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Based on a detailed symmetry analysis, we state the general rules to build up the effective low-energy
field theory describing a system of electrons weakly interacting with the lattice degrees of freedom. The basic
elements in our construction are what we call the “memory tensors,” which keep track of the microscopic discrete
symmetries into the coarse-grained action. The present approach can be applied to lattice systems in arbitrary
dimensions and in a systematic way to any desired order in derivatives. We apply the method to the honeycomb
lattice and reobtain the by-now well-known effective action of Dirac fermions coupled to fictitious gauge fields.
As a second example, we derive the effective action for electrons in the kagome lattice, where our approach
allows us to obtain in a simple way the low-energy electron-phonon coupling terms.
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I. INTRODUCTION

The synthesization of graphene has triggered an enormous
interest in the analysis of its low-energy properties using
techniques from relativistic field theory due to the fact that
electrons in this material show a Dirac-type behavior for
stoichiometric fillings.1 The origin of this lies in the band
structure of fermions in the honeycomb lattice: the Fermi
surface degenerates at a number of points, known as “Dirac
points,” close to which the dispersion relation takes a conical
shape.

The conical shape of the Fermi surface is not exclusive
of graphene, but it shows up in a number of unrelated
cases: fermions on the kagome lattice close to 1

3 filling (or
2
3 depending on the sign of the hopping amplitude)2,3 and
fermions in the π -flux state on the square lattice4 are just two
examples of a long list. One also encounters a degenerate Fermi
surface in the mean field description of strongly correlated
systems for particular solutions of the self-consistent mean
field equations, or in the Schwinger fermions mean field theory
of Heisenberg models.5 Last but not least, graphene arises
as another candidate to illustrate this kind of physics.6,7 In
Ref. 8, the appearance of Dirac cones on the Fermi surface was
investigated in a general way, while in Ref. 9 their existence
was exhaustively studied for all possible nonmagnetic three-
dimensional crystals. We note in passing that Dirac cones were
observed at interfaces of topological insulators.10,11

In the study of graphene, different approaches have been
employed to construct the low-energy effective dynamics for
fermions in the presence of phonons. On the one hand, one
may start from the microscopic model and follow, for the
case in which the lattice is deformed, the same steps that lead
to the Dirac-type Hamiltonian in the undeformed lattice.12,13

We call this the tight-binding approach (see Ref. 1 for a
detailed review and an extensive list of references). On the
other hand, one may promote the configuration space in which
the Dirac fermion propagates into a curved manifold, and then
use the standard coupling of relativistic fermions to curved
backgrounds.14,15 We call this point of view the covariant

approach (see Ref. 16 and references therein). This last
approach allows the description of topological defects17 as well
as smooth deformed manifolds.18,19 Despite the strong bases
of both approaches, there are some apparent discrepancies
between them, a step towards solving which can be found
in Ref. 19. See also Ref. 20 for related work applying the
covariant approach.

A crucial ingredient for the construction of the low-energy
effective action is the symmetry group of the underlying
microscopic theory. A symmetry-based approach for graphene
has been proposed in Ref. 21 and used in several other
works.22–27 The symmetries of a lattice system are given by
the discrete translations of the Bravais lattice, the discrete
rotations and reflections known as point symmetries, and
possible internal symmetries such as spin or color. In the
process of taking the continuum limit to describe the physics
at sufficiently low energies, one may naively expect that
any fingerprint of the underlying discrete space would be
washed out, leaving a quantum field theory with no detailed
information of the particular system at hand. In other words,
one may expect the symmetries in the continuum limit to be
given by continuous rotations and translations, together with
the internal symmetries.

In this paper, we revisit in detail how symmetries are
used to constrain the low-energy dynamics of a generic
lattice system, under the assumption that one needs to retain
specific information about the underlying discreteness of the
lattice symmetries. The main idea is that in the infrared,
the discrete translations of the microscopic Bravais lattice
become continuous translations, while the point group retains
its discrete nature. In other words, the low-energy dynamics
will be described by a field theory with continuous fields
transforming in representations of the discrete point group.
Since any term in the Lagrangian should be invariant under
the full symmetry group, the system recalls its discrete origin
through the invariant tensors of the point group that are needed
in order to contract the field’s indices. We call such invariant
tensors the “memory tensors” of the lattice. In this way, a
low-energy description of a system microscopically defined
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by certain degrees of freedom in the square lattice (whose
point group is D4) or in the hexagonal lattice (whose point
group is D6) will differ in the content of memory tensors, and
this would lead to different invariant local terms in the effective
Lagrangian.

The paper is organized as follows: In Sec. II, we give a
general description of the methodology. In Sec. III, we show
the method at work in the case of the D6 point group, and
we apply it to analyze both graphene and kagome systems.
We study as a first example the graphene case, and show how
to derive the low-energy effective field theory reproducing the
tight-binding expressions.12,13 These results have also been de-
rived in Ref. 21 following a related symmetry-based analysis.
The advantage of the present approach is that it can be applied
to study more general cases in a straightforward manner. In a
second step, we apply the method to fermions in the kagome
lattice, which describes a tight-binding model at filling 1

3 (or
2
3 , depending on the sign of the hopping amplitude).2,3 In this
example, the method shows its power since the derivation of the
effective action is quite straightforward. Section IV contains
the conclusions and outlook, and in the Appendixes we present
an alternative way to derive the transformation properties of
the low-energy fields.

II. GENERAL CONSTRUCTION

In this section, we present the procedure to construct the
low-energy effective action of an arbitrary d-dimensional
lattice system. We give the guidelines to build invariants out of
the fields representing the low-energy degrees of freedom and
the memory tensors that keep track of the discrete point-group
symmetry in the infrared description, and discuss the basic
elements defining the field theory for electrons and phonons
on a lattice.

A. Point-group field theory

A d-dimensional lattice system is defined by a unit cell
containing A atoms or molecules at positions {�ra}a∈[1...A]

within the cell, which is repeated periodically on a Bravais
lattice, consisting in linear combinations of a set of d basis
vectors {�ai}i∈[1...d] with integer coefficients �R = ∑d

i=1 ni �ai

with ni ∈ Z. In other words, such a system has a configuration
space consisting on sites

�x �Ra ≡ �R + �ra , (1)

where the components of the vectors �ra in the {�ai}i∈[1...d] basis
are smaller than one and positive. For the kind of lattices we
are interested in,28,29 a space symmetry transformation acts on
the lattice sites �x �Ra as

�x ′
�Ra

≡ P · �x �Ra + �t , (2)

where �t is an arbitrary Bravais lattice vector, and P belongs
to the point group GP which is a finite subgroup of the d-
dimensional orthogonal group O(d), consisting of discrete
rotations and reflections. The group of space symmetries can
be decomposed as GT � GP , where GT is the group of discrete
translations of the Bravais lattice.

1. Low-energy symmetries and field theory

In the continuum limit, the Bravais sites �R get replaced
by continuum Cartesian coordinates �x in a d-dimensional
Euclidean space Rd . In other words, the group of translations
GT is replaced by continuous translationsRd . This implies that
the low-energy degrees of freedom are well described by fields
�(�x) which are functions on Rd . Naively, one would expect
that the point group would be replaced by the continuous
Euclidean point group O(d), resulting in a space symmetry
group Rd

� O(d). If this expectation were realized, the fields
would transform under O(d) and any memory of the ultraviolet
discreteness would be lost in the infrared.30

The point of view taken in this paper is that the last step in
the above reasoning must be omitted; the discrete group GP

must be maintained in the low-energy limit as the group of
point transformations. In other words, our guiding principle
is that the low-energy space symmetry group of the theory is
Rd

� GP . The low-energy degrees of freedom will therefore
be described by fields ��(�x) with � ∈ [1 . . . L], transforming
under a point-group transformation P ∈ GP according to an
L-dimensional representation of GP :

�′
�(�x) =

∑
�

[D(P )]����(P −1· �x) . (3)

The low-energy dynamics of the system has to be invariant
under Rd

� GP . Invariance under translations is guaranteed if
any term in the Lagrangian is written as an integral of local
products of the fields ��(�x) and their derivatives. In order
to construct invariants under GP , we need to contract the �

indices with suitable GP invariant tensors, which we shall call
memory tensors. A generic GP -invariant tensor of order p

satisfies

T�1�2...�p
=

∑
�1�2...�p

[D(P )]�1�1 [D(P )]�2�2 . . . [D(P )]�p�p
T�1�2···�p

.

(4)

Thus, a generic Rd
� GP invariant term in the Lagrangian

density, of order p in the fields and containing no derivatives,
reads as

L∂0 =
∑

�1�2...�p

T�1�2...�p
��1 (�x)��2 (�x) . . . ��p

(�x). (5)

Notice that derivatives ∂i transform under the vector represen-
tation of GP , which in what follows we will denote as V. The
vector representation is defined by

[DV(P )]ij = [P ]ij , (6)

where [P ]ij is the standard d-dimensional matrix representa-
tion of P . In consequence, terms containing derivatives can be
built in a similar manner, with the help of invariant tensors with
as many additional vector indices as derivatives are present.
Explicitly, a term of degree q in derivatives and order p in the
fields reads as

L∂q =
∑

�1...�p,i1...iq

Ti1i2...iq �1...�p
∂i1...��1 (�x) . . . ∂...iq ��p

(�x), (7)

where the tensor Ti1...iq �1...�p
satisfies (4) with the i indices

transforming in the vector representation.31

045126-2



LOW-ENERGY ELECTRON-PHONON EFFECTIVE ACTION . . . PHYSICAL REVIEW B 88, 045126 (2013)

2. Obtention of the invariant tensors

The L-dimensional representation D(P ) carried by the
fields ��(�x) is in general reducible. A reducible representation
D(P ) can be decomposed as a sum of irreducible representa-
tions of GP as

D(P ) =
⊕

J

aJD
J(P ), (8)

where J labels the irreducible representations of GP and the
integer aJ accounts for the multiplicity of the irreducible
representation J in the decomposition. Among the irreducible
representations of GP that will be of interest in what follows,
we have the singlet representation E in which any point-
group transformation acts as the identity, and the vector
representation V that we defined above (6).

A given term in the action contains a product of fields and
their derivatives that transform in the corresponding tensor-
product representation of GP . The existence of an invariant
tensor to contract all the indices in such a product can be
traced back to the presence of the singlet representation in the
corresponding decomposition (8).

To obtain the decomposition of a given representation
D(P ), one needs to compute the character vector χD =
(tr[D(P1)],tr[D(P2)], . . . ), where P1, P2 are representatives
of the conjugacy classes C1, C2, and the ellipsis standing for
the remaining classes of the point group GP . The multiplicities
aJ are obtained by linearly decomposing χD in terms of the
characters of the irreducible representations

χD =
∑

J

aJχ
J. (9)

Given a representation D(P ), one finds its projection onto the
irreducible representation J by use of the projector32

PJ = dim J

|GP |
∑

P∈GP

tr[DJ(P )]∗D(P ). (10)

In order to construct an invariant tensor as those entering
into Eqs. (5) and (7), one needs to project the tensor-product
representation into its singlet component, using

PE = 1

|GP |
∑

P∈GP

D(P ). (11)

The action of this projector is easy to understand: acting
on an object that transforms under D(P ), it gives the sum
of all its images under point-group transformations. The
resulting object will necessarily be invariant under GP .
Explicit examples will be given in the following.

B. Phononic and electronic fields

The natural question is then as to which representations
of GP have to be considered when constructing the effective
field theory of a given lattice system, or in other words, what
is the correct field content ��(�x). In this section, we obtain the
field content that takes into account the low-energy degrees
of freedom related to phonons and electrons moving in the
lattice.

1. Phononic field

To analyze the vibrational degrees of freedom of the lattice,
we denote by vIa( �R) the displacement of the atom a on the
Bravais site �R in the I th direction of three-dimensional space
I ∈ [1 . . . 3]. Notice that for the case of a lower-dimensional
d < 3 lattice, the vIa include the transverse displacements as
well as the displacements along the directions of the lattice.
They give a total of 3A degrees of freedom which enter
quadratically in the Lagrangian at the harmonic level. The
resulting 3A normal modes can be classified, according to the
standard theory of phonons in solids, as 3A − 3 optical modes
plus 3 acoustic modes.33 At sufficiently low energy, only the
acoustic modes are relevant, and they have linear dispersion
relation. In consequence, at low energy we need to consider
only three fields vI (�x).

The fields vI (�x) can be decomposed as vI =
(u1, . . . ,ud,h1, . . . ,h3−d ). The ui(�x) fields take into account
the deformations of the Bravais lattice and transform under
the point group GP in the vector representation V defined
in (6). On the other hand, the 3 − d fields hr (�x) account for the
transverse (or “flexural”) displacements, and they are scalars,
i.e., transform in the singlet representation E.

To isolate the elastic degrees of freedom from the global
translations and rotations of the lattice on the Euclidean three-
dimensional space in which it is embedded, the effective action
must depend only on the combinations ∂ihr (�x) and uij (�x) =
1/2[∂iuj (�x) + ∂jui(�x)].34 The field ∂ihr (�x) transform in the
vector representation

∂ih
′
r (�x) =

∑
i

Pii ∂ihr (P −1· �x) (12)

and we denote this as

∂ih ∈ V. (13)

Regarding uij (�x), it is a symmetric tensor that transforms in
the product representation V ⊗ V as

u′
ij (�x) =

∑
ij

PiiPjj uij (P −1· �x), (14)

in other words

uij ∈ S(V ⊗ V), (15)

where S stands for “symmetric part.” Notice that any symmet-
ric tensor can be decomposed into its trace and its symmetric
traceless parts, namely,

uij (�x) = 1

d
δij

∑
k

ukk(�x) +
∑
kl

(
δikδjl − 1

d
δij δkl

)
ukl(�x).

(16)

Since the first term is invariant under point-group trans-
formations, the representation S(V ⊗ V) contains a singlet
in its decomposition, i.e., S(V ⊗ V) = E ⊕ . . . . This singlet
describes the homogeneous dilation of the lattice.

2. Electronic field

In order to derive the transformation properties for the
electronic degrees of freedom, we need to work out the
implications of Eq. (2). To do that, we note that under a
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FIG. 1. (Color online) In the honeycomb lattice, a rotation P

maps the atoms a and b corresponding to the cell at position �R, into
the atoms b and a corresponding to two different cells, none of which
sits at the rotated position P · �R. In order to express the positions of
the rotated atoms in terms of the atoms corresponding to the rotated
cell, we need to use the vectors �ta and �tb.

point-group transformation P , the position �ra of the ath atom
inside the unit cell transforms as

�r ′
a ≡ P · �ra = �raP

+ �t P
a . (17)

Then, under a point-group transformation the atom a in the
Bravais site �R is mapped into the atom aP in the Bravais site
P · �R + �t P

a . The Bravais lattice vector �t P
a arises whenever the

action of P takes �ra out of the unit cell (see Fig. 1).
Calling ca( �R) the operator that annihilates an electron in

the Wannier state localized around the site �x �Ra , a point-group
transformation P acting on the lattice maps such state into the
corresponding Wannier state centered around the transformed
point P · �x �Ra , namely,35

c′
a( �R) = caP

(
P · �R + �t P

a

)
. (18)

Bloch states are annihilated by the operators

ca(�k) ≡
∑

�R∈Bravais

e−i�k· �R ca( �R). (19)

Using (18), one finds that a point-group transformation P acts
on Bloch states as

c′
a(�k) =

∑
�R∈Bravais

e−i(P ·�k)·( �R−�t P
a ) caP

( �R). (20)

In other words, we obtain36

c′
a(�k) = ei(P ·�k)·�t P

a caP
(P · �k). (21)

As will become clear in the following, the phase factor on
the right-hand side characterizes the transformation properties
of the low-energy electronic degrees of freedom under point-
group transformations.

In a noninteracting system, the Hamiltonian is diagonalized
by linear combinations of Bloch states with fixed �k. Since the
index a takes A values (corresponding to A atoms or molecules
in the unit cell), there would generically be A different energy
bands {εn(�k)}n∈[1...A]. Calling cn(�k) the operator that creates
an energy eigenstate with crystalline momentum �k in the nth

band, we can write

ca(�k) =
A∑

n=1

αan cn(�k). (22)

Bloch theorem implies that states with crystalline momentum
�k accommodate in representations of the group G�k consisting
in those point-group transformations that leave �k invariant, the
so-called “little group” of �k.37 This in turn implies that, if there
exist values of �k such that the transformation rule (21) contains
a nontrivial representation of the little group G�k , then the n

indices mix under little group transformations, and the energy
bands will be degenerate at those points. We will assume that
such degeneracy occurs at isolated points {km}m∈[1...M].

The ground state of the noninteracting electron system
is obtained by filling all Bloch states with negative energy
εn(�k) < 0 while those with positive energy εn(�k) > 0 are
empty. We will assume that interactions do not alter this
picture.

Now, we are ready to take the low-energy limit. Given
an energy cutoff εcutoff, high-energy bands, those which lie
completely above it, are not excited at all at low energies.
On the other hand, low-energy bands can be excited only for
momenta satisfying |εn(�k)| < εcutoff.

We will assume in what follows that low-energy bands
have their minima or maxima at degenerate points {�km}m∈[1...M]

and we will tune the chemical potential to ensure that those
points lie at zero energy. In consequence, low-energy states
have momentum close enough to some of the �km. To construct
the low-energy effective action, we replace the annihilation
operators by

cnm(�q) = cn(�km + �q). (23)

With these operators we can recover, in our original basis (22),

cma(�q) =
∑

n

αan cnm(�q). (24)

Notice that in (23) we have also expanded the high-energy
bands’ annihilation operators around the minima of the low-
energy bands, and that we have included the resulting operators
in the sum of (24). Since this corresponds to an assumption
on the high-energy modes, it would be harmless as long as the
corresponding additional degrees of freedom are gapped in the
effective theory. This observation will be important in Sec. III
when we study the kagome lattice.

Since under point-group transformations the energy bands
have to be invariant, then the transformation P of one of the
minima �km must necessarily result in another minimum �kmP

,
namely,

P · �km = �kmP
. (25)

With this, and using formula (21), we can state that under
point-group transformations, low-energy annihilation opera-
tors transform according to

c′
ma(�q) = ei�kmP

·�t P
a cmP aP

(P · �q), (26)

where, in the low-energy limit, we have disregarded the �q
dependence of the exponent in the right-hand side of (21).
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By Fourier transforming this low-energy operator, we get our
electronic annihilation fields


ma(�x) =
∫

ddq ei �q·�xcma(�q). (27)

The coordinate �x in the above equation denotes the position in
the Bravais lattice. The transformation rule (26) determines the
representation of the point group under which the electronic
fields transform, its properties being fixed by the transforma-
tion rule of the atom positions �ra and of the minima �km of the
low-energy bands. Explicitly,


 ′
ma(�x) =

∫
ddq ei �q·�xc′

ma(�q) = ei�kmP
·�t P

a 
mP aP
(P · �x). (28)

To make the above equation compatible with the general
transformation rule (3) of a field, we need to replace P in
the above formula with P −1 to obtain38


 ′
ma(�x) =

∑
ma

[D(P )]mama
ma(P −1 · �x), (29)

with

[D(P −1)]mama = δmmP
δaaP

ei�kmP
·�t P

a , (30)

where the indices m,a determine mP ,aP . We denote this
representation as R, i.e.,


ma ∈ R. (31)

Notice that this representation is in principle reducible.
To summarize, in order to construct the low-energy field

theory, we need to identify the discrete point group GP . Low-
energy fields representing phonons consist on flexural ∂ihr (�x)
and in-plane uij (�x) degrees of freedom, transforming in the
vector V and symmetric product S(V ⊗ V) representations of
GP , respectively, while those representing electrons consist
on 
ma(�x) transforming in the representation R defined
in (29). In consequence, our field content is given as ��(�x) =
[∂ihr (�x),uij (�x),
ma(�x)], and invariant terms will be built
out of memory tensors with indices in the corresponding
representations. The list of such tensors can be exhausted
by group-theory methods, thus providing the most general
effective action compatible with the point symmetries. Up to
this point, we have only made use of the point symmetry
group of the system. At low energies, the translation subgroup
enters only through its continuum description, which implies
the conservation of �q. Nevertheless, the underlying discrete
translation symmetry imposes the conservation of crystalline
momentum, thus a term in the Lagrangian originating transi-
tions between states at different minima �km in the Brillouin
zone must be forbidden. This implies that, among all the
possible invariant tensors, we must keep only those which
are completely diagonal in m. In the next section, we apply
this procedure to a particular important case.

III. D6 FIELD THEORY

In this section, we apply the methodology described above
to the case in which the point group is D6, which arises, in
particular, for the cases of the hexagonal and kagome lattices.

We first discuss the common features of these two different
lattices, i.e., the decomposition of reducible representations

into irreducible ones that allows us to construct the invariant
tensors. In a second step, we construct the singlet terms (D6
invariants) that conform the low-energy effective action as
an expansion in momenta. The results are compared with
the literature. At this point, we analyze the different lattices
separately, showing how to derive the relevant invariant terms
in each case.

A. D6 group and its representations

In general, the “dihedral group” Dn is defined as the
symmetry group of a regular n polygon. It is generated by
two elements R,Fx as

Dn = {
R,Fx |Rn = e,F 2

x = e,F−1
x RFx = R−1

}
, (32)

where e is the neutral element of the group.
The D6 group is a non-Abelian discrete group of order

|D6| = 12. It can be generated from a 60◦ rotation R and a
reflection through the x axis Fx . It has six conjugacy classes:
those of the identity and R3 of dimension 1, those of R and
R2 of dimension 2, and those of Fx and RFx of dimension
3. For completeness, we mention that D6 is a product group
D6 = D3 × Z2 with D3 the symmetry group of an equilateral
triangle generated from a 120◦ rotation and a reflection.

1. Representations

The D6 group has six irreducible representations, which we
denote by

J = E,A1,A2,A3,V,V′, (33)

where E is the singlet representation, A1,A2,A3 are one
dimensional, and V,V′ are two dimensional. V is the vector
representation (6) and we refer to A1 and V′ as “pseudoscalar”
and “pseudovector” representations, respectively.

The pseudoscalar representation A1, which will appear
below, corresponds to representing the rotations trivially and
the reflections by a sign. The (faithful) vector representation
V is written naturally in terms of 2 × 2 orthogonal matrices
acting on the plane

DV(R) =
(

1
2 −

√
3

2√
3

2
1
2

)
, (34)

DV(Fx) =
(

1 0
0 −1

)
. (35)

The (nonfaithful) pseudovector representation V′ can be
obtained from the V matrices as

DV′
(R) = [DV(R)]2 =

(
− 1

2 −
√

3
2√

3
2 − 1

2

)
, (36)

DV′
(Fx) = DV(Fx) =

(
1 0
0 −1

)
. (37)

Due to nonfaithfulness of V′, one has

DV′
(Fy) = DV′

(R3Fx)

= [DV′
(R)]3DV′

(Fx)

= DV′
(Fx), (38)
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where we have used (36) to go from the second to the third
line in (38). Hence, reflections through the x and y axes act on
a V′ pseudovector in the same way.

In what follows, to distinguish vectors in the two-
dimensional representation V from pseudovectors in the two-
dimensional representation V′, we use for the first Latin
indices, while for the second we use Greek indices.

The decomposition of a given D6 representation D(P ) into
irreducible representations amounts to compute the character

χD = (tr(e),tr(R3),tr(R),tr(R2),tr(Fx),tr(RFx)), (39)

where tr(P ) = tr[D(P )] with P ∈ D6, and to write it as
a linear combination of the characters of the irreducible
representations. The character table for D6 can be found in39

D6 Ce CR3 2 CR 2 CR2 3 CFx
3 CRFx

E 1 1 1 1 1 1
A1 1 1 1 1 −1 −1
A2 1 −1 −1 1 −1 1
A3 1 −1 −1 1 1 −1
V′ 2 2 −1 −1 0 0
V 2 −2 1 −1 0 0

The horizontal lines of this table contain six character vectors
χJ, one for each irreducible representation. These vectors
are orthogonal with the metric gij = diag(1,1,2,2,3,3) whose
diagonal entries are given by the dimension of each of the
classes (quoted in the top line of the table).

Decomposing (39) in the basis given by {χJ} as in (9),
one obtains the coefficient aJ giving the number of times
the irreducible representation J appears in the representation
D(P ).

For the construction of invariants, it is useful to quote
the decomposition of the product of any two irreducible
representations. One has

E ⊗ Irrep = Irrep ,

A1 ⊗ A1 = E (similar for A2,A3), A1 ⊗ V′ = V′ ,
A1 ⊗ A2 = A3 (and cyclics), A1 ⊗ V = V ,

A2 ⊗ V = V′, A2 ⊗ V′ = V ,

A3 ⊗ V = V′, A3 ⊗ V′ = V ,

V ⊗ V = E ⊕ A1 ⊕ V′ ,
V ⊗ V′ = A2 ⊕ A3 ⊕ V ,

V′ ⊗ V′ = E ⊕ A1 ⊕ V′.
(40)

These rules allow us to decompose an arbitrary product of
representations.

2. Memory tensors

As mentioned above, the memory tensors have their origin
in the decomposition of products of representations into
irreducible representations. As an example, the first line
in (40) indicates that a product of two vector representations
decomposes as a sum of three irreducible representations:
the first two are one dimensional and the third one is two
dimensional.

The presence of E in the decomposition of V ⊗ V indicates
the existence of a tensor with which we can construct a

scalar out of two vectors. To obtain such tensor, we apply
the projector PE to an object oij transforming in the product
representation, to obtain

[PEo]ij = 1

12

∑
P

PiiPjj oij = 1

2
(o11 + o22)δij . (41)

Stripping the scalar factor, we extract our invariant tensor in
the V ⊗ V representation. In a similar way, one can extract the
pseudoscalar part A1 as

[PA1o]ij = 1

12

∑
P

s(P )PiiPjjoij = 1

2
(o11 − o22)εij , (42)

where s(P ) is the sign representing the transformation P in the
pseudoscalar representation A1. The resulting tensor εij gives
a pseudoscalar when contracted with two vectors. This tensor
can be also understand as the singlet in the decomposition

A1 ⊗ V ⊗ V = E ⊕ A1 ⊕ V′. (43)

Finally, the presence of V′ in the V ⊗ V decomposition calls
for the existence of a D6-invariant three-index tensor Sαij such
that when contracted with two vectors gives a pseudovector.
Its existence can also be inferred from the singlet in the
decomposition

V ⊗ V ⊗ V′ = E ⊕ A1 ⊕ 3V′. (44)

Such tensor can be obtained by using the corresponding
projector, and it reads as

S1ij = (σ3)ij ,S2ij = (σ1)ij , (45)

where σ1,σ3 are the standard Pauli matrices. A rotated version
of this tensor has been previously introduced in Ref. 16.
According to (4) the invariance of the tensor Sαij under D6
implies that it satisfies

Sαij =
∑
αij

[DV′
(P )]αα [DV(P )]ii [DV(P )]jj Sαij . (46)

This tensor turns out to be a key ingredient in the construction
of the effective action.

For completeness, we observe that from the last line in (40)
we can infer the existence of a tensor δαβ that provides
a scalar out of two pseudovectors: a tensor εαβ providing
a pseudoscalar, and a three-index tensor Tαβγ providing a
pseudovector. This last tensor can be understood as the singlet
in the decomposition

V′ ⊗ V′ ⊗ V′ = E ⊕ A1 ⊕ 3V′. (47)

Its explicit components are given by

T1αβ = (σ3)αβ,T2αβ = −(σ1)αβ. (48)

The Tαβγ tensor (48) is totally symmetric in its indices and
traceless on any two indices. It satisfies

Tαβγ =
∑
αβγ

[DV′
(P )]αα [DV′

(P )]ββ [DV′
(P )]γ γ Tαβγ . (49)

This tensor allows us to obtain the singlet in (47) out of the
product of three V′ pseudovectors.
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B. From memory tensors to the effective action

Let us first analyze the symmetry properties of the low-
energy degrees of freedom we want to describe, which is to
find the field content describing electrons and phonons on our
D6 field theory. First, we discuss the phonon modes, which
have the same symmetry properties for the two examples we
want to analyze in detail, i.e., the hexagonal and the kagome
lattices. Then, we turn into the electron modes, which have
different transformation properties in each system.

1. Phonons

As mentioned in Sec. II, the elastic degrees of freedom split
into in-plane phonons uij (�x) transforming in the symmetric
tensor representation S(V ⊗ V) and out of plane flexural
phonons ∂ihr (�x) transforming in the vector representation V.
In the present case, i = x,y and the index r can be omitted
since there is a single transverse direction.

The vector representation is generated by the matrices (35)
and it is irreducible. Then, for the flexural phonons we can
simply write

∂ih ∈ V. (50)

On the other hand, the tensor representation V ⊗ V decom-
poses as in the first line of (40) in terms of irreducible
representations. It consists of tensors with two vector indices,
which allows us to use the standard decomposition of a
tensor into its trace, its antisymmetric and its symmetric
parts, in order to get an interpretation of the irreducible
representations entering into (40). Indeed, as advanced in
Sec. II, the singlet representation E corresponds to the trace
part. Being two dimensional, the V′ representation corresponds
to the two-dimensional space of symmetric traceless 2 × 2
tensors. Finally, the A1 representation must then correspond to
the one-dimensional space of antisymmetric 2 × 2 matrices.
With this, we can deduce

uij ∈ S(V ⊗ V) = E ⊕ V′. (51)

We can arrange the two independent components of the
symmetric traceless part of uij (�x) in a V′ pseudovector, by
making use of our invariant tensor Sαij as

A(u)
α (�x) =

∑
ij

Sαij uij (�x)

= (∂xux − ∂yuy,∂xuy + ∂yux). (52)

We would like to stress that A(u)
α (�x) is not a vector in the

usual sense since it transforms in the V′ representation. This
object has been named pseudovector since under a y-axis
reflection (x,y) → (−x,y) transforms as [A(u)

x (�x),A(u)
y (�x)] →

[A(u)
x (�x), − A(u)

y (�x)] contrary to naive expectations. This last
transformation is nothing but the expected one as soon as
one recognizes that A(u)

α (�x) transforms as a V′ representation
of D6:

A(u)
α

′
(�x) =

∑
β

[DV′
(P )]αα A(u)

α (P −1 · �x), (53)

where DV′
(P ) are as in (36) and (37).

2. Electrons

In order to obtain the representation in which the electronic
fields transform, we follow the lines sketched in Sec. II. The
two examples we study, namely, that of graphene and electrons
on the kagome lattice, correspond to a triangular lattice with
symmetry group D6. The first Brillouin zone consists of a
hexagon whose vertices are identified under 120◦ rotations.
In other words, we have two independent vertices km with
m = +,−, which have a nontrivial little group. As explained
in Sec. II, this implies that at these points �k±, the energy bands
degenerate, and our technique applies as long as the filling
selects the corresponding energy as the ground state. This is
precisely the case for graphene at stoichiometric fillings, and
in the kagome case we adjust the chemical potential to have
filling 1

3 .

The triangular Bravais lattice is generated as �R = n1�a1 +
n2�a2 with n1,n2 ∈ Z and

�a1 = (1,0), �a2 =
(

cos
π

3
, sin

π

3

)
, (54)

where for convenience we set the lattice spacing to one by an
appropriate choice of units. The two inequivalent Fermi points
are located at

�k± = ± 4π√
3

(1,0). (55)

(a) The graphene case. Being made out of carbon atoms
arranged in a hexagonal structure, graphene can be seen as
a triangular lattice with a fundamental cell containing two
atoms at positions ra with a = a,b. The low-energy dynamics
is hence described by two energy bands. The positions of the
a and b atoms inside the unit cell are

�ra = 1√
3

(
cos

π

6
, sin

π

6

)
, �rb = 2√

3

(
cos

π

6
, sin

π

6

)
.

(56)

To analyze the low-energy limit, we consider the neighborhood
of the Dirac points �k± and write �k = �k± + �q with |�q| small
enough. We expect that only the degrees of freedom in such
regions participate in the dynamics and therefore we get four
low-energy independent annihilation fields


ma(�x) =

⎛
⎜⎜⎝


+a


+b


−a


−b

⎞
⎟⎟⎠ . (57)

These fields transform according to (29) and (30), and to make
the transformation rule explicit, we need to compute �t P

a , aP ,
and mP defined in (17) and (25). In order to do that, let us first
notice that the action of the D6 generator R on the Bravais sites
is homogeneous, while for the unit cell basis �ra,�rb one gets a
nonhomogeneous piece (see Fig. 1)

R · �ra = �rb − �a1, R · �rb = �ra + �a2 − �a1, (58)

from which we extract

aR = b ,+R = −, bR = a ,−R = +, (59)

and

�t R
a = −�a1 ,�t R

b = �a2 − �a1. (60)
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Second, for the Fx generator we get

Fx · �ra = �rb − �a2, Fx · �rb = �ra + �a1 − �a2, (61)

implying

aFx
= b ,+Fx

= +, bFx
= a ,−Fx

= −, (62)

and

�t Fx

a = −�a2 ,�t Fx

b = �a1 − �a2. (63)

In consequence, from (26) and (28) we obtain

DR(R) =

⎛
⎜⎜⎝

0 ω

ω∗ 0
0 ω∗

ω 0

⎞
⎟⎟⎠ , (64)

DR(Fx) =

⎛
⎜⎜⎝

0 ω∗

ω 0
0 ω

ω∗ 0

⎞
⎟⎟⎠ , (65)

with ω = ei 2π
3 .

The character for the D6 representation defined by (64)
and (65) is

χR = (4,0,0,−2,0,0). (66)

This representation is reducible and decomposes in D6
irreducible representations as22


ma ∈ R = V ⊕ V′. (67)

Quadratic terms. Having obtained the representations of D6
contained on the basic low-energy fields uij (�x), ∂ih(�x), and

ma(�x), our aim now is to build an invariant effective action.

As a first step, one might wonder whether quadratic
fermionic terms, not including derivatives, are allowed in
the low-energy effective action. This amounts to analyze the
D6 singlets in the 


†
ma
ma decomposition. From (40), one

immediately finds that the 16-dimensional fermion bilinear
representation decomposes as


†
ma
ma ∈ R∗ ⊗ R = 2E ⊕ 2A1 ⊕ 2A2 ⊕ 2A3

⊕ 2V ⊕ 2V′. (68)

The coefficient of the singlet E in Eq. (68) implies that two
possible memory tensors M,M̃ exist. Upon computation, one
finds

M = I4×4, M̃ =

⎛
⎜⎜⎝

0 1
1 0

0 1
1 0

⎞
⎟⎟⎠ . (69)

The appearance of the M tensor is not surprising since the
fermion representation defined by (64) and (65) is easily seen
to be unitary. By looking at the structure of the M̃ tensor, one
realizes that it leads to fermion bilinears 
†M̃
 that mix both
the Fermi points ± and the sublattices a,b. As discussed at the
end of Sec. II, conservation of crystalline momentum does not
allow for this last kind of term in the Lagrangian, thus we must
not consider M̃ in the low-energy limit. We conclude that, at

the quadratic order and with no derivatives, symmetry allows
only one term in the Lagrangian constructed from the trivial
tensor M ,40 which reads as

Lμ = μ
†
 (70)

(here and in what follows the ma indices are not made explicit
whenever they are summed over). The arbitrary constant μ can
be identified with a chemical potential.

The tensor M also allows us to write a kinetic term of the
form

Lkin = i
†∂t
. (71)

Next, one can explore the possible derivative terms. To do that,
we have to decompose the product 


†
ma∂i
ma into irreducible

representations. This gives


†
ma∂i
ma ∈V ⊗ R∗⊗ R = 2E ⊕ 2A1 ⊕ 2A2 ⊕ 2A3

⊕ 6V ⊕ 6V′. (72)

The presence of two singlets in the above decomposition,
whose origin can be traced back to the presence of two V terms
in (68), can be understood as the existence of two independent
sets of invariant “Dirac gamma” matrices γi and γ̃i satisfying

[DR(P )]†γi D
R(P ) = DV

ij (P ) γj . (73)

In other words, the bilinears 
†γi
 and 
†γ̃i
 constructed
out from those γ matrices transform as vectors. As for the
tensors derived above (69), due to momentum conservation
only one of the sets satisfying (73) is permitted in the low-
energy effective action. Indeed, upon analyzing the structure
of the gamma matrices γ,γ̃ , one observes that the fermion
bilinear that results from the γ set preserves the Fermi points,
while the one that results from the γ̃ set mixes the two Fermi
points. Again, by crystalline momentum conservation we must
discard the γ̃i set in the low-energy effective action. The
relevant set of Hermitian γ matrices satisfying (73) reads as

γ1 =

⎛
⎜⎜⎜⎝

e−i2π/3

ei2π/3

e−iπ/3

eiπ/3

⎞
⎟⎟⎟⎠ , (74)

γ2 =

⎛
⎜⎜⎝

e−iπ/6

eiπ/6

e−i5π/6

ei5π/6

⎞
⎟⎟⎠ . (75)

The reason for calling these tensors γ matrices follows from
their anticommutator algebra

{γi,γj } = 2δij (76)

and from the form of the singlets we can construct out of them.
From all these ingredients, it now follows that the D6-

invariant term that can be constructed out of fermion bilinears
and one derivative is

Lv = iv
∑

i


†γi∂i
, (77)

where v is an arbitrary constant. As shown below, this ex-
pression coincides with the derivative term originally obtained
in the literature from a tight-binding approach. The virtue
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of our approach is that it makes manifest the transformation
properties of the fermionic excitations under the point group.

Accidental rotation symmetry. From the fermionic terms
we just constructed (70), (71), and (77), we conclude that, at
the quadratic level in fermions, the Lagrangian for graphene
reads as

L2 = i
†∂t
 + iv
∑

i


†γi∂i
 + μ
†
. (78)

This Lagrangian can be shown to have an accidental con-
tinuous symmetry, already discussed in Ref. 22 where it was
called “full intravalley rotational symmetry.” In our formalism,
this symmetry arises naturally from the fermionic rotation
generator �, constructed from the γ as

� = i

4
[γ1,γ2] = 1

2

⎛
⎜⎝

1
−1

−1
1

⎞
⎟⎠ . (79)

From it we can define the continuous matrix D(θ ) as

D(θ ) = eiθ� =

⎛
⎜⎜⎜⎜⎝

ei θ
2

e−i θ
2

e−i θ
2

ei θ
2

⎞
⎟⎟⎟⎟⎠ , (80)

which satisfies the relation

[D(θ )]†γi D(θ ) = Rij (θ ) γj , (81)

with

R(θ ) =
(

cos θ −sin θ

sin θ cos θ

)
. (82)

Expression (81) ensures that the quadratic Lagrangian L2 is
invariant under the simultaneous transformations

�x ′ = R(θ ) · �x,
(83)


 ′
ma(�x) =

∑
ma

[D(θ )]mama
ma{[R(θ )]−1· �x}.

Notice that upper and lower components of 
ma(�x) do not mix
under (80).

Being an accidental symmetry of the lower derivative
quadratic action, this symmetry does not need to be preserved
by interactions nor by higher derivative terms, and as we
will see in the forthcoming sections, it is indeed broken by
electron-phonon interactions.

Electron-phonon couplings. To construct the invariant
terms coupling phonons to electrons, let us first concentrate in
the in-plane phonons uij (�x), which transform in the S(V ⊗ V)
representation. We hence need to look for singlets in the
decomposition of the product

uij

†
ma
ma ∈ S(V ⊕ V′) ⊗ R∗ ⊗ R

= 4E ⊕ 4A1 ⊕ 4A2 ⊕ 4A3 ⊕ 8V ⊕ 8V′. (84)

In the first line of this equation, we can use (51) and (68) to
advance that we will have four singlets in the second line:
two of them coming from the singlet in (51) multiplied by
the two singlets in (68), and the other two coming from
the V′ in (52) multiplied by the two V′ in (68). Similarly

to what happened with the quadratic invariants, momentum
conservation precludes half of them, therefore in what follows
we only write the two tensors which do not mix the Fermi
points. The one coming from the product of the singlet in (51)
with the singlet in (68) reads as

Lq̄(u) = q̄(u) 

†


∑
i

uii . (85)

This term has its physical origin in the changes in the area of
the unit cell due to contractions and dilatations.45

The singlet arising from the product of the V′ in (51) with
the V′ in (68), in complete analogy with the discussion above
on the derivative terms, implies the existence of a set of gamma
matrices γ̄α that project the fermion bilinear (68) onto its
relevant V′ component. They read as

γ̄1 =

⎛
⎜⎜⎝

eiπ/3

e−iπ/3

e−iπ/3

eiπ/3

⎞
⎟⎟⎠ , (86)

γ̄2 =

⎛
⎜⎜⎝

e−iπ/6

eiπ/6

eiπ/6

e−iπ/6

⎞
⎟⎟⎠ , (87)

and satisfy

[D(P )]† γ̄α D(P ) = DV′
αβ(P ) γ̄β . (88)

The resulting interaction term has the form

Lq(u) = q(u)

∑
α


†γ̄α
 A(u)
α , (89)

where the pseudovector A(u)
α was obtained in (52) by projecting

the phononic components into the V′ representation making
use of the tensor Sαij defined in (45). This interaction
term reproduces the expressions previously obtained in the
literature.1

Now we can turn into the invariant terms coupling flexural
phonons to electrons. To lowest degree in fields and lowest
orders in derivatives, we need to look for singlets in the
decomposition of the product

∂ih
†
ma
ma ∈V ⊗ R∗⊗ R. (90)

Since the irreducible representations entering into this product
are exactly the same as in (72), we repeat the analysis we made
to write the quadratic derivative terms and obtain the invariant
coupling

Lg = vg
∑

i


†γi
 ∂ih. (91)

To the same order in the fields, we can easily go to higher
orders in derivatives. Since ∂i∂jh transforms in the same rep-
resentation as uij , Eq. (84) and the subsequent considerations
immediately tell us that the allowed invariant couplings are

Lq̄(h) = q̄(h)

†
∇2h (92)

and

Lq(h) = q(h)

∑
α


†γ̄α
 A(h)
α , (93)
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where

A(h)
α (�x) =

∑
ij

Sαij ∂i∂jh(�x). (94)

The interaction term (93) has been recently shown to appear
when a coupling to the spin degrees of freedom is present.46

Notice that in the absence of a substrate, the transformation
h(�x) → −h(�x) must be a symmetry of the Lagrangian, which
implies that the coupling constants g,q̄(h) and q(h) must be
set to zero. In that case, the first nontrivial interaction arises to
quadratic order in ∂ih(�x). Again, since ∂ih(�x)∂jh(�x) transform
in the same representation as uij (�x), we can write the relevant
terms without any additional analysis. They read as

Lq̄(hh) = q̄(hh)

†
(∇h)2 (95)

and

Lq(hh) = q(hh)

∑
α


†γ̄α
 A(hh)
α , (96)

where

A(hh)
α (�x) =

∑
ij

Sαij ∂ih(�x)∂jh(�x). (97)

The procedure just presented can be pursued to any degree
in the fields and to any order in derivatives, allowing for the
construction of the most general effective action for electrons
coupled to phonons in graphene.

Final result and comparison with the literature. Then, as a
general conclusion, to the lowest order in the fields and their
derivatives, the most general Lagrangian consistent with the
symmetries reads as

L = i
†∂t
 + iv
∑

i


†γi (∂i − ig∂ih) 


+
(

μ + q̄(u)

∑
i

uii + q̄(h)∇2h + q̄(hh)(∇h)2

)

†


+
∑

α

(
q(u)A

(u)
α + q(h)A

(h)
α + q(hh)A

(hh)
α

)

†γ̄α
. (98)

The first observation regarding this Lagrangian is that even if
the first two lines in (98) are invariant under the accidental
continuous symmetry (83), the third line is not. This is due to
the fact that the tensor Sαij entering into the construction of
the pseudovector fields Aα(�x) is not invariant under R(θ ) but
only under transformations in GP . A second observation is that
the coupling to ∂ih(�x) in the first line can be reabsorbed by
a local phase redefinition of the electronic fields 
 ′

ma(�x) =
exp[−igh(�x)]
ma(�x). Nevertheless, such operation would
give rise to a kinetic coupling −g
†
 ∂th. A final point is
that since the Aα(�x) fields are pseudovectors, a local phase
redefinition of 
ma(�x) can not be reabsorbed by a derivative
shift in any of them. In other words, the fields Aα(�x) are not
“gauge” fields in the standard sense.

We close this section showing the consistency of our results
with the existing effective Lagrangians computed from a
tight-binding approach, to lowest order in momentum and
deformation fields. In order to make contact with the literature,
we rewrite the electron field as

ψ+ =
(

e−i π
3 
+b

ei π
3 
+a

)
, ψ− =

(
e−i π

6 
−b

ei π
6 
−a

)
. (99)

From our kinetic Lagrangian Lv in (77) we can extract the
quadratic part of the Hamiltonian density

Hv = −iv
∑

i

(ψ†
+ σi∂iψ+ + ψ

†
− σ̄i∂iψ−), (100)

where σi = (σ1,σ2) are the usual Pauli matrices, σ̄i = (σ1, −
σ2). This coincides with the result obtained in Ref. 12.

As for the electron-phonon coupling, the term arising
from (85) reads as

Hq̄(u) = q̄(u)(ψ
†
+ψ+ + ψ

†
−ψ−)

∑
i

uii , (101)

and coincides exactly with the one presented in Ref. 12.
Finally, from (89) one obtains

Hq(u) = −q(u)

∑
α

(ψ†
+σ̄αψ+ − ψ

†
−σαψ−) A(u)

α , (102)

where σα = (σ1,σ2) and σ̄α = (σ1, − σ2). This again coincides
with Eq. (3.9) of Ref. 12.

(b) The kagome lattice case. We now sketch the application
of our technique to the kagome lattice, highlighting the main
differences with the graphene case discussed above.

The kagome lattice can be seen as a triangular lattice with
three atoms per fundamental cell. As for the graphene case, we
consider the simplest nontrivial case of a doubly degenerate
low-energy band structure with two inequivalent Dirac points;
D6 symmetry implies that they should be located at the vertices
�k± of the Brillouin zone. The third band is not degenerate and
it will be considered a high-energy band. This instance in
particular includes the description of the kagome lattice at 1

3
filling. In consequence, we have six degrees of freedom at low
energies, that we arrange as


ma =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝


+a


+b


+c


−a


−b


−c

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (103)

To derive the transformation properties of the six degrees of
freedom, we consider the triangular lattice to be generated
by (54). The position of the a = a,b,c atoms inside the unit
cell is

�ra = 1
2 (�a1 + �a2), �rb = 1

2 �a2, �rc = 1
2 �a1. (104)

The action of the D6 generators R,Fx on the basis �ra is

R · �ra = �rc + �a2 − �a1, R · �rb = �ra − �a1, R · �rc = �rb

(105)

and

Fx · �ra = �rb + �a1 − �a2, Fx · �rb = �ra − �a2, Fx · �rc = �rc,

(106)

from where one reads the information needed for comput-
ing (26) as

aR = c ,+R = −, bR = a ,−R = +, cR = b (107)
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and

�t R
a = �a2 − �a1, �t R

b = −�a1, �t R
c = 0 (108)

for the R generator, while for the Fx generator we get

aFx
= b , +Fx

= −, bFx
= a ,−Fx

= +, cFx
= c,

(109)

and

�t Fx

a = �a1 − �a2, �t Fx

b = −�a2 ,�t Fx

c = 0. (110)

In consequence, we obtain

D(R) =

⎛
⎜⎜⎜⎜⎜⎝

0 ω∗ 0
0 0 1
ω 0 0

0 ω 0
0 0 1
ω∗ 0 0

⎞
⎟⎟⎟⎟⎟⎠ (111)

and

D(Fx) =

⎛
⎜⎜⎜⎜⎜⎝

0 ω 0
ω∗ 0 0
0 0 1

0 ω∗ 0
ω 0 0
0 0 1

⎞
⎟⎟⎟⎟⎟⎠ . (112)

The character for the representation defined by (111) and (112)
is

χR = (6,0,0,0,2,0). (113)

Upon decomposing it, one finds


ma ∈ R = E ⊕ A3 ⊕ V ⊕ V′. (114)

Two additional degrees of freedom appear in this decom-
position when compared to the case of graphene (i.e., the
scalar E and the pseudoscalar A3). As we explain below, they
give rise to high-energy bands and are naturally projected out
for generic values of the couplings in the resulting effective
Lagrangian.

Quadratic terms. We now turn to the construction of the
possible low-energy effective terms in the Lagrangian. Having
defined the transformation properties of 
ma under D6, these
terms are obtained from the projection of the appropriate
field products into D6 singlets. As discussed for the graphene
case, crystalline momentum conservation is equivalent to
demanding that the terms entering into the Lagrangian must
not mix the Dirac points.

The decomposition of a fermion bilinear results in


†
ma
ma ∈ R ⊗ R = 4E ⊕ 2A1 ⊕ 2A2 ⊕ 4A3

⊕ 6V ⊕ 6V′. (115)

Following the same steps as in the case of graphene, the
resulting effective Lagrangian to quadratic order in the fields
reads as

L2 = μ
†
 + �
†M̃
 + i
∑

i


†(v̌ γ̌i + ṽ γ̃i + v̂ γ̂i)∂i
,

(116)

where

M̃ =

⎛
⎜⎜⎜⎜⎜⎝

0 ω ω∗
ω∗ 0 ω

ω ω∗ 0
0 ω∗ ω

ω 0 ω∗
ω∗ ω 0

⎞
⎟⎟⎟⎟⎟⎠ , (117)

and the explicit expression of the three sets of γ matrices is
given in Appendix B.

The coefficient μ in (116) amounts to a chemical potential
for the electrons. The interesting new ingredient in the kagome
lattice is the M̃ invariant tensor. In the absence of M̃ (� =
0) we obtain, at zero momentum, six degenerate states. The
existence of a nonzero � allows for a splitting among these
6 states into 4 + 2 degenerate states. This fact leads to the
interpretation of the coefficient � as setting a gap between
the six states contained in 
. Therefore, the degeneracy of
the lowest-energy state at zero momentum can be set to 6,
2, or 4 depending on whether � = 0, � > 0, or � < 0. The
lowest-order correction in momentum to the ground state is
nonzero for the four degenerate modes (which get split into
2 + 2), while to linear order the two splitted states get no
correction.

We can now see a beautiful agreement of our group-theory
approach with the phenomenology of the kagome system: a
tight-binding approach applied to fermions hopping to nearest
neighbors in the kagome lattice2,3 shows that at filling 1

3 only
four degrees of freedom appear at low energy.47 The existence
of M̃ from the group-theory approach allows a nice match with
this result if we set � to be positive and very large. Notice that
in that case the assumption that the high-energy bands can
be expanded around the minima of the low-energy bands is
innocuous.

At this point, a consistent low-energy expansion demands
to project out the massive modes. Implementing this projection
amounts to eliminate the irreducible representations E and A3

from (115),48 which then implies that the low-energy effective
action coincides with the one found in the graphene case.

Electron-phonon coupling. From this simple analysis, we
conclude that at low energy, the electron-phonon coupling
terms for the kagome lattice have the same expressions as in
the graphene case, without the need of going through detailed
tight-binding computations. More explicitly, for large �, (114)
matches exactly (67) and hence the decomposition (84) would
be the same, implying that the interaction terms would be given
by (85) and (89). This result shows the power of our symmetry-
based approach to derive low-energy effective actions.

IV. CONCLUSION

In this paper, we provide a method to construct the effective
low-energy Lagrangian of an electronic system defined on
a given lattice. We use a symmetry-based approach that
incorporates the notion of memory tensors, which are nothing
but the invariant tensors of the point group. More specifically,
we have revisited in detail how symmetries constrain the
low-energy dynamics of a generic lattice system and how to
retain the necessary specific information about the underlying
discrete symmetries.
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The main idea is that in the infrared, the discrete translations
of the lattice become continuous translations, while the
point group retains its discrete nature. In other words, the
low-energy dynamics is described by a field theory with
fields transforming in representations of the discrete point
group GP . We have shown how to construct systematically
the infrared effective Hamiltonian, invariant under the full
symmetry group, encoding the discrete origin of the system
into the invariant tensors. In other words, the low-energy
dynamics of a system of electrons in a given lattice would
be determined by the content of memory tensors of GP and
that allows us to construct all the different invariant local terms
in the effective Hamiltonian.

We have applied the method developed to the case of the
D6 point group, and focused into both graphene and kagome
systems. For the graphene case, we have shown how to derive
the low-energy effective field theory reproducing the tight-
binding expressions for the electron-phonon system.12,13 In a
second step, we have applied the method to electrons in the
kagome lattice close to filling 1

3 .2,3 In this example, the method
shows its power since the derivation of the effective action is
quite straightforward.

The advantage of the present approach is that it can
be applied to study more general cases, i.e., lattices with
other point groups, higher order in the fields, and/or their
derivatives, in a straightforward manner. Using the symmetry-
based approach presented in this paper, one could envisage the
study of situations in which lattice deformations contribute
to next-to-leading orders in a systematic way. Higher-order
terms in lattice deformations can be included in our ap-
proach straightforwardly by contracting all vector indices in
(uij )n(∂ih∂jh)m monomials with higher-rank memory tensors.
These higher-rank memory tensors are not independent, and
can be written out of products of the lower-rank ones described
in the text.

We believe that, for the particular case of two-dimensional
systems, as graphene, it is possible to overcome the small
deformations expansion. More specifically, macroscopic de-
formations of the lattice, i.e., curved geometries, would entail
to transform vector indices into curved ones by appropriately
contracting them with a vielbein, and to define the corre-
sponding curved space version of the memory tensors. These
ideas will be explored in future investigations. This could
be a particularly important step forward in modeling some
experimental setups in which deformation of graphene sheets
goes beyond small perturbations of the flat lattice. Another
possible generalization that can be easily envisaged within
the present symmetry-based setup is that of the inclusion of
boundaries and pointlike defects. Our procedure could also be
applied to three-dimensional systems, such as hyperpyrochlore
lattice studied in Ref. 3.
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APPENDIX A: AN ALTERNATIVE APPROACH
FOR DETERMINING THE FERMION
TRANSFORMATION PROPERTIES

In this Appendix, we show that an alternative approach
could be used to derive the transformation properties of the
low-energy degrees of freedom.

Graphene. From the hypothesis of two inequivalent Dirac
points, we expect four degrees of freedom at low energy. They
correspond to (i) the two atoms inside the fundamental cell
which we denote n = a,b, and (ii) the two inequivalent Dirac
points in Fourier space at which the Fermi surface degenerates,
which we denote N = 1,2 (necessarily at the vertices of the
BZ). With the additional input of a linear dispersion relation
for the low-energy degrees of freedom, we will be able to
deduce the same transformation properties as obtained in the
text.

We start by constructing a linear representation of the D6
point symmetry group acting on these four degrees of freedom.
To this end, we place them inside a 4-tuple 
 as49


 =

⎛
⎜⎜⎝

a1

b2

a2

b1

⎞
⎟⎟⎠ . (A1)

To fix the transformation properties of these degrees of
freedom under GP we orient the hexagon so that two of its
vertices lay on the y axis. When Fourier transforming, the first
Brillouin zone consists of a hexagon, now rotated 90◦. Our
conventions coincide with those in Refs. 21 and 23.

It is immediate to see that a fundamental rotation R

interchanges both the atoms and the Dirac points,

a ↔ b, 1 ↔ 2. (A2)

We therefore propose

cR a1 = α b2, R b2 = β a1, (A3)

with phases α,β to be determined below from the point-group
constraints in (32) and the linear dispersion relation conditions.

Time-reversal T symmetry fixes the transformations of the
remaining degrees of freedom (a2,b1) as we now explain.
First notice that in the absence of spin, T simply acts as
complex conjugation. Taking into account the dependence of
the wave function on momentum, one concludes that time
reversal interchanges the Dirac points and changes the sign
of the momentum with no action on the atom’s positions (see
Ref. 21 for a detailed discussion). One therefore has

T a1 = a2, T b1 = b2. (A4)

Acting with T on (A3), one obtains

R a2 = α∗ b1, R b1 = β∗ a2. (A5)

The phases α,β are not completely arbitrary, and we should
demand that the transformation D(R) defined by (A3)–(A5)
satisfies the group constraints (32), that is,

[D(R)]6
 = 
 ⇒ (αβ)3 = 1. (A6)
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Let us now analyze the action of an x-axis reflection on the
fermions. For the cell orientation we have chosen, it is easy
to see that it preserves the Dirac points but interchanges the
atoms,

Fx a1 = b1, (A7)

Fx b1 = a1. (A8)

The transformation of (a2,b2) is again fixed by time reversal
to be

Fx a2 = b2, (A9)

Fx b2 = a2. (A10)

The definitions (A8)–(A10) automatically satisfy the second
constraint in (32):

[D(Fx)]2
 = 
. (A11)

The remaining nontrivial constraint among the D6 generators

FxRFx = R5 (A12)

gives no new constraint on the phases other than the one we
have already found in (A6).

From (A6) one finds three possibilities for representing D6
on 
:

αβ = 1 (A13)

or

αβ = e±i 2π
3 . (A14)

These last two possibilities can be shown to be equivalent upon
computing the character of the representation.50

Now the requisite of a linear dispersion relation at low
energy for the fermions comes into play. This condition
requires an effective action containing a D6 singlet constructed
out of two fermions and one spatial derivative. Since the
derivative transforms in the representation V, (40) implies that
the only possibility for a singlet comes from contracting ∂

with another V representation. The second choice in (A14)
guarantees that this will be possible [in principle, two possible
singlets can be obtained when combining two fermions with
a derivative (see the text)].51 Hence, the fermion dispersion
relation at low energy dictates the choice of phases for the
representation.52 In a generic case, a linear dispersion relation
for fermions would be forbidden by D6 symmetry, if no
possible choice of phases could lead to a V component in
the fermions bilinear decomposition.

Summarizing. The fermionic degrees of freedom (A1) mix
under the point symmetry group as


 ′ = D(P ) 
, (A15)

with

D(R) =

⎛
⎜⎝

0 α

α 0
0 α∗
α∗ 0

⎞
⎟⎠ , (A16)

D(Fx) =

⎛
⎜⎝

0 1
1 0

0 1
1 0

⎞
⎟⎠ , (A17)

where α = ei π
3 corresponds to a 60◦ rotation. The representa-

tions (A16) and (A17) are unitary, reducible, and decompose
in D6 irreducible representations as22 [cf. (67)]


 = V ⊕ V′. (A18)

Kagome. We now apply the procedure above to the kagome
lattice. The kagome lattice has three atoms a,b,c per funda-
mental cell (n = 3), and as for the graphene case we consider
the simplest nontrivial case of a (degenerate) band structure
with two inequivalent Dirac points (N = 2). We place the six
degrees of freedom inside a 6-tuple as


 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

a1

c1

b1

a2

c2

b2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (A19)

Under a fundamental rotation R the fermions mix simultane-
ously as

a → b → c → a,1 ↔ 2. (A20)

Allowing for possible phases, this amount to

R a1 = α b2

R b2 = β c1

R c1 = γ a2

T→
R a2 = α∗ b1

R b1 = β∗ c2

R c2 = γ ∗ a1,

(A21)

where as before the phases will be determined from the
constraints (32). A reflection through the x axis preserves the
cones, leaves the c degrees of freedom invariant and permutes
a ↔ b, that is

Fx a1 = b1, (A22)

Fx b1 = a1, (A23)

Fx c1 = c1. (A24)

The remaining degrees of freedom transformation properties
are fixed by time reversal and amount to similar expressions
changing 1 ↔ 2.

The first two constraints in (32) are automatically satisfied,
and the constraint (A12) results in α undetermined and βγ =
1. Computing the character for the representation, one finds
that it is in fact independent of the product βγ . It is easily seen
that this is due to the fact that all phases can be eliminated by
appropriate definitions of the degrees of freedom. The simplest
choice is α = β = γ = 1.

Upon computing the character, one finds that the fermionic
degrees of freedom (A19) provide a representation for D6
which coincides with the one deduced from the transformation
properties of the Wannier states (114).
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APPENDIX B: KAGOME GAMMA MATRICES

First set:

γ̌1 =

⎛
⎜⎜⎜⎜⎜⎝

−1/4
−1/4

1/2
1/4

1/4
−1/2

⎞
⎟⎟⎟⎟⎟⎠ , (B1)

γ̌2 =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
3/4

−√
3/4

0
−√

3/4 √
3/4

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (B2)

Second set:

γ̃1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 −e−i π
3 1

−e−i π
3 0 e−i 2π

3

1 ei 2π
3 0

0 ei π
3 ei π

3

e−i π
3 0 −1

e−i π
3 −1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, (B3)

γ̃2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0 ei π
6 ei π

2

e−i π
6 0 ei 5π

6

e−i π
2 e−i 5π

6 0
0 e−i π

6 ei 5π
6

ei π
6 0 ei π

2

e−i 5π
6 e−i π

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (B4)

Third set:

γ̂1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

0
√

3ei 2π
3 ei π

2√
3e−i 2π

3 0 e−i π
6

e−i π
2 ei π

6 0
0

√
3ei π

3 ei 5π
6√

3e−i π
3 0 e−i π

2

e−i 5π
6 ei π

2 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (B5)

γ̂2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 − 1
2 − i

2
√

3
1 + 2i√

3

− 1
2 + i

2
√

3
0 − 1

2 + 5i

2
√

3

1 − 2i√
3

− 1
2 − 5i

2
√

3
0

0 − 1
2 + i

2
√

3
− 1

2 + 5i

2
√

3

− 1
2 − i

2
√

3
0 1 + 2i√

3

− 1
2 − 5i

2
√

3
1 − 2i√

3
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B6)
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50The character for D is χ = [4,0,0,2(αβ + α∗β∗),0,0].
51We realize the appropriate choice (A14) as

α = β = ω = ei π
3 .

52A fortiori, one can check that the representations (A16) and (A17)
are equivalent to that proposed in Ref. 21. Had we chosen

the first possibility in (A13), the decomposition of 
 would
have been


 ∈ E ⊕ A1 ⊕ A2 ⊕ A3,

which does not allow for a standard kinetic term for the fermions
in the sense explained above
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