIT nor the LOIT + ILSCBA,which do not include this
transform, can reproduce it. Most interestingly, if the interlevel

Voltage [meV] Voltage [meV]
IE

T
S

 [1
/V

]
IE

T
S

 [1
/V

]

FIG. 3. (Color online) IETS spectra for the 2LS model depicted
in Fig. 1 obtained with different sets of parameters, as indicated at
the top of each graph. (a) and (b) Off-resonance regime including one
and two VMs, respectively. (c) and (d) On-resonance regimes after
reducing HsL. Black, blue, and green lines are used for the SCBA,
LOIT, and LOIT + SCBA approximations, respectively. See text for
further explanations. Dashed lines correspond to SCBA calculations
after setting Msa = 0.

e-VM coupling is switched off by setting Mλ
as = 0 [dashed line

in Figs. 3(a) and 3(b)], the inelastic traces are not apparent
any more, proving that for this regime the IETS features
are completely ruled by the inelastic tunneling processes
and, hence, the high accuracy of the LOIT approximation.
This is further corroborated by noting that the curves for
the LOIT + ILSCBA approach (not shown) are essentially
identical to the LOIT ones.

Figure 3(c) shows an on-resonance case, with a sharp
dip (peak) at positive (negative) biases. To this end, we
have assumed a weakly adsorbed molecule HsL = 500 meV,
and decreased substantially the tunneling e-VM coupling
to Msa = 1 meV. This time the LOIT fails to give any
inelastic features since, given the small Mλ

sa value, the in-
tralevel scattering processes at s become dominant. However,
the ILSCBA correction (green curve) provides an excellent
agreement with the full SCBA curve, even reproducing the
small satellite peaks at V = ±60 mV arising from two-phonon
processes. In Fig. 3(d) the spectra have been calculated
for the same parameters except after further reducing the
electrode-molecule interaction (physisorption limit) as well
as the intralevel e-VM coupling to Mλ

ss = 10 meV. The former
increases the intralevel inelastic contribution, but the latter
has the opposite effect and is equivalent to increasing the
strength of the inelastic tunneling processes. The curves show
a large curvature due to the elastic resonant peak at V =
−80 mV (not shown), while the inelastic features are of smaller
magnitude. The dip/peak structure at positive/negative biases
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is at contrast with the LOIT approach and is not even accurately
predicted by the LOIT + ILSCBA, which yields a rather
symmetric step at both polarities. The reason is the relative
enhancement of the inelastic tunneling contribution, which
now competes and entangles with the intralevel scattering and
invalidates the LOIT approximation given by Eqs. (22)–(25).
Indeed, if the inelastic tunneling channel is suppressed in
the SCBA calculation (dashed line), we retrieve the situation
of Fig. 3(c) and the ILSCBA correction becomes again very
accurate.

After extensive tests, we have found the general trend
that the LOIT approach is highly precise whenever the levels
interact strongly with the electrodes (large HsL/aR values); in
this case the inelastic tunneling contribution, being quadratic
in Mλ

sa , largely dominates the IETS spectra even for large
intralevel e-VM couplings [off-resonance case in Figs. 3(a)
and 3(b)]. As we reduce the level-electrode interaction, the
intralevel inelastic contribution is enhanced and the leading
inelastic events now include cross terms Mλ

ss × Mλ
sa [Fig. 3(d)].

In this case, neither the LOIT nor the ILSCBA corrections
are accurate and the full SCBA approach (or its first-order
version) is required. In the limit where Mλ

sa � Mλ
ss and the

level interacts weakly with the electrode, the LOIT + ILSCBA
approach becomes accurate [on-resonance case in Fig. 3(c)].
Anyhow, we should recall that in the on-resonance regime
(i) the levels need not be in equilibrium with their respective
electrodes anymore, (ii) the Fock term, which has been
neglected in the evaluation of the VM related self-energies �ph

may induce significant polaronic shifts to the IETS features,
and (iii) small HsL values in the STM model may leave the
s level in a Coulomb blockade regime for which the transport
formalism applied here is not valid.

In summary, we find that the LOIT is an excellent
approximation to the simulation of STM-IETS spectra as
long as the level (molecule) is chemisorbed at the surface
and/or apex. Although this fact seems counterintuitive (in
general the inelastic intralevel scattering will be larger than
the tunneling one Mλ

sa � Mλ
ss), it may be rationalized by

recalling the elastic analog where the tip-sample interaction
is the most relevant term in determining the topography in
an STM image, despite it is typically much smaller than
the electrode derived self-energies (Hsa � �

γ
ss). On the other

hand, when the molecule is weakly coupled to the electrode,
the LOIT is not precise any more and an accurate calculation
of the elastic and inelastic transport properties becomes highly
challenging and beyond the scope of this work.

III. 3D STM MODEL

In this section, we generalize the LOIT formalism to a
realistic three-dimensional (3D) model for the STM system.
We adopt the rather general geometrical picture employed
within the GREEN (Refs. 31 and 32) code which has been
extensively used for STM topographic simulations. A side
view of the STM interface model is depicted in Fig. 4(a). The
sample and tip electrodes are modeled by semi-infinite two-
dimensional (2D) bulk blocks. Each bulk block is itself split
into a semi-infinite stack of principal layers (PLs); typically,
a PL comprises several atomic planes. Molecules s and a in
the 2LS are now described by the sample surface and tip-apex

PLs, respectively. s includes one or two reconstructed surface
layers plus any adsorbates and is assumed 2D periodic with a
unit cell which should be commensurate to that of the sample
electrode. On the other hand, the tip apex a is considered
nonperiodic (isolated in 2D) and consists of a pyramid of 9 to
11 atoms stacked below the tip bulk.

To describe the electronic part of the system, we employ
a linear combination of atomic orbitals (LCAO) basis set as
implemented in the SIESTA (Ref. 33) code. The generalization
of the LOIT derived Eqs. (30) and (31) to the 3D case is
straightforward after taking into account the following:

(i) All Green’s functions related projections onto any
pair of PLs (α,β) will be matrices in the AO basis
set.

(ii) The secular matrix of the entire chain F now includes
the overlap matrix S: Fαβ(E) = Eαβ Sαβ − Hαβ where the
block-dependent (complex) energies Eαβ are

Eαβ = E − 1
2 (μγ + μγ ′ ± eV δγγ ′) + i limδ→0+ δ, (37)

with γ (γ ′) being the electrode to which α (β) is attached.
(iii) Since the two electrodes as well as the sample surface

s are assumed periodic in two dimensions, we construct

k-dependent matrices in these PLs in order to sample the
associated Brillouin zones. The apex PL, on the other hand,
is represented by a single � point which couples all 
k points
used to sample the tip electrode.

Next, we will describe how the evaluation of the matrices
necessary to obtain both the elastic and inelastic current across
the STM junction have been implemented in the upgraded
version of the GREEN code. A flow chart indicating the
sequence of the steps to be carried out for an IETS simulation
under our ab initio LOIT scheme is given in Fig. 4(g).

A. Hamiltonian

Clearly, the system depicted in Fig. 4(a) is far too complex
to be calculated within a unique self-consistent ab initio
calculation. Instead, we perform different SIESTA calculations
for different parts of the system as sketched in the figure and
store their Hamiltonian matrix elements so that they can be
used at any point in the Green’s functions calculations.36,37

We assume that all inter-PL interactions only extend up to
first-nearest neighbors. Given the strict localization of the AOs,
this is always achievable by including enough atomic layers
in the PLs to ensure that all interactions among nonadjacent
PLs are zero (typical PL thicknesses are around 6–10 Å).
Figure 4 shows the structure of the resulting tridiagonal
(infinite) Hamiltonian matrix, where each box corresponds
to the interaction between two PLs. The boxes are grouped
into five colored cages, each associated to a different SIESTA

calculation:
(i) Bulk calculations for both the tip and the sample

[Figs. 4(b) and 4(c), respectively] giving all interactions
within the electrodes: Hγγ and H±

γ γ matrix blocks. These two
calculations are quite simple since they typically involve one
or just a few atoms in the bulk unit cell.

(ii) Sample surface calculation [Fig. 4(e)] for the Hss and
HsL/Ls matrix blocks. Here, we consider a slab including the s

PL, and we add several bulk layers below in order to ensure that
a bulk environment is achieved at the center of the slab.37 The
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FIG. 4. (Color online) (a) Side view for the complete 3D STM model. Arrows indicate that the system extends to infinity along that direction.
(b)–(f) Sketch of the infinite tridiagonal Hamiltonian matrix describing the entire STM system together with side views of the different systems
(calculated at the ab initio level) required to obtain all matrix elements. Each box corresponds to a matrix block Hαβ holding the interactions
between PLs α and β in the AO basis set. Thick colored bounding boxes and arrows are used to indicate from which ab initio calculation are
the matrix elements extracted: (b) tip bulk, (c) sample bulk, (d) tip apex, (e) sample surface, and (f) tip surface. (g) Flow chart for our LOIT
ab initio scheme. Blue (green) boxes refer to calculations performed under SIESTA (GREEN). See text for further explanations.

extra layers are essential to ensure that the entire formalism is
self-consistent.

(iii) Tip-apex calculation [Fig. 4(d)] for the Haa and HaR/Ra

matrix blocks. Same as in (ii), we add on top of a further tip
bulk layers. Although the calculations are typically performed
for a (4 × 4) or (3 × 3) supercell, we drop all matrix elements
related to apex atoms outside the origin cell when loading the
Haa and HaR/Ra matrices in the Green’s function calculation
since the apex is assumed nonperiodic.

(iv) The apex-surface interactions Hsa/as are obtained from
the slab geometry given in Fig. 4(f). Apart from the adsorbates
we include a few surface layers (two or three) and stack on top
the apex atoms at the desired relative position.

B. Equilibrium geometry and vibrational modes

A main advantage of the LOIT approach is that the VMs
at the surface and the tip are fully decoupled. This allows
their evaluation at the ab initio level via independent SIESTA

calculations, thus reducing considerably the computational
cost. One first needs to obtain the equilibrium geometries to
be used in the slab calculations (ii) and (iii). In general, this
optimization is performed for the same slabs as those depicted
in Figs. 4(d) and 4(e) but reducing the number of bulk layers to
four of five. During the relaxations, only the atoms in PLs s or
a are allowed to relax while the rest are fixed to bulk positions.
The resulting optimized coordinates are then used to construct
the large slab for which only one (computationally heavy)
self-consistent calculation is required at the end of which the
Hamiltonian is saved to disk.

The vibrational modes (VMs) are obtained after construct-
ing the mass-scaled dynamical matrix CIμJν according to

CIμJν = 1√
MIMJ

∂FIμ

∂RJν

, (38)

where I/J denote the dynamic atoms with (equilibrium)
position vectors 
RI/J and atomic masses MI/J . μ/ν refer to
the Cartesian coordinates and FIμ is the force on atom I along
μ. The vibrational frequencies 
λ and eigenmodes 
vλ are
then obtained after diagonalization of the dynamical matrix.20

As usual, any negative eigenvalues (imaginary frequencies)
arising from accuracy errors are discarded.

Since the forces are readily obtained from a standard
SIESTA calculation, we approximate the derivatives appearing
in Eq. (38) numerically by displacing the dynamic atoms
within a or r from their equilibrium positions by a finite
amount δr along the three Cartesian coordinates μ = x,y,z.
Obviously, we employ the same cell as that used for the
geometry optimization, while the diagonal elements CIμIμ are
corrected following the prescription of Ref. 20. When the size
of the unit cell is large, the calculation of the partial derivatives
may become rather time consuming due to the elevated number
of degrees of freedom. In such cases, we freeze those substrate
atoms within PL s which are far away (further than ∼5 Å)
from the adsorbed molecule. On the other hand, VMs at the
tip are only calculated if a molecule/atom is adsorbed at the
apex (contaminated tips).

C. Tip-sample interactions and e-VM coupling

We describe next how the tip-surface matrices Hsa/as and
Mλ

sa/as may be calculated in a single run. To this end, we
construct the 2D periodic slab depicted in Fig. 4(f) comprising
a few surface layers and placing the apex atoms above them at
any desired location 
rtip. The 2D unit cell typically corresponds
to the surface supercell unless it is too small to accommodate
all the apex atoms. In such cases, we need to define a new
supercell commensurate to the surface one comprising replicas
of the former and which should be chosen large enough to
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ensure that the apex atoms do not overlap with those in the
neighboring cells. The slab normal vector may be defined
either choosing an appropriate length so that the top of the apex
binds somehow to the bottom of the surface or, alternatively,
leaving a vacuum region between both blocks: the latter case
is the one depicted in Fig. 4(f). We have found that the results
are hardly modified by this particular choice. After a self-
consistent calculation for this cell, the matrices H/Mλ

sa/as are
stored in disk so that they can be used in the calculation of the
current as described in the next section.

The same slab is employed for the evaluation of the tip-
surface e-VM coupling matrices. The matrix elements Mλ

ij for
VM λ and between AOs i and j are given by

Mλ
ij =

∑
Iν

H
′Iν
ij vλ

Iν

√
h̄

2MI
λ

, (39)

where vλ
Iν is the λ eigenmode component for the ν coordinate

of atom I and we have defined H
′Iν
ij = 〈i| ∂H

∂RIν
|j 〉 as the partial

derivatives of the Hamiltonian operator with respect to each
degree of freedom. Obviously, the summation over I only
includes the dynamic atoms.

To evaluate the H
′Iν
ij terms, we first note that the SIESTA

Hamiltonian may be written as

H = T + V KB + H SCF, (40)

where T corresponds to the kinetic operator, V KB to the
pseudopotentials in their Kleinman-Bylander form,38 while
H SCF includes the Hartree and exchange-correlation potentials
and is the only term that depends on the electron density and
thus needs to be evaluated self-consistently. It is trivial to
show that neither T nor V KB give any contribution to the
Hamiltonians partial derivatives, so that H

′Iν
ij = 〈i| ∂H SCF

∂RIν
|j 〉.

This form allows a fast numerical evaluation of the e-VM
coupling once the potential V SCF(
r) for the equilibrium
geometry has been solved self-consistently on a real-space
grid. For each degree of freedom Iν, we displace atom I from
its equilibrium position by a small amount (δIν = ±10−3 Å)
along the ±ν coordinate, update the charge density ρ(
r), and
calculate the shifted potentials V SCF

±δIν(
r). In the calculation
of V SCF

±δIν , and given the small displacements, all the time-
consuming grid-related sparse information remains unchanged
and only the wave-function values of atom I on the grid
require reevaluation. On the other hand, no self-consistency is
required since the density matrix is assumed unchanged after
the small atomic displacements. The H

′Iν
ij matrix elements are

finally obtained via numerical derivatives after transforming
the shifted potentials into the AO basis representation. We have
checked that this procedure yields very similar results to those
obtained with the approach followed in Ref. 20 despite ours is
orders of magnitude more efficient.

The scheme provides both the intralead Mλ
αα and interlead

Mλ
αβ matrices in the same run. Although we will discard the

former throughout, we recall that for an LOIT + ILSCBA
calculation it would be more efficient and accurate to obtain
the Mλ

αα terms performing similar independent calculations
for the surface and/or the tip slabs described in (ii) and (iii)
instead.

Let us finally note that the current step is the least
accurate one in the entire ab initio scheme since the H/Mλ

sa/as

matrix elements are calculated under 2D periodic boundary
conditions, while for the actual STM calculation, as the apex
is assumed nonperiodic, all interactions involving apex atoms
in neighbor cells are discarded. Our approach also partly
neglects the self-energies at s and a arising from the electrodes.
Achieving a strict self-consistency for these matrix elements
will require an even larger 2D supercell plus the addition of
further bulk atoms at the top and bottom of the slab. Still,
we believe the slabs employed in this work remain within
reasonable limits of accuracy and computational cost given
the complexity of the STM interface.

D. Current

For computational efficiency, it is highly advantageous to
decompose the spectral matrices given in Eq. (8) into diagonal
form:

As
αα =

∑
mα

∣∣as,mα

α

〉〈
as,mα

α

∣∣, (41)

where the kets |as,mα
α 〉 are the eigenvectors normalized by the

square root of the associated eigenvalue and may be identified
with the scattering states within each lead. The spectral de-
composition reduces significantly the computational load since
only those scattering states with a non-negligible eigenvalue
need to be retained.

Substituting Eq. (41) into Eqs. (30) and (31), we arrive
at a Fermi’s golden rule type expressions for the differential
currents:

gel
α = (n<

α − n<
β )

∑
mα,mβ

∣∣〈as,mα

α

∣∣Fαβ |as,mβ

β

〉∣∣2
; α 	= β (42)

git
α =

∑
mα,mβ,λ

[(
f

a,−λ
αβ − f

e,−λ
αβ

)∣∣〈as,mα

α

∣∣Mλ
αβ

∣∣as,mβ,−λ

β

〉∣∣2

+ (
f

e,+λ
αβ − f

a,+λ
αβ

)∣∣〈as,mα

α

∣∣Mλ
αβ

∣∣as,mβ,+λ

β

〉∣∣2]
; α 	= β.

(43)

Notice that Eq. (42) corresponds to a first-order version
of the Landauer-Büttiker39 formula. The appealing part of
assuming TRCs is that in Eqs. (42) and (43) the scattering
states |as,mα 〉 are intrinsic to each lead and do not depend on
the relative tip-sample position 
rtip. Therefore, they can be
calculated independently for the sample surface and each of
the tips to be considered and stored in disk as a function of
energy and k points.32 During the actual STS/IETS simulation,
these vectors will be read in together with the Hαβ and
Mλ

αβ matrices corresponding to the desired tip-sample relative
displacement.

IV. CALCULATION PARAMETERS

Although the LOIT formalism presented in the previous
section is ab initio at the DFT level, there are still several
parameters entering the calculation the effects of which
need to be addressed. We may distinguish those parameters
specific to the SIESTA calculations from those entering the
Green’s functions. In order to test their performance, we have
chosen a widely studied system such as CO adsorption on
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FIG. 5. (Color online) (a) log10 I (ztip) curves simulated for a sharp
Cu(111) tip probing a CO molecule on a Cu(111) surface (see sketch
at the right). Solid (dashed) lines correspond to calculations with
extended (contracted) AO basis for which Ec was set to 10 meV
(100 meV). Blue (green) lines correspond to the apex located on
top of the CO (Cu substrate). (b) The ABH values corresponding to
the curves shown in (a). (c), (d) Same as (a) and (b) but for a CO
contaminated tip, as shown in the sketch at the right. In all cases, the
origin in ztip has been placed at the Cu(111) surfacemost layer and
the bias has been fixed to 70 mV.

the Cu(111) surface.13,14,34,35,40 The CO is known to adsorb
at a top site,35 despite that DFT does not always identify
this site as the most stable one, with the C attached to
the metal atom. Here, we model the surface via a (4 × 4)
supercell. The VM spectra for the adsorbed system consists of
a high-frequency molecular stretch mode (νCO ∼ 250 meV),
another stretch mode between the molecule and the metal
(νCO-Cu ∼ 50 meV), frustrated rotations (FRCO ∼ 30 meV),
and frustrated translations (FTCO < 10 meV). For the tip, we
have considered a Cu(111) oriented bulk block with a 10-atom
pyramid terminated either with a single metal atom or with a
CO adsorbed underneath it (see sketches at the right in Fig. 5).
We will refer to them hereafter as the clean or Cu tip and the
CO tip, respectively.

Among the SIESTA related parameters, the choice of the
AO basis set is the most problematic one since there is no
systematic yet efficient scheme to converge the total energy
with the basis set.41,42 In our case, we always employ the
so-called double-zeta polarized (DZP) basis set which is
known to yield a rather accurate description of the valence
states (we will not address here the parameters involved in
the pseudopotential generation). However, we have found it
highly relevant for the reliability of the entire formalism to
employ very extended AOs for all surface and apex atoms.
Accordingly, we set confinement energies of Ec = 100 meV
in the basis generation process if the atoms are contained in
any bulk PL and reduce it to Ec = 10 meV if they belong to the
apex or the sample surface PLs. This way, the spatial extension
of the electronic density in the vacuum region is largely
extended, thus reproducing better the expected exponential
decay of the current with the tip-sample normal distance
ztip. Furthermore, their use systematically lowers the total

energies in the slab calculations, which is indicative of a
higher accuracy as the total energy is variational with the basis
set.

Figures 5(a) and 5(c) show log10 I (ztip) plots simulated for
the Cu and CO tips, respectively, placing the apex on top
of a CO molecule (blue lines) and on top of the Cu(111)
substrate (green); only the elastic contribution to the current is
considered here. The plots show a fairly linear behavior in the
5- to 8-Å interval. Beyond this distance, the exponential decay
increases considerably due to the strict localization of the AOs.
Still, the linear interval covers the 10−1–101 nA range in all
cases, which corresponds to the usual tunneling currents used
in STM experiments. The satisfying part is that the contrast
inversion experimentally observed for the adsorbed CO upon
transfer of a CO to the tip is well reproduced;40 for the clean
tip, the current is slightly larger over the substrate than over
the CO (green line above blue), while the situation is reversed
for the CO tip, where the signal on the CO is significantly
larger than on the Cu. Thus, the metallic tip images the CO
as a hole, while for the CO contaminated one we find a large
protrusion.

An alternative way to inspect the validity of the AO basis
under TRCs is via the so-called apparent barrier height (ABH),
which definition follows from the widely used expression for
the STM current as a function of the tip-sample separation
ztip: I (ztip) ∝ exp [−√

φ(eV)ztip(Å)]. Here, φ is the ABH and
should take values around the metals work functions; that is,
φ = 3–5 eV. In Figs. 5(b) and 5(d) we plot the ABHs following
the same color scheme as in Figs. 5(a) and 5(c). The CO tip
on top of the CO [blue line in Fig. 5(d)] is the only case where
the ABH diminishes as the tip is retracted up to 8 Å. For
the rest of the situations, the ABHs increase with increasing
ztip whereas one would expect a saturation value at around
the work function, averaged between the two electrodes. The
ABHs tend to be overestimated, particularly for the CO tip,
where values larger than 10 eV are already found at realistic
distances of around 7 Å. Thus, the AO localization acts as an
additional artificial potential barrier to the tunneling electrons.
The use of a confinement energy as small as Ec = 10 meV is
therefore still not enough to provide accurate I (ztip) curves
and, hence, any calculated tip-sample distances or the actual
topographies should be considered only as semiquantitative.
Anyhow, we note that the use of more localized basis set,
as is done in most SIESTA related studies, may even yield
results which are qualitatively wrong. This is demonstrated
by the dashed lines in Fig. 5, which correspond to analogous
calculations after setting Ec = 100 meV for the generation of
all AOs in the system. Now, the logarithmic curves deviate
from linearity already at 6 Å (on CO) while the ABHs reach
unrealistic values well above 30 eV. Even worse, this basis set
would wrongly predict a bump for the CO.

Other relevant parameters related to the DFT calculations
are the choice of the exchange-correlation (XC) functional, the
k-sampling mesh, and the real-space grid employed to evaluate
numerically three-center integrals, the XC energy density, or to
solve the Poisson equation. To remain consistent, we perform
all calculations under the generalized gradient approximation
(GGA) scheme.43 On the other hand, the total energy can
be converged against the reciprocal and real-space meshes,
although the required fineness of the grids is system dependent.
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For the present Cu + CO system we used a real-space mesh
resolution of 0.07 Å (or 500 Ryd), while a (16 × 16) k supercell
relative to the bulk Cu(111) was used in reciprocal space.

A crucial point for an accurate IETS simulation is the
correct evaluation of the actual VMs. However, the calculation
of the vibrational spectra according to the standard formalism
outlined in Sec. III B presents at least three main sources of
error: (i) neglect of anharmonic effects, (ii) a poor description
of the metal atoms vibrations since phonons are essentially
ignored, and (iii) the accuracy in the numerical evaluation of
the force derivatives. In general, these errors become larger
as the energy of the VM decreases. After extensive tests,
we have verified that employing shifts around δr = ±0.05 Å
in the numerical evaluation of the atomic force derivatives
yield reliable values for VMs with frequencies above 10 meV.
However, for smaller energies, the reliability of the calculated
vibrational states is dubious and the associated low-frequency
spectra should be considered with care. A clear proof of this
inaccuracy are the imaginary frequencies often obtained20 or
the fact that the lowest-frequency spectra are not robust against
the number of Cu atoms included in the dynamic region.

We now discuss the parameters related to the Green’s
functions. For the present Cu(111) + CO system, the surface
PL s comprised the CO molecule plus the first three Cu
layers, while for the slab calculation in Fig. 4(f) up to 10 Cu
layers were included. In order to ensure that self-consistency
is preserved in the construction of the semi-infinite surface,37

we align the vacuum levels of the bulk and slab calculations by
comparing the onsite energies of the atoms in the former case
with those at the center of the slab, in particular, those at the
fifth layer. The vacuum level for the bulk calculation is then
shifted accordingly while the accuracy of the self-consistent
procedure may be checked by inspecting the deviations
between the onsite energies after the shift. Here, the maximum
deviation was just 13 meV for a 739-meV shift. The same
procedure is followed for the tip semi-infinite block, for which
we included seven Cu(111) bulk layers in the slab calculation
of Fig. 4(d) and compared the onsite energies at the fourth
layer with the bulk ones for the vacuum level alignment
to obtain a shift of 626 meV and maximum deviation of
22 meV.

On the other hand, in the actual Green’s function calcu-
lation, a finite imaginary part of the energy Ei replaces the
0+ limit in Eq. (37). This leads to an extra broadening of the
peaks in the density of states (DOS) as well as to a damping
of the current as it enters the electrodes.31 The choice of this
value is crucial for computational efficiency purposes when
one goes beyond the WBL since (i) small imaginary energies
require larger k samplings and (ii) the energy step used in
the numerical integration of the differential currents [Eq. (1)]
should not exceed Ei in order to ensure that no elastic peaks
in the sample or tip DOS are skipped. However, too large
values may lead to far too small currents (or equivalently, too
small tip-sample distances) and therefore should be avoided.
Recall that the simulation time per 
rtip scales linearly with the
number of energy points. From extensive tests, values in the
range Ei = 2–20 meV represent a good compromise.

A closely related parameter is the electronic temperature
kT entering the fFD and fBE distributions for electrons and
modes, respectively. On one hand, although kT � 10 meV
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FIG. 6. (Color online) ∂2f it,λ/∂V 2 for a single VM with fre-
quency 
 = 10 meV and for two different temperatures: kT = 2
(solid dark lines) and 5 meV (solid blue lines). The contributions to
∂2f it,λ/∂V 2 arising from the emission factors f e,±λ are shown at the
bottom of the graph with dashed and dotted lines for left and right
electron propagation, respectively (see sketches). Red arrows indicate
hindered inelastic processes at the lowest temperatures.

smears the electronic structure and eases the convergence
in k space, it increases considerably the energy range to be
integrated in Eq. (1). On the other hand, kT determines the
width of the IETS peaks and, accordingly, a good resolution
in the inelastic structure is only achieved for very low values
(kT � 5 meV). In order to address the effect of temperature
on the simulated spectra, we consider the LOIT + WBL
expressions (34)–(36), which lead to an inelastic current which
is proportional to f

it,λ
αβ . Since this is the only term where

kT enters via the emission and absorption factors f
e/a,±λ

αβ , it
suffices to analyze the behavior of ∂2f it,λ/∂V 2 as a function
of temperature to obtain a general picture of its influence on
the IETS spectra. This is done in Fig. 6, where we assume
a single VM at the surface 
 = 10 meV, and consider two
temperatures kT = 2 meV (dark lines) and 5 meV (blue lines).
As expected, raising kT increases considerably the peak/dip
broadening as inelastic processes in the bias region |V | < 
,
which are forbidden at kT = 0, start to contribute once the
partial occupations of electrons (holes) above (below) the
Fermi levels of the electrodes become non-negligible. Since
at these temperatures Nλ is still small, the processes involving
emission of a VM, f e,±λ, are still the dominant ones in the
spectra (dashed and dotted lines in the figure). In the |V | < 


region, the left- and right-propagating currents (dotted and
dashed lines, respectively) tend to cancel each other thus
inducing an asymmetry in the shape of the peak/dip and, most
notably, a small shift � in its maximum/minimum towards
larger bias values (in the figure � ≈ 4 meV). Such shifts
may induce erroneous assignments of the lowest-frequency
VMs when comparing simulated versus experimental inelastic
spectra, implying that the actual temperature is a highly
relevant parameter which should be properly taken into
account in any IETS analysis.

Next, we address the convergence of the LOIT in k

space since it is generally harder to achieve well-converged
results in electronic transport calculations than in total energy
optimizations or when obtaining the self-consistent Hamil-
tonian. Figure 7 shows (∂2I/∂V 2)/(I/V ) spectra for the
Cu(111) + CO system probed by the Cu tip for different
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FIG. 7. (Color online) (∂2I/∂V 2)/(I/V ) curves simulated for the
Cu tip probing a CO molecule on a Cu(111) surface under the LOIT
approximation and for different k samplings at PL s, as indicated in
the legend in (a). The k grids refer to the surface (4 × 4) supercell. The
curves have been calculated: (a) assuming the WBL both at the tip and
the sample, (b) assuming the WBL only at the tip, and (c) including
the entire energy range at the tip and sample. All spectra calculated
for kT = 2.5 meV, Ei = 20 meV, and fixing the k sampling at the tip
block to an (8 × 8) supercell.

LOIT-based approximations and k samplings at the surface
(4 × 4) supercell. The k mesh at the tip block has been fixed
to an (8 × 8) in all cases. The WBL in Fig. 7(a) shows a
nice behavior with the k grid, and is well converged for
an (8 × 8) mesh, equivalent to a (32 × 32) relative to the
(1 × 1) bulk Cu(111). The curves show a double peak/dip
structure corresponding to the FTCO and FRCO vibrational
modes (see next section). The smallest (1 × 1) grid (�-point
calculation) already yields qualitatively correct results, al-
though the inelastic features are overestimated by about 50%.
The same picture remains if the WBL is only applied to the tip
electronic structure while including the full energy dependence
of the scattering states at the sample surface [Fig. 7(b)] or even
if the WBL is removed at both sides [Fig. 7(c)]. The resulting
spectra and k convergence are very similar to the WBL results,
especially for the finest meshes. The main difference is just a
sizable downwards shift for the full I (V ) case in Fig. 7(c),
which arises from the tail of a resonant peak at the tip.
Therefore, these results show that (i) the computationally much
cheaper WBL approximation is highly reliable and (ii) a good
k convergence is perfectly achievable within our formalism.
The LOIT + WBL approach is thus ideally suited to simulate
IETS spectra. On the other hand, and given the fact that the
exact apex geometry and thus its precise electronic structure is
in general an experimental unknown, applying the WBL only
at the tip seems a promising route to analyze simultaneously
the surface LDOS and the IETS.

V. RESULTS

The calculation parameters detailed in the previous section
led to VM frequencies for the Cu(111)-(4 × 4) + CO system
in good agreement with previous works. Namely, out of a
total of 23 modes, the most relevant CO related calculated
frequencies are νC-O = 246 meV, νCO-Cu = 47 meV, FRCO =
33 meV, and FTCO = 2–6 meV. Additionally, we also found
low-frequency modes involving both the CO and the Cu atoms
below as if they were a rigid complex, such as stretch modes
νCOCu-nCu = 4 meV or frustrated rotations FRCOCu = 10 meV.
For the CO contaminated tip we obtained 33 VMs, reflecting
the larger number of degrees of freedom arising from the low
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FIG. 8. (Color online) Calculated IETS curves under the
LOIT + WBL approximation for the Cu(111) + CO system probed
by a (a), (d) clean Cu tip on top of the CO, (b), (e) CO contaminated
tip on the Cu(111) substrate, and (c), (f) CO contaminated tip on top
of the surface CO. Tip-sample distances are indicated in the insets.
Solid dark lines: total IETS; dotted, solid, and dashed blue/red lines:
contribution arising from the FTs, FRs, and ν modes, respectively,
with blue for those localized at the surface and red at the CO
terminated tip, offset in y for clarity. All curves calculated under the
LOIT + WBL approximation with parameter values: kT = 2.5 meV
and Ei = 20 meV. See text for further explanations.

coordination at the apex. The high-frequency stretch modes are
slightly blue-shifted with respect to the previous case, νC-O =
251 meV and νCO-Cu = 51 meV, while the lower-frequency
ones tend to red-shift, FTCO = 2 meV, FRCO = 24–26 meV,
and/or split due to a large coupling between the molecule and
the Cu atoms motions: νCOCu-nCu = 14, 17, and 28 meV or
FRCOCu = 3 and 10 meV. However, and as already mentioned
in the previous section, the reliability of the calculated low-
frequency modes is scarce.

In Fig. 8, we present normalized IETS curves.
(∂2I/∂V 2)/(dI/dV ), calculated under the LOIT + WBL
approximations for different tip-sample configurations. As
sketched in the insets, in Figs. 8(a) and 8(d) we probe the
VMs at the surface CO by considering the clean apex placed

235412-11



E. T. R. ROSSEN, C. F. J. FLIPSE, AND J. I. CERDÁ PHYSICAL REVIEW B 87, 235412 (2013)

on top of the molecule; in Figs. 8(b) and 8(e) we probe those at
the apex by placing the CO tip on top of the Cu(111) substrate;
in Figs. 8(c) and 8(f) the same tip is now located above the
adsorbed CO so that we have contributions from the VMs at
both the tip and the surface. Dark solid lines give the total
IETS signal, while blue and red ones refer to the contributions
from different types of modes localized at the surface and
tip, respectively; recall that the LOIT expression (43) directly
provides the VM resolved contributions. We use dotted lines
for the sum over FT modes, solid for FRs and dashed for
the stretch modes, although we warn that the assignment
of some low-frequency modes to one type or the other is
often ambiguous. The graphs at the left, Figs. 8(a)–8(c), are
calculated for tip-sample distances ztip within the range for
which the ABHs take reasonable values (see Fig. 5). In this
range, the magnitude of the IETS signal remains fairly constant
between 3–10 V−1 as expected after the normalization by
(dI/dV ). In the graphs at the right, Figs. 8(d)–8(f), the tip
is retracted by 1–2 Å, thus falling into the range where the
ABHs attain too large values while the IETS peaks are an
order of magnitude smaller and, hence, the results are less
accurate. Still, we show them since they reveal an interesting
trend which will be discussed below.

When the clean tip is on top of the CO [Fig. 8(a)], we find a
large signal for the low-frequency FTs and the FRs with hardly
any contribution from the stretch modes. The resulting IETS
curve is a well-defined double-peak structure which is in line
with previous experimental13,14 and theoretical14,34,35 studies
for the same system. However, our FT contribution seems to
be overestimated with respect to these works, where a similar
height was found for the FT and FR modes. We ascribe this
discrepancy to the inaccuracy associated to the low-frequency
modes, as mentioned above. A similar picture holds when
the CO tip is placed on top of the substrate [Fig. 8(b)]; we
only present the contributions from the VMs localized at the
apex since those localized at the surface, although included
in the calculation, give negligible intensities. Again, the FT
and FR modes dominate the spectra resulting in a double-peak
structure although this time that associated to the FRCO mode,
given its smaller frequency, overlaps more strongly with the
larger peak at the lowest frequency and appears as a shoulder of
the latter. The stretch modes, on the other hand, yield a sizable
signal so that the high-frequency νC-O and νCO-Cu peaks can be
resolved in the total IETS. Finally, in Fig. 8(c) vibrations both
at the tip and the surface (56 VMs in total) are considered by
placing the CO tip on top of the adsorbed CO. Surprisingly, the
stretch modes now yield a large signal becoming the dominant
ones throughout the spectra, while the contribution from the
FR modes is strongly reduced. Notice, for instance, the large
peaks at around 4 and 15 meV associated to the νCOCu-nCu

stretch modes at the surface and tip, respectively. Curiously,
the contribution of each type of modes is quite similar either
if they are localized at the surface or the tip. Given the thermal
broadening used in the simulations, kT = 2.5 meV, one can
not resolve in the total IETS among vibrations at the surface
or the tip as the νC-O and νCO-Cu modes merge into single
broad peaks. The absence of hardly any inelastic activity from
the FR modes is at contrast with the work of Ref. 20, where
they still found the FR mode as the most relevant one after
considering a CO terminated tip, although an increase of the
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FIG. 9. (Color online) (a) Top views of isosurfaces for several
scattering states |as,ms

s 〉 at the Cu(111) + CO surface grouped accord-
ing to their symmetry character. The CO is always located at the
center of the image, with white and blue colors used for positive
and negative isovalues, respectively. (b) Side view of an isosurface
corresponding to the most relevant scattering state |as,ma

a 〉 at the Cu
tip. The atoms drawn at the top belong to the tip Cu(111) electrode. (c)
Same as (b) but for the CO tip, with one σ and two π states. (d) Side
views of the CO MOs which provide the largest contribution to the
inelastic currents. (e) Diagram showing the relevant tunneling paths
for the FT, FR, and stretch modes according to the IETS propensity
rules.

νCO-Cu signal for this particular tip was also reported. The
reason for this discrepancy may be due to the more contracted
AOs employed in that work or the actual tip modeling, as the
CO was adsorbed below a Cu(111) surface instead of the sharp
pyramid considered here.

A. Propensity rules

IETS propensity rules have been the subject of several
works.24,27,28,34,45 A particularly simple derivation of such
rules was presented by Paulsson et al. in Ref. 34 employing
a Fermi golden rule expression for the phonon emission
rate γ FGR

λ = (e/πh̄) Tr[Mλ
saAaaM

λ
asAss], and has been later

confirmed and analyzed in more detail precisely for the
Cu(111) + CO system.35 The propensity rules were found to
follow simple symmetry arguments relating the σ/π character
of the surface and tip propagating states to the actual VM
type; σ (π ) refers to symmetric (antisymmetric) states relative
to twofold rotations about the surface normal direction. In
short, if one assigns a π character to the FR and FT vibrations
and a σ character to the stretch modes, then the dominant
inelastic paths are those for which the combined symmetry
of the surface and tip states together with that of the VM is
of σ type [see Fig. 9(e)]. That is, if for a given scattering
path coupling states at the tip apex a and sample s with λ

we denote their respective symmetries τ as (τs,τλ,τa), then
combinations such as (σs,σλ,σa), (πs,πλ,σa), or (πs,σλ,πa)
will be large compared to odd combinations such as (σs,σλ,πa)
or (πs,πλ,πa). Paulsson et al. proposed to transform the
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TABLE I. Percentual contributions of different tunneling paths
to the elastic current and inelastic currents associated to different
types of modes calculated under the three configurations depicted in
Figs. 8(a)–8(c). Values in parentheses correspond to the same cases
but after retracting the tip by 1–2 Å [Figs. 8(d)–8(f)].

VM (σs,σa) (σs,πa) (πs,σa) (πs,πa)

Elastic 78 (85) 0 (0) 0 (0) 20 (13)
Cu tip FT(s) 0 (1) 0 (0) 98 (97) 0 (0)
on CO FR(s) 0 (0) 0 (1) 98 (97) 0 (0)

ν(s) 86 (95) 0 (0) 1 (0) 12 (4)

Elastic 57 (11) 1 (0) 3 (2) 37 (85)
CO tip FT(a) 0 (0) 85 (73) 2 (3) 11 (22)
on Cu FR(a) 0 (0) 86 (72) 1 (7) 11 (19)

ν(a) 4 (27) 0 (1) 1 (4) 93 (67)

Elastic 2 (0) 0 (0) 1 (1) 96 (98)
FT(s) 0 (0) 69 (66) 27 (28) 2 (5)

CO tip FT(a) 0 (0) 73 (53) 25 (45) 0 (0)
on CO FR(s) 0 (1) 78 (91) 20 (7) 0 (0)

FR(a) 0 (0) 71 (39) 27 (59) 1 (1)
ν(s) 3 (4) 0 (0) 1 (0) 95 (94)
ν(a) 2 (3) 0 (0) 1 (1) 96 (95)

spectral matrices Aαα into the eigenchannels basis projected
at the surface and the tip as they represent a natural basis for
the propagating states at each side of the junction and ease
the derivation of the propensity rules. Indeed, it was found
sufficient to include just a small number of eigenchannels in
order to obtain a good estimate of γ FGR

λ .
Our LOIT approach is specially suited for performing a

similar analysis of the propensity rules, albeit it offers several
advantages. We first recall that Eq. (43) for the inelastic current
implies that the height of a given IETS peak associated to
VM λ is determined by the |〈as,ms

s |Mλ
sa|as,ma,±λ

a 〉|2 terms.
Indeed, this equation is highly reminiscent of the γ FGR

λ

expression of Paulsson et al., except that the former exploits the
TRCs replacing the eigenchannel projections by the surface
scattering states |as,mα

α 〉. Hence, the symmetry of these states
can be examined independently and prior to the calculation of
the full system Green’s function (or the eigenchannels). We
have found that for the Cu + CO surface, around 10 states
are enough to accurately compute the inelastic currents. In
Fig. 9(a), we plot top views of isosurfaces corresponding
to some representative states grouped according to their τs

symmetry. At the Cu tip, on the other hand, just one σ state
dominates by far all elastic and inelastic currents [see side
view in Fig. 9(b)] while, at the CO tip, only one σ and two π

channels are necessary [see Fig. 9(c)]. In Table I, we provide
the percentual contribution to the elastic |〈as,ms

s |Fsa|as,ma,±λ
a 〉|2

and inelastic |〈as,ma
a |Mλ

sa|as,ma,±λ
a 〉|2 rates associated to the

FT, FR, and ν modes arising from tunneling paths involving
these states and for the same configurations as those depicted
in Fig. 8. The fulfillment of the propensity rules is quite
remarkable and applies to all cases regardless the VMs are
located at the apex or the surface or the actual tip-sample
distance. FT and FRs are always largely dominated by (πs,σa)
and (σs,πa) paths, whereas stretch modes mainly interact with
(σs,σa) paths for the Cu tip and (πs,πa) for the CO tip. Notice,

on the other hand, that the elastic rates are dominated by paths
where surface and tip states share the same symmetry.

We may also attempt an even simpler derivation of the
propensity rules following a similar approach to that of
Nakamura et al.27 To this end, we consider the CO tip placed
on top of the CO [Figs. 8(c) and 8(f)] and transform the Mλ

sa

matrix elements linking the COs at the surface and the apex
from the AO basis set to the molecular orbitals (MOs): M̃λ

sa =
V

†
s Mλ

saVa , where Vs/a holds the MOs (in our case those of the
CO at the surface and the tip), and M̃λ

sa stands for the e-VM
coupling in the new basis. Recall that this new basis is a mixture
of AO and MOs since all the terms related to the metal atoms
are still described by the former. The MOs are trivially obtained
by performing a self-consistent calculation of the isolated
CO keeping its geometry to that obtained for the relaxed
surface and CO tip. Next, by applying the MO transforms to
the scattering states |̃as,mα

α 〉 = V −1
α |as,mα

α 〉, one may evaluate
Eq. (43) in this mixed basis and extract the contribution of
all the scattering paths for a given VM. It turns out that out
of a total of around 900 orbitals used to describe the STM
interface, just 5 CO MOs dominate by far both the elastic and
inelastic currents. They are sketched in Fig. 9(d) again grouped
by their symmetry character. Within the σ group, the 3σ MO
generally provides by far the largest contribution followed by
the 1σ , while the 2σ ∗ tends to yield a considerable contribution
but of negative sign arising from strong interference effects.
Within the π group, the 1π∗ MO is typically the dominant state
and next the 1π . The percentual contributions to the elastic
and inelastic currents associated to the FT, FR, and ν modes
arising from (τs,τt ) tunneling paths involving only these MOs
are very similar, within 10%, to the values given in Table I,
thus again corroborating the propensity rules. Unfortunately,
such a simple MO approach is only useful whenever the main
tunneling paths involve molecules at both the tip and the
sample. For the other cases, Cu tip on CO or CO tip on Cu,
the large hybridization among the metal atom AOs leads to
interference effects which complicate the symmetry analysis.

B. IETS dependence on tip-sample distance

Several works have addressed the evolution of the VM
features in energy and height from the tunneling to contact
regimes.14,44 These studies showed that the contribution of
the inelastic processes tends to increase the total current in
the former regime, which is in accordance with our LOIT
approach where expression (43) has the same sign as its
elastic counterpart (42). However, in those studies the AO
basis employed was rather localized and therefore, as shown
in Sec. IV, the calculated currents at large ztip values can not
be trusted. The use of extended AOs allows a more accurate
insight into the dependence of the IETS on ztip under TRCs.
Indeed, comparing Figs. 8(a) and 8(b) versus 8(d) and 8(e)
reveals a strong increase of the stretch modes peak heights
relative to the FR and FT ones as the tip is retracted by
1–2 Å. As a result, the calculated IETS curves may even differ
qualitatively.

In Fig. 10, we plot the evolution of the IETS peak heights
as a function of ztip. Despite the normalization dI/dV factor,
there is an overall decrease of the IETS intensities with
increasing tip-sample distance indicating that the it couplings
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FIG. 10. (Color online) Evolution of the IETS peaks with ztip for
(a) Cu tip on CO, (b) CO tip on Cu, (c), (d) CO tip on CO. Solid,
dashed, and dotted lines correspond to the sum of the IETS peaks
associated to FRs, FTs, and stretch modes, respectively, while blue
(red) lines refer to VMs located at the surface (tip).

decay faster into vacuum than the elastic ones. The figure also
reveals different decay factors for each type of mode and tip.
For the Cu tip on CO case shown in Fig. 8(a), the FTs dominate
over the FRs and next the ν modes, with a larger decay for
the former. Curiously, the stretch modes contribution shows
a sudden increase at ztip = 8.5 Å and becomes even larger
than that of the FTs, hence leading to qualitatively different
IETS. We ascribe this increase to an optimum overlap at this
distance between the σ state at the Cu tip and those at the
surface which maximizes the e-VM coupling. The fact that, to
our knowledge, the interchange in the peak heights between
the the FT and ν modes has not been reported experimentally
is most probably related to a small signal-to-noise ratio at
such large distances (or small currents), which hinders the
resolution of any IETS peaks.

For the CO tip, the stretch modes are always the dominant
ones, except at the closest distances ztip � 5 Å, where we find
a sudden decrease in their contribution and may even become
smaller than the rest of modes as is the case when the tip
is on top of the Cu [Fig. 10(b)]. This is the reason for the
different aspect of the spectra between Figs. 5(b) and 5(e).
At larger distances, all apex modes decay in a similar way,
with the FR modes providing the smallest contribution. When
the same tip is placed on top of the CO, we find a relatively
similar behavior between the modes located at the surface [see
Fig. 10(c)] and those at the apex [see Fig. 10(d)]. This time,
all IETS heights decay more smoothly except the stretch ones,
which at ztip � 7 Å present a sudden increase in the slope
albeit not big enough to change the hierarchy among the types
of modes or, equivalently, the shape of the IETS curves [see
Figs. 3(c) versus 3(f)].

The above results suggest that the tip-sample distance may
result in a crucial parameter in determining the shape of the
inelastic spectra, particularly at small distances, but also, for
the Cu tip case, at large ztip values. However, since curves

(d)–(f) in Fig. 5 have been calculated at large tip-sample
distances for which our AO basis set is not too accurate, further
tests with even more extended states seem necessary to confirm
this effect.

VI. CONCLUSIONS

We have revisited the SCBA formalism within the context of
IETS simulations under an STM setup. As long as the system
is under TRCs and the molecules are chemisorbed either at
the surface or the tip or both, the leading inelastic events are
found to be those involving a single VM-mediated tunneling
event, while any intralead inelastic scattering may be safely
discarded. This leads to a particularly simple, yet accurate,
Fermi golden rule type expression for the inelastic current
[Eq. (31)], which we denote as the lowest order in inelastic
tunneling (LOIT) approximation. Furthermore, in the case of
physisorbed molecules, the LOIT + ILSCBA approach, which
treats the intralead inelastic scattering events within each
electrode self-consistently, is found to perform as accurately
as the full SCBA approach as long as the system remains in a
tunneling regime.

The LOIT allows a drastic reduction of the computational
cost since first the structural optimization and next the vibra-
tional spectra can be calculated independently for the surface
and the tip. We have implemented the LOIT approximation
within the GREEN package,31 which is specially designed for
STM simulations treating the surface and the tip on equal
footings despite the complexity of the system [see Fig. 1(a)].
Two relevant geometrical features of the implementation, not
generally accounted for in related codes, are the fact that the
sample and tip electrodes may differ in geometry and nature
as well as an efficient k-sampling scheme at both electrodes,
while the tip apex is described as a nonperiodic cluster stacked
below the tip electrode. The simulations are carried out at the
ab initio level via a suitable interface to the DFT-based SIESTA

(Ref. 33) code, whereby the Hamiltonian of the entire system
is calculated by pieces (sample and tip bulk electrodes, surface,
and apex) and next assembled via Green’s function techniques.
Self-consistency is fully preserved at all blocks except at the
apex, for which the matrix elements Haa , Has , or Mλ

sa are
calculated under different geometries than those used in the
IETS simulation; in the former cases, we use a 2D supercell
[e.g., a (4 × 4)], while in the latter the apex is assumed isolated.
This approximation is anyhow necessary to properly describe
the k mixing at the apex, while its accuracy can be tested by
increasing the size and the number of atoms in the 2D supercell.

The implementation is efficient enough to allow the study
in detail of the numerous parameters that enter the actual
calculation. We have performed such an analysis for the
widely studied Cu(111) + CO system under a clean and
a CO functionalized tip in order to identify and quantify
the main sources of inaccuracy associated to them. In the
first place, we have evidenced the need of highly extended
AOs as basis set in order to reproduce reasonably well the
TRCs. Second, it turns out that a good k convergence in the
∂2I/∂V 2 spectra can be achieved with moderate k samplings,
while the usual �-point approximation provides qualitatively
correct results although it tends to overestimate the inelastic
peak/dip heights. Next, assuming WBLs at both electrodes
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is proven to be highly reliable for this system, with the
valuable advantage that it involves much lighter calculations.
The calculated inelastic spectra for the Cu tip shows two main
peaks associated to the FT and FR modes, in good accordance
with previous experimental and theoretical works. On the other
hand, under the CO tip, the intensity of the FR modes decreases
considerably and the stretch modes become the dominant ones.

Finally, the LOIT expressions provide a natural way to
derive the propensity rules for the appearance or not of inelastic
features associated to a particular VM. The symmetry of the
surface scattering states can be examined independently and
prior to the calculation of the full system, thus allowing us to
predict which inelastic paths should be the most relevant ones
for each VM in virtue of the propensity rules. This could be
useful, for instance, to select appropriate tips depending on the
type of vibrations present in an IETS experiment.

To conclude, we mention the potential application of the
LOIT approach to simulate IETS maps at selected voltages.
Such calculations are not yet feasible mainly due to the large
computational cost associated to the simulation, at the ab initio

level, of a topographic image even if only the elastic current
is considered. In addition to the typically large number of
pixels required in an image, adjusting the tip-sample distance
to yield a preselected current value at a given pixel requires
several slab calculations of the type shown in Fig. 4(f), each
taking a few tens of hours in standard multicore platforms.
An alternative route is to evaluate the Hsa and Mλ

sa matrices
over an ample set of 
rtip tip positions and use them as data to
set up a parametrization scheme that allows us to approximate
these matrices on the fly for any 
rtip. Such an approach has
already been implemented for the Hsa matrix elements when
simulating topographic images under the elastic regime,46

while extending it to the Mλ
sa matrices in order to generate

IETS maps in a fast way will be the subject of future works.
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