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Abstract 

Catalytic Decomposition of Biogas (CDB), producing simultaneously syngases (SG), 

with high hydrogen contents, for spark ignition (SI) engines and bio-carbon nanofibers 

(BCNFs) to be further used as precursor of synthetic graphite, is presented as an 

alternative to the usual direct combustion. Synthetic biogas mixtures were decomposed 

in the presence of a Ni catalyst at different temperatures and the SG thus produced were 

further tested as fuel in a specifically designed SI engine, whereas the BCNFs were 

subjected to heat treatment to graphitize. The influence of CDB process conditions on 

product yields and properties, the effect of SG composition/quality in SI engine 

performance and emissions, as compared with the use of raw biogas and the influence 
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of BCNFs characteristics on the structural and textural properties of the graphitic 

materials have been studied. The syngases presented better combustion characteristics 

than biogas resulting in higher engine brake thermal efficiencies and lower exhaust 

emissions. Furthermore, high added value graphite-like materials, with a crystalline 

structure similar to that of oil-derived graphite which is currently commercialized to be 

used as anode in rechargeable lithium-ion batteries, were prepared. 
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1. INTRODUCTION 

 

Biogas is an energy source composed mainly of CH4 and CO2 from which electricity 

and heat are produced by its direct combustion in co-generation plants [1]. Nevertheless, 

the exploitation of the biogas for different applications like the production of hydrogen 

[2], syngas [3], high added value carbon materials [4] or bio-methane [5] appear as an 

interesting option, particularly when considering the renewable origin of the source. In 

this context, the Catalytic Decomposition of Biogas (CDB) to simultaneously produce 

syngases (SG) with high hydrogen contents and bio-carbon nanofibers (BCNFs) is a 

potential alternative to be considered. By this process, high quality syngas composed by 

CO and H2 (with smaller amounts of unconverted CH4 and CO2) was obtained from the 

original biogas [6]. However, as compared to the direct biogas combustion, CDB is 

energetically penalized since it is an endothermic process. Therefore, the economical 

feasibility of the CDB process would be highly determined by the final utilization of 

both BCNFs and SG. 

Since the 1940’s, synthetic gases have been used as fuel in Internal Combustion 

Engines (ICE) [7]. It is estimated that during this period, around one million vehicles 

used gas derived from biomass as fuel. From that time on, it has been opened a wide 

field of research in power generation by dual fuel spark ignition (SI) and diesel engines. 

The use of synthetic gases combined with traditional fuels implies a stable combustion, 

even when the 80% of the traditional fuel is replaced by gaseous fuel [7-11]. 

Furthermore, it has been demonstrated that the use of synthetic gases decrease HC, CO 

and NOx emissions in spark ignition (SI) engines compared with gasoline [12-16]. 

Several works have been focused in study the benefits in performance and emissions of 

synthetic gases depending on fuel composition [17]. It has been found that presence of 
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hydrogen in gaseous fuels allows achieving efficiencies similar to natural gas [18]. 

Moreover, the lean operation limit can be extended as the hydrogen fraction increases, 

which implies benefits in emissions over natural gas [17, 18]. Due to these features, 

synthetic gases have become a potential alternative source of energy which gives good 

results as fuel in ICE. 

Carbon nanofibers (CNFs) from the catalytic decomposition of methane have been 

successfully applied by our research group as catalyst support in proton exchange 

membrane (PEM) fuel cells [19], additive in epoxy-based composites [20] and 

precursors of synthetic graphite [21, 22]. Among these potential uses, the graphitization 

of CNFs is a very interesting approach since synthetic graphite is highly valuable 

carbon material with a wide range of applications, including energy storage devices, 

such as anode materials in lithium-ion batteries (LIB). In this respect, materials with 

crystalline parameters in the range of synthetic graphite which are currently employed 

in energy applications were prepared from above mentioned methane-based CNFs at 

temperatures above 2400 ºC, mainly because of the catalytic effect of the metal-

containing species [22]. These materials were further tested as anodes in LIB showing 

good performance in terms of reversible capacity, cyclability and cycling efficiency 

[23]. 

The purpose of this work is to study the implementation of the CDB process for the 

valorization of biogas as an alternative to the usual direct combustion through the 

simultaneous production of hydrogen-rich fuels for SI engines and BCNFs to be further 

used as precursor of synthetic graphite. To this end, synthetic biogas mixtures were 

decomposed in the presence of a Ni catalyst in a rotary-bed reactor under different 

experimental conditions and the SG thus produced were further tested as fuel in a 

specifically designed SI engine, whereas BCNFs were heat treated in the temperature 
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interval 2600-2800 ºC. Emphasis was placed on three aspects: (i) the influence of 

CH4:CO2 ratio and CDB process temperature on SG composition/quality and on BCNFs 

structure, (ii) the effect of SG composition/quality in SI engine performance and 

emissions as compared with the use of raw biogas and (iii) the influence of BCNFs 

characteristics on the structural and textural properties of the graphitic materials 

prepared. 

 

2. EXPERIMENTAL 

 

2.1 Catalytic decomposition of biogas: procedure and products 

Biogas is composed mainly of CH4 and CO2, but it could also contain traces of other 

gases such as N2, H2, O2, H2S, NH3 or siloxanes. Particularly, H2S cause severe metal 

catalysts deactivation and desulphurization of the biogas would be necessary [5]. 

However, removal of harmful impurities that cause corrosion problems (sulphur 

compounds) or damages in the engine (siloxanes) is also necessary if biogas is used as 

fuel [24, 25]. For that reason, three synthetic biogas mixtures containing only CH4 and 

CO2 with volume ratios (v:v) of 50:50, 60:40 and 70:30 designed as BG1, BG2 and 

BG3, were selected. The catalytic decomposition of these biogases to produce SG and 

BCNFs was carried out in a rotary-bed reactor heated by an electric furnace. Additional 

information of the experimental apparatus could be found in [26]. A cold trap was 

placed after the reactor to condense the steam formed during the reaction. In a typical 

test, 5 g of fresh catalyst denoted as Ni/Al2O3 (Ni:Al molar ratio of 2:1) and prepared by 

the fusion method [27], were loaded in the reactor. This catalyst was extensively used in 

catalytic decomposition of methane and CH4:CO2 mixtures and a thorough 

characterization can be found in previous work of our research group [28, 29]. A total 
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flow rate of 6 LN·h
-1

 was chosen to obtain a WHSV (Weight Hourly Space Velocity, 

defined here as the total flow rate at normal conditions per gram of catalyst initially 

loaded) of 30 LN·gcat
-1

·h
-1

. Experiments were carried out at two different temperatures, 

600 and 700 ºC. Prior to each test, catalyst was reduced with a H2 stream at 550 ºC for 

1h. A deviation less of the 5% for C, O and H was obtained in the mass balances. 

Following the raw biogas designation, the syngases and the bio-carbon nanofibers 

produced were named as SG1, SG2 and SG3, and BCNF1, BCNF2 and BCNF3, 

respectively. Moreover, the number 6 for 600 ºC or 7 for 700 ºC was added to discern 

the CDB reaction temperature, such as SG1-6 and BCNF1-6 for those produced with a 

CH4:CO2 volume ratio of 50:50 and at 600 ºC. The composition of the SG was 

determined by gas chromatography in a micro GC Varian CP4900 equipped with two 

packed columns (Molecular Sieve and Porapack) and a TCD detector to quantify H2, 

CO, CH4 and CO2 concentrations. The Ni and Al contents in the BCNFs, as determined 

by inductively coupled plasma-optical emission spectroscopy, are reported in Table 1. 

BCNFs with different Si/Ni atomic ratio (1, 5 and 7) were prepared by mixing the as-

produced BCNFs containing Ni from the catalysts with powder silica and they were 

named by adding this atomic ratio, such as BCNF1-6-1. 

 

2.2 SI engine tests of biogas-based SG 

The engine tests were conducted in a SI engine intended for use in vehicles. The 

original engine (see specifications in Table 2) was adapted for dual fuel operation 

(gasoline and gaseous fuels). A scheme of the engine test bench is shown in Figure 1.  

As it can be seen, the engine was coupled to a dynamometer in order to work at 

different conditions of speed and load. A complete explanation about the apparatus used 

to measure the variables acquired in these tests can be found in [30]. 
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Pollutant emissions were measured using an installation based in a group of Signal 

Instruments exhaust gas analysers, deeply described in [31]. 

In order to remove uncertainty associated with the ICE, the tests conditions of power, 

fuel consumption and pollutant emissions were performed strictly following the current 

European directives related to engine testing. 

SG simulating those produced in the catalytic decomposition of a CH4:CO2 mixture of 

50:50 (v:v) at 600 ºC (SG1-6) and 700 ºC (SG1-7) (see Table 3) were supplied by 

Linde Industrial Gases and named by adding an *, such as SG1-6* and SG1-7*. These 

simulated SG, whose composition is the same as SG1-6 and SG1-7 reported in Table 3, 

were used as fuels to study the performance and emissions of the SI engine, which 

specifications appear in Table 2. For comparison, a synthetic biogas (BG2) was also 

tested.  

For each fuel gas, ignition map was not changed and the engine was tested according to 

the maximum and minimum brake thermal efficiency (BTE) values at full load (wide 

open throttle) for different rotation speeds (from 2000 rpm to 4500 rpm) under three 

equivalence ratios (Φ, ratio of the actual fuel/air relation to the stoichiometric), namely 

Φ=1, Φ=0.85 and Φ=0.7. Calculation of BTE was realized according to the first law of 

thermodynamics and it is defined by equation (1): 

  Eq. (1) 

Where Pb (kW) is the brake power measured by the dynamometer coupled to the 

engine,  (kg/s) the mass flow of fuel consumed by the engine and LHV (kJ/kg) the 

Lower Heating Value of the fuel. The use of equivalence ratios less than one (air 

excess) with gaseous fuels can result in an increment in thermal efficiency and a 

reduction in pollutant emissions [32]. The presence of hydrogen in the SG allowed the 

use of lean conditions with good results. However, it was impossible to reach the Φ=0.7 

BTE =
Pb

m f × LHV
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with the synthetic biogas due to the engine instability produced by this gas at these 

conditions [33]. 

 

2.3 Heat treatment of BCNFs 

The BCNFs were heat treated in the temperature interval of 2600-2800 ºC for 1 h in an 

argon flow using a graphite furnace. The heating rates were 25 ºC·min
-1

 from room 

temperature to 1000 ºC, 20 ºC·min
-1

 in the range 1000-2000 ºC and 10 ºC·min
-1

 from 

2000 ºC to the prescribed temperature. The graphitic materials thus prepared were 

named by adding a suffix with the treatment temperature in the BCNFs designation, 

such as BCNF1-6/2600 or BCNF1-6-7/2600. Therefore, BCNF1-6-7/2600 stands for a 

bio-carbon nanofiber obtained from the catalytic decomposition of the BG1 at 600 ºC, 

with a Si/Ni atomic ratio of 7 and heat treated at 2600 ºC. 

 

2.4 Structural characterization techniques: XRD, SEM and TEM 

The diffractograms were recorded in a Bruker D8 powder diffractometer equipped with 

a Göbel mirror in the incident beam and a parallel-slits analyzer in the diffracted beam. 

Diffraction data were collected by step scanning with a step size of 0.02º 2 and scan 

step of 3 s. For each sample, three diffractograms were obtained, using a representative 

batch of sample for each run. The interlayer spacing, d002, was determined from the 

position of the (002) peak by applying Bragg’s equation. The crystallite sizes, Lc and La, 

were calculated from (002) and (110) peaks, respectively, using the Scherrer formula, 

with values of K = 0.9 for Lc and K = 1.84 for La [34]. The broadening of diffraction 

peaks due to instrumental factors was corrected with the use of silicon standard. Typical 

standard errors of the XRD parameters are < 3 % and < 5 % of the reported values for 

Lc and La, respectively; the interlayer spacing values are more precise, with standard 
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errors of < 0.06 %. These parameters are used to evaluate the degree of structural order 

of the materials [35]. 

The morphology of the materials was studied with a scanning electron microscope 

(SEM) (Hitachi S-3400) coupled to a Si/Li detector for energy dispersive X-ray (EDX) 

analysis. Transmission Electron Microscopy (TEM) was carried out on a JEOL-2000 

FXII microscope operating at 200 kV. Firstly, samples were dispersed in ethanol and a 

drop of solution was deposited on a classical TEM copper grid, previously covered by a 

holey amorphous carbon film. Examination of the sample was focused on parts of the 

samples lying across the holes to obtain information free of the contribution of the 

amorphous supporting carbon film. 

 

3. RESULTS AND DISCUSSION 

 

3.1. SG and BCNFs characteristics: influence of CH4:CO2 volume ratio and CDB 

process temperature 

The compositions of the SG and the BCNFs production (gC·gcat
-1

·h
-1

, grams of carbon 

per gram of catalyst initially loaded and per hour) obtained in the catalytic 

decomposition of three synthetic biogases with CH4:CO2 volume ratios of 50:50, 60:40 

and 70:30, typically present in natural biogas, along with CH4 and CO2 conversions and 

the molar expansion factor (εa) are reported in Table 3. The CDB experiments were 

performed at 600 ºC and 700 ºC since according to thermodynamic calculations [6], 

carbon formation is favoured in this temperature interval. Besides this, CH4 and CO2 

conversions experimentally obtained at these temperatures allow to obtain different SG 

compositions to study afterwards their effect on the engine performance. 
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As expected due to the endothermic nature of the CDB process (CH4 + CO2 ↔ 2H2 + 

2CO, ΔHº= 247 kJ·mol
-1

), CH4 and CO2 conversions were higher at 700 ºC than at 600 

ºC [28]. H2 and CO concentrations in SG increased upon process temperature. As a 

result, H2 concentrations in the syngas up to 53% (SG3-7) were achieved by 

decomposing BG3 at 700 ºC. Moreover, the biogas CH4:CO2 volume ratio also 

influences SG composition. Thus, H2:CO volume ratios of ca. 1 and 1.8 were 

determined in the syngases produced from BG1 and BG3 at 700 ºC, respectively. With 

regard to CO2 concentration, it was observed to decrease by rising biogas CH4:CO2 

volume ratio and/or temperature. The concentration of CO2 in the syngas has to be taken 

into account because it is an inert gas and therefore, an important factor affecting the 

further engine performance [17, 18]. Finally, it is worth to mention that as a 

consequence of the molar expansion occurring in the CDB, an increase of the gas 

volume leaving the reactor is observed. This increase is larger at 700 than at 600 ºC due 

to the endothermicity of the process and can reach values higher than 61%. 

The amount of carbon material obtained as co-product in the CDB process depends on 

the operating conditions (temperature and CH4:CO2 volume ratio) and it ranged between 

1.4 and 3.6 gC·gcat
-1

·h
.-1

 (Table 3). This material was deposited as filamentous 

nanocarbons few microns long (BNCF) as seen in Figure 2 in which some 

representative SEM and TEM micrographs, specifically those of BCNF1-6 and BCNF1-

7, are shown. By comparing the images of these BCNFs, differences with regard to 

aspect and microstructure are evident. Thus, BCNF1-7 (Figure 2.b) are narrower, more 

tangled and more compacted than BCNF1-6 (Figure 2.a). In addition, the former shows 

a mixture of fishbone and ribbon microstructure formed of parallel graphene layers, 

which are, respectively tilted or parallel with respect to the fiber axis bearing the Ni 

particle at the tip and showing an inner hollow of up to 10 nm width (Figure 2.d), 
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whereas only solid (no apparent hollow core) fishbone microstructure with well-defined 

shaped Ni particles at the tip was found in the BCNF1-6 (Figure 2.c). Apparently, the 

increase of the process temperature from 600 ºC to 700 ºC, promotes the formation of 

ribbon microstructures in these BCNFs. The morphology of the other BCNFs produced 

in this work were similar, therefore their images are not given.  

 

3.2. Performance and emissions of the SI engine  

3.2.1. Brake thermal efficiency 

The engine performance has been evaluated according to the maximum and minimum 

BTE values obtained at full load and under the above three equivalence ratios (Table 4). 

As it can be seen, the maximum BTE of the engine fuelled with biogas (BG2) was 

achieved at Φ=1. However, with the syngases (SG1-6*, SG1-7*) higher efficiencies 

were obtained at Φ=0.85 because of the extension of the lean operation limit provoked 

by the presence of H2 in their compositions. Overall, better engine efficiencies were 

determined by using the syngases. Thus, maximum engine brake thermal efficiencies of 

31.65 % and 30.48 % were obtained for SG1-6* and SG1-7*, respectively, against a 

value of 27.24 % for the biogas. Only at Φ=1 and high engine speeds (4500 rpm), the 

use of SG1-7* as fuel led to a drop in BTE, due to the elevated concentration of H2 in 

this syngas (Table 3). The low energy density of hydrogen provoked an increase in the 

fuel consumption and consequently in the CO2 flow, decreasing the power generated. 

 

3.2.2. Exhaust Emissions 

Figure 3 shows the brake specific (BS) exhaust emissions (CO2, CO, HC, NOx) of the 

engine in the points of maximum BTE for the two syngases (SG1-6* and SG1-7*) and 

the biogas (BG2). As compared with biogas, the use of the syngases as fuel led to lower 
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BSCO2, BSCO and BSHC concentrations in the exhaust gases (Figure 3a-c). The 

smaller CO2 contents in SG1-6* and SG1-7* with respect to BG2, can account for the 

decrease of CO2 emissions. Furthermore, it should be considered that the stoichiometric 

conditions (Φ=1) under which we obtained the maximum BTE with biogas together 

with a power fall as a consequence of CO2 dilution also contributed to increase BSCO2 

emissions.  

Despite the fact that BSCO emissions at lean conditions should be minimum, the 

presence of CO in the syngas favours its appearance in the exhaust gases, since part of 

this CO remains unburned. Even so, a significant fall of the BSCO emissions was 

observed by using SG1-6* and SG1-7* (Figure 3b). CO emissions depends mainly on 

the equivalence ratio for the maximum BTE that, as mentioned in Section 3.2.1, was 

higher for the biogas (Φ=1) than for the syngases (Φ=0.85), thus explaining the 

decrease of these emissions when the later were used as engine fuel [32]. 

The main proportion of hydrocarbons in the exhaust gases from either biogas or 

syngases come from the unburned part of CH4. Therefore, as seen in Figure 3c, the 

BSHC emissions followed the sequence BG2 > SG1-6* > SG1-7*, which match with 

the concentration of CH4 in these fuels, 60% > 26% > 11%. 

Unlike BSCO2, BSCO and BSHC, BSNOx emissions from the engine were higher by 

using the syngases as fuels, specifically in the case of SG1-7* (Figure 3d). This result 

is associated with the presence of hydrogen in the syngases. Hydrogen increases the in-

cylinder temperature which has a strong influence in the NOx generation. Thus, BSNOx 

emissions of 32.10 g·kWh
-1

, 4.90 g·kWh
-1

 and 1.51 g·kWh
-1

 were measured from SG1-

7*, SG1-6* and BG2, respectively. This implies that the use of syngases as fuels in the 

engine will require an additional NOx reduction step, like exhaust gas recirculation 
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(EGR) or water injection, in order to maintain these emissions within an acceptable 

range, specifically as the hydrogen concentration in the syngas increases. 

 

3.3. Structural properties of the heat-treated BCNFs  

To complete the study of the revaluation of biogas as an alternative to the usual direct 

combustion, the graphitization of the BCNFs produced in the CDB when feeding a 

CH4:CO2 mixture with a 50:50 volume ratio (BG1) was investigated. The XRD 

parameters of the materials prepared as well as those of the BCNF1-6 and BCNF1-7 

bio-nanofibers used as precursors are collected in Table 5. As indicated by the values of 

the interlayer spacing, d002, and the mean crystallites sizes, La and Lc, these as-prepared 

BCNFs already have a certain degree of structural order and therefore, they are 

classified within graphitic carbons [36].  The heat treatment of the BCNFs at 2600-2800 

ºC leads to more crystalline materials as shown by the decrease of d002, and the growth 

of the crystallites, particularly along the basal plane (La) what can be attributed to the 

preferential coalescence of adjacent crystallites in this direction, or to the coexistence of 

this lateral coalescence with a vegetative process (growth in-plane by incorporation of 

disordered carbon) what has been reported to explain the crystal growth in carbons 

during heat treatment [37]. Unlike La, the growth of Lc just occurs by coalescence along 

the c-axis. As a result, graphitic materials with interlayer spacing in the range of 0.3400 

nm and crystallites sizes La up to ~ 40 nm and Lc of  9 nm are obtained from BCNF1-6 

and BCNF1-7 (Table 5). Furthermore, more structurally ordered materials have been 

attained by heating at 2800ºC the as-prepared BCNFs containing added silica. As a 

matter of fact, the degree of structural order of the materials progressively improves on 

increasing Si/Ni atomic ratio in the BCNFs (BCNF1-6-1,5,7 or BCNF1-7-1,5,7). To 

give such an example, BCNF1-7-1/2800, BCNF1-7-5/2800 and BCNF1-7-7/2800 
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materials show d002 values of 0.3390 nm, 0.3362 nm and 0.3361 nm, whereas the 

corresponding crystallites size, Lc, are 12 nm,  36 nm and  42 nm. The silicon 

present in the BCNFs [38, 39] could react with the disordered carbons in the edges 

planes of the crystallites [38, 39] to form carbides which subsequent decomposition 

would lead to the formation of graphitic carbon. Therefore, the size of the graphene 

layers would be increased. As a consequence of this in-plane crystallite growth, the 

coalescence of the crystallites along the a-axis could also be favoured, thus explaining 

the large La sizes (up to 99 nm) of the graphitic materials prepared from these BCNFs 

containing Si (Table 5). 

A comparative analysis of the graphitization results of the two BCNFs studied, shown 

in Table 5, allows concluding that materials with higher degree of graphitic structural 

order were obtained from BCNF1-7. Although to the best of our knowledge, the work 

present in this paper is the first one showing the graphitization of biogas-based carbon 

nanofibers, the graphitization of fossil fuel-based carbon nanofibers (CNFs) with 

various microstructures, including the above mentioned ribbon and fishbone types 

present in the BCNFs, has been studied in detail [40].  In terms of structure, an overall 

improvement of the graphitic three-dimensional order was also reported to occur. The 

extent of this improvement was found to be very variable depending of the CNFs and no 

apparent trends as regards microstructure or other characteristics was observed. 

However, provided that the composition (Table 1) and the structural parameters of 

BCNF1-6 and BCNF1-7 are similar (Table 5) the significant difference in the degree of 

graphitizability can only be clarified attending to their different microstructure (Figure 

2). Therefore, it seems that the ribbon microstructure which is only present in BCNF1-7 

facilitates somewhat the alignment of the graphene layers and the coalescence of the 

crystallites. Additional work should be done to confirm this point. 
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Finally, it was found interesting to compare the structural parameters of the graphitic 

materials that were prepared in this work from the BCNFs, already discussed, with 

those measured for commercial oil-derived synthetic graphites (petroleum coke being 

the main precursor) which are currently commercialized to be used as anode in lithium-

ion batteries. Two graphites, G1 and G2, were selected and they were characterized 

following identical routines to those described therein. XRD results are also collected in 

Table 5. As seen, the heat treatment of BCNF1-7 at 2800 ºC results in graphitic 

materials that have a three-dimensional structure comparable to that of G1 and G2 

graphites. Thus, d002 of 0.3361 nm and Lc and La up to  42 nm and  99 nm were 

measured for BCNF1-7-7/2800 material. 

 

4. Conclusions 

The Catalytic Decomposition of Biogas was carried out using a Ni/Al2O3 catalyst, 

employing typical CH4:CO2 biogas volume ratios of 50:50, 60:40 and 70:30 at two 

temperatures, 600 and 700 ºC, producing simultaneously bio-carbon nanofibers 

(BCNFs) and syngas (SG) with different characteristics as regards microstructure and 

composition, respectively. Apparently, the increase of the process temperature promotes 

the formation of ribbon microstructures in the BCNFs as well as the proportion of 

hydrogen in the SG. The syngases obtained in the CDB, with a CH4:CO2 volume ratio 

of 50:50 at 600 and 700 ºC, were satisfactorily used as fuel in an automotive SI engine, 

previously adapted to work in dual mode. Maximum engine brake thermal efficiencies 

(BTE) up to  32 % were achieved with both SG, these values being higher than that of 

the raw biogas (27.24 %). Furthermore, with the exception of NOx, the exhaust 

emissions (CO2, CO and HC) were significantly reduced by using SG as fuel. 

Additionally, high added value graphite-like materials, with a crystalline structure 
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similar to that of oil-derived graphite which is currently commercialized to be used as 

anode in rechargeable lithium-ion batteries, were prepared from the corresponding 

BCNFs by heat treatment. On the basis of these results, the revaluation of biogas by 

CDB appears as an interesting alternative to direct biogas combustion. 
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Table 1.  Elemental composition of the BCNFs (wt. % and dry basis) 

BCNFs C N  H  O  Ni  Al  

BCNF1-6 87.46 0.17 0.18 1.09 5.11 1.47 

BCNF1-7 82.66 0.22 0.12 0.81 6.80 2.01 
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Table 2. Original engine specifications 

Engine Lombardini LGW 523 MPI SI engine 

Number of cylinders 2 in line 

Bore x Stroke 72 x 62 mm 

Compression ratio 10.7:1 

Valves per cylinder 2 

Fuel delivery system Electronic indirect fuel injection 
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Table 3. SG composition (v:v, dry basis), CH4 and CO2 conversions (%), molar 

expansion factor (εa) and BCNFs production obtained in the CDB process  

SG CH4:CO2 
T. 

(°C) 

H2 

(%) 

CO 

(%) 

CH4 

(%) 

CO2 

(%) 

ΧCH4 

(%) 

ΧCO2 

(%) 

εa 

(%) 

BCNFs 

(gC·gcat
-1

·h
-1

) 

SG1-6 
50:50 

600 23 23 26 28 37 34 19 2.0 

SG1-7 700 40 39 11 10 71 66 54 1.4 

SG2-6 
60:40 

600 26 19 34 21 33 37 19 2.5 

SG2-7 700 45 34 14 7 65 71 53 2.5 

SG3-6 
70:30 

600 34 17 36 13 37 46 23 3.4 

SG3-7 700 53 29 14 4 67 79 61 3.6 
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Table 4. Maximum and minimum brake thermal efficiencies (BTE) of the engine at full 

load and different equivalence ratios 

 BTE at Φ=1 (%)   BTE at Φ=0.85 (%)  BTE at Φ=0.7 (%) 

Fuel Min. Max. Min. Max. Min. Max 

BG2 22.76 27.24 22.31 25.16 - - 

SG1-6* 26.51 28.41 27.57 31.65 22.47 26.17 

SG1-7* 23.73 28.29 28.87 30.48 23.96 28.48 
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Table 5.   Interplanar distance d002, and crystallites sizes Lc and La of (a) BCNF1-6 and 

BCNF1-7 bio-carbon nanofibers, (b) graphitic materials prepared from BCNF1-6 and 

BCNF1-7 and (c) G1 and G2 graphites of reference 

Material d002 (nm) Lc (nm) La (nm) 

BCNF1-6 0.3417 6.3 22.9 

BCNF1-6/2600 0.3407 8.9 27.5 

BCNF1-6/2800 0.3405 9.3 34.4 

BCNF1-6-1/2800 0.3398 9.7 37.2 

BCNF1-6-5/2800 0.3378 15.9 53.5 

BCNF1-6-7/2800 0.3367 24.0 58.5 

BCNF1-7 0.3422 6.1 23.1 

BCNF1-7/2600 0.3425 6.6 23.4 

BCNF1-7/2800 0.3400 9.3 40.4 

BCNF1-7-1/2800 0.3390 11.5 49.8 

BCNF1-7-5/2800 0.3362 36.1 96.6 

BCNF1-7-7/2800 0.3361 42.4 98.5 

G1 0.3360 47.0 99.5 

G2 0.3361 50.4 102.3 
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CAPTIONS FOR FIGURES 

 

 

Figure 1. Schematic diagram of the engine test bench 

Figure 2. Representative SEM and TEM images of BCNF1-6(a, c) and BCNF1-7 (b, d) 

Figure 3. Brake specific exhaust emissions of the engine at the points with maximum 

BTE: (a) BSCO2, (b) BSCO, (c) BSHC and (d) BSNOx 
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