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Dielectric screening and plasmons in AA-stacked bilayer graphene
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The screening properties and collective excitations (plasmons) in AA-stacked bilayer graphene are studied
within the random phase approximation. Whereas long-lived plasmons in single-layer graphene and in AB-stacked
bilayer graphene can exist only in doped samples, we find that coherent plasmons can disperse in AA-stacked
bilayer graphene even in the absence of doping. Moreover, we show that the characteristic low-energy dispersion
relation is unaffected by changes in the number of carriers, unless the chemical potential of the doped sample
exceeds the interlayer hopping energy. We further consider the effect of an external electric field applied
perpendicular to the layers, and show how the dispersion of the modes can be tuned by the application of a
gate voltage.
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I. INTRODUCTION

The unique optical and electronic properties of graphene
have made this material an optimal candidate for plasmonics
applications.1 This possibility has brought a great interest
in understanding the collective excitations in this material.
Plasmons, which can be defined as collective density os-
cillations of an electron liquid, are present in many metals
and semiconductors.2,3 The characteristic linear dispersion
relation of the quasiparticles in graphene implies that plasmons
in this material are manifestly different than in standard
two-dimensional electron gases (2DEG) with a parabolic band
dispersion.4–8 In the absence of doping, no phase space in
the excitation spectrum of single-layer graphene (SLG) is
available for the dispersion of plasmons. Something similar
happens for bilayer graphene with the more stable Bernal or
AB stacking (AB-BLG).9–13 The recent progress on growing
stable BLGs with AA stacking14,15 has opened the possibility
to study the properties of this class of graphene,16–20 in
particular the collective excitations. In this kind of stacking,
one atom in the top layer belonging to the A(B) sublattice is
directly adjacent to an A(B) atom of the bottom layer.16,18

In undoped AA-stacked bilayer graphene, the perfect
nesting of the electron and hole pockets leads, in presence
of electron-electron interaction, to symmetry-breaking ground
states, such as antiferromagnetism or charge density wave.20,21

The transition temperature of these broken symmetry phases
has been estimated to be of the order of a few degrees Kelvin,20

and at the present there is not experimental evidence for such
gapped phases. In this work we consider temperatures higher
than the transition temperatures and assume that the ground
state of the AA-stacked bilayer graphene is a uniform and
paramagnetic free Dirac-like electron gas.

In this paper we study the excitation spectrum and the
collective modes of AA-BLG. The static screening properties
are discussed and compared to those of a SLG. Analytical
expressions for the low-energy dispersion relations are given.
We show that, contrary to SLG and AB-BLG, long-lived
plasmons exist in AA-BLG even in undoped samples. Further-
more, we find that due to the characteristic Drude weight in
AA-BLG, the dispersion relation of the optical plasmon modes
are independent of doping, unless the chemical potential of the
sample exceeds the interlayer hopping energy. By including

an external electric field, applied perpendicular to the sample,
we show that the velocity of the modes can be controlled by
the strength of the gate voltage.

The paper is organized as follows. In Sec. II we analyze the
band structure of AA-BLG. The polarization and dielectric
functions within the RPA are studied in Sec. III. The static
screening properties are considered. Section IV is devoted
to the study of the collective excitations of the system. A
discussion of our main results, stressing the main differences
of the plasmon modes in AA-BLG with respect to other two-
dimensional (2D) systems, is done in Sec. V. Finally, our main
conclusions are summarized in Sec. VI.

II. BILAYER GRAPHENE WITH AA STACKING

The unit cell of an AA-BLG consists of four inequivalent
carbon atoms, two for each layer. The two-dimensional
Brillouin zone is a hexagon and, as in SLG, the low-energy
physics occurs near the two Dirac points K and K ′.22,23

We describe the electronic properties of an AA-BLG by
a single valley model for electrons in each layer, with an
interlayer hopping t1 ∼ 0.2 eV and separation between the
layers, d ∼ 3.6 Å.24,25 The low-energy Hamiltonian around
the K point can be expressed as

H (k) =
(

HSL(k) H⊥
H⊥ HSL(k)

)
, (1)

where

HSL(k) = vF

(
0 k−
k+ 0

)
(2)

is the usual single-layer graphene Hamiltonian, where vF is
the Fermi velocity, k± = kx ± iky , and

H⊥ =
(−t1 0

0 −t1

)
(3)

corresponds to the interlayer hopping, which for this kind
of stacking accounts for tunneling processes between carbon
atoms with the same sublattice indices. By applying the
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transformation U−1HU , where

U =

⎛
⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

1 0 1 0

0 1 0 1

⎞
⎟⎟⎟⎠ (4)

we can rewrite the Hamiltonian (1) in the block diagonal form

H(k) =

⎛
⎜⎜⎜⎝

−t1 vF k− 0 0

vFk+ −t1 0 0

0 0 t1 vFk−
0 0 vFk+ t1

⎞
⎟⎟⎟⎠ . (5)

Equation (5) accounts for two uncoupled set of bands, which
admits the eigenenergies

ελ,s(k) = st1 + λvFk, (6)

where s = ±1 labels the decoupled bonding/antibonding
blocks of Eq. (5), λ = ±1 is the band index, and k = (k2

x +
k2
y)1/2. The band structure obtained from (6) is shown in Fig. 1.

The eigenfunctions take the form

�s,λ(k) =
(

ψλ(k)

0

)
and

(
0

ψλ(k)

)
(7)

for s = ±1, respectively, where

ψλ(k) = 1√
2

(
λeiφk

1

)
(8)

and tan φk = ky/kx . The low-energy density of states of AA-
BLG is16,18

ρ(ε) = gσgvt1

2πv2
F

(∣∣∣∣ ε

t1
− 1

∣∣∣∣ +
∣∣∣∣ ε

t1
+ 1

∣∣∣∣
)

, (9)

where gσgv is the spin and valley degeneracy. The DOS
contains contributions from the bonding and antibonding
blocks, as it is shown in Fig. 1. Notice that ρ(ε) = const at
low energies, as in a standard 2DEG, whereas for |ε| > t1 it
grows linearly with energy, as in SLG.

FIG. 1. (Color online) Left: Dispersion relation of the AA-BLG
calculated from Eq. (6). Blue lines corresponds to s = +1 and red
lines to s = −1. Right: Density of states, as given by Eq. (9). The
contribution of each cone is shown by dashed lines, and the total DOS
is given by the full black line.

III. POLARIZATION FUNCTION AND THE
RANDOM-PHASE APPROXIMATION

Since we are interested on studying collective modes, we
need to calculate the dielectric function ε(q,ω) of the system.
Within the RPA, ε(q,ω) is expressed as:

ε(q,ω) = 1 − V (q) · �̂
0
(q,ω), (10)

where ε(q,ω), V (q) and �̂
0
(q,ω) are 2 × 2 matrices. V (q)

is the Coulomb interaction matrix, and �̂
0
(q,ω) is the

polarization matrix, whose elements are the density-density
linear-response functions. In our problem, V (q) accounts for
the intralayer repulsion between electrons within the same
graphene sheet, through the 2D Fourier transform of the
long-range Coulomb interaction

Vintra(q) = 2πe2

κq
(11)

and for the interlayer interaction between electrons in different
layers

Vinter(q) = Vintra(q)e−qd , (12)

where d is the separation between the layers and κ is the
dielectric constant of the embedding medium. In order to
work in the same basis as in (5), we transform the Coulomb
interaction matrix from the layer1/layer2 basis

Ṽ (q) =
(

Vintra(q) Vinter(q)

Vinter(q) Vintra(q)

)
(13)

to the bonding/antibonding basis through the transformation
V (q) = U−1Ṽ (q)U where U = ( 1 −1

1 1 ). This leads to

V (q) =
(

V+(q) 0

0 V−(q)

)
, (14)

where

V±(q) = Vintra(q) ± Vinter(q). (15)

On the other hand, �̂
0
(q,ω) contains elements of the form

�0
s,s ′;λ,λ′(q,ω) = −gσgv

L2

∑
k

fs,λ(k) − fs ′,λ′(k + q)

ω + εs,λ(k) − εs ′,λ′(k + q) + iδ

×Fss ′;λλ′(k,k + q), (16)

where L2 is the sample area and fs,λ(k) = [exp{β(εs,λ(k) −
μ)} + 1]−1 is the Fermi-Dirac distribution function, which for
μ = 0 and T = 0 reads �[εs,λ(k)], and δ = 0+. It is important
to notice that the overlap of the electron and hole wave
functions Fss ′;λλ′(k,k′) = |〈�s,λ(k)|ei(k−k′)·r|�s ′,λ′ (k′)〉|2 is

Fss ′;λλ′(k,k′) =
{

1+λλ′ cos(φk−φk′ )
2 for s = s ′

0 for s �= s ′ . (17)

Because from Eq. (17), Fss ′;λλ′(k,k′) = 0 for s �= s ′, only
electron-hole transitions between bands with the same s

contribute to the polarizability of the AA-BLG. This implies
that only transitions between symmetric bands (blue lines
in Fig. 1) or between antisymmetric bands (red lines) are
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FIG. 2. (Color online) Static polarization function −�0(q,ω =
0) for AA-BLG (solid blue line). The dashed red line corresponds
to the polarization in the limit of decoupled layers t1 → 0, which
coincides with the static polarization of undoped SLG.

allowed. Then, each cone contributes independently and the
polarization can be expressed as

�̂
0
(q,ω) = �0(q,ω)

(
1 0

0 1

)
, (18)

where

�0(q,ω) = −gσgv

L2

∑
λλ′

∑
k

fλ(k) − fλ′(k + q)

ω + ελ(k) − ελ′ (k + q) + iδ

×Fλλ′(k,k + q). (19)

The remaining part of the calculation of the polarization
Eq. (19) reduces to the polarization of a doped SLG with a
finite chemical potential μ,4–6 by just substituting μ ←→ t1.

As a first result, we discuss the static screening of AA-BLG.
In the ω → 0 limit, the static polarization function �0(q,ω =
0) is entirely real and behaves as shown in Fig. 2. One notices
that the structure of the static polarization function is similar to
that of a doped SLG,6 containing two different contributions: a
constant metalliclike and a linear in q insulatinglike screening
region. However, contrary to SLG, for which the metalliclike
screening contribution appears only in the doped regime and
which is controlled by the chemical potential, AA-BLG shows
a metalliclike screening even in the absence of doping, due to
the always finite density of states in the spectrum (see Fig. 1).
The polarization function for this region of wave vectors is

�0(q) = −ρ(0) = −gσgvt1

πv2
F

for q � 2t1/vF , (20)

which is a constant that depends only on the interlayer hopping
t1 and on the Fermi velocity vF .

At q = 2t1/vF there is a crossover from metallic to
insulating screening, the latter being associated to interband
transitions, which lead to a linear behavior of the polarization
function, as shown in Fig. 2. In the limit of two decoupled
layers (t1 → 0), one recovers the typical polarization function
of an undoped SLG, as given by the red dashed line in Fig. 2.
The static screening in the long-wavelength limit is simply
given by ε(q) ≈ 1 + qT F /q, where the Thomas-Fermi wave
vector in this case is qT F = 2πe2ρ(0)/κ = 2e2gσgvt1/(κv2

F ).
Notice that qT F in AA-BLG, as in a standard 2DEG (and
contrary to SLG), is independent of the carrier concentration.
However, the static screening in a 2DEG falls off rapidly at
large wave vectors, whereas for both, SLG and AA-BLG,
it grows linearly due to the contribution from interband

FIG. 3. (Color online) The dispersion relation of the plasmon
modes calculated from Eq. (22) is shown by the solid blue lines.
The approximated dispersion given by Eqs. (26) and (27) are shown
by the dashed black lines. The dispersion relation of the acoustic
mode given by (28) is shown by the full black line. The thick black
lines delimitate the intraband and interband electron-hole continuum,
which correspond the the colored regions of the plot.

excitations. Since the DOS (9) is constant at low energies,
the peculiar static screening discussed above will remain for
doped AA-BLG, provided that |μ| � t1.

For finite frequencies, it is possible to obtain a closed
analytical expression for the polarization function valid in the
region of the spectrum where plasmons are undamped, that is,
for ω > vF q and Im�0(q,ω) = 0, which can be written as

�0(q,ω) = −gσgvt1

2πv2
F

+ gσgv

16π

q2√
ω2 − v2

F q2

×
[
G

(
2t1 + ω

vF q

)
− G

(
2t1 − ω

vF q

)]
, (21)

where G(x) = x
√

x2 − 1 − cosh−1(x) for x > 1. The
electron-hole continuum of AA-BLG, defined as the region
of the ω-q plane where electron-hole pairs can be excited,8

can be easily calculated from Im�0(q,ω). Due to the peculiar
band structure of this system, with two independent set of
bands, the electron-hole continuum of AA-BLG has the same
appearance as the one of a doped SLG, but again interchanging
the chemical potential μ by the interlayer hopping t1. Such a
spectrum, which contains two different regions, associated to
intraband and interband excitations respectively, is shown by
the colored region in Fig. 3. As a consequence, optical (q = 0)
transitions in undoped AA-BLG are Pauli blocked, impeding
the absorption of photons with energy less than 2t1.

IV. COLLECTIVE EXCITATIONS

In this section we study the dispersion relation of the
plasmons in AA-BLG, which is obtained from the zeros of
the equation

det ε(q,ω) = 0. (22)

115420-3
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From (14) and (18), it is easy to show that the condition (22)
leads to the following equations for collective modes:

εRPA
+ (q,ω) = 1 − V+(q)�0(q,ω) = 0, (23)

εRPA
− (q,ω) = 1 − V−(q)�0(q,ω) = 0. (24)

A. Plasmons in neutral AA-BLG

The numerical solution for the collective modes obtained
from Eqs. (23) and (24) for the undoped system are shown by
the blue lines in Fig. 3. As it is usual in bilayer systems, we
obtain two modes: one optical mode, with a ω+(q → 0) ∼ √

q

dispersion, and one acoustic mode with a linear dispersion
relation ω−(q → 0) ∼ q. Whereas the optical mode ω+(q)
corresponds to a collective excitation in which the densities in
the two layers fluctuate in phase, the acoustic plasmon ω−(q)
accounts for an out-of-phase oscillation of the carriers in the
two layers. We can easily obtain an analytic expression for
the low-energy dispersion relation of the modes, by using the
long-wavelength limit of the polarization function (21)

�0
q→0(q,ω) = gσgv

t1

4π

q2

ω2
, (25)

from which we obtain the two plasmon branches ω±(q) =√
(1±e−qd )e2gσ gvt1

2κ
q, which have a low-energy behavior

ω+(q) ≈
√

e2gσgvt1

κ
q (26)

and

ω−(q) ≈
√

e2gσgvdt1

2κ
q. (27)

The approximations (26) and (27) are shown by the dashed
black lines in Fig. 3. Contrary to SLG or AB-stacked BLG, it
is interesting to note the existence of long-lived plasmon modes
in AA-BLG already in the undoped regime. In Sec. IV C we
will see that the dispersion relation of the optical plasmon (26),
in the moderate doped regime, will be unaffected by induced
charge carriers in the system.

It is important to notice that the long-wavelength limit of
ω−(q), as given by Eq. (27), is only valid for t1d/(vF κ) �
1. As a consequence, the exact numerical solution for the
dispersion relation of the acoustic mode is not properly fitted
by Eq. (27), as it can be seen by the dashed black line in Fig. 3,
which lies below the RPA numerical solution, underestimating
the velocity of the mode vs . For the general case, as it is
discussed in Refs. 26 and 27, the dispersion relation of the
linear acoustic mode must be calculated in terms of a Laurent-
Taylor expansion including the full polarization function (21).
The square root singularity of �0(q,ω) at ω = vF q ensures
that vs > vF .28 Following the scheme developed by Profumo
et al. in Ref. 27, we obtain the next expression for the acoustic
plasmon dispersion

ω−(q) =
1 + gσ gv

√
2e2dt1

2κv2
F(

1 + gσ gv

√
2e2dt1

κv2
F

)1/2 vF q. (28)

The approximated dispersion relation given by Eq. (28) is
shown by the full black line in Fig. 3, which clearly matches

the RPA numerical solution (thick blue line) at small values
of q.

B. Effect of a perpendicular electric field

The presence gate voltage in the AA-BLG creates a
potential +V in the top layer and −V in the bottom layer.
In this situation we can write the single-particle Hamiltonian
as

HV (k) =
(H+

SL(k) H⊥
H⊥ H−

SL(k)

)
, (29)

where in this case

H±
SL(k) = vF

(±V k−
k+ ±V

)
(30)

and H⊥ was given in Eq. (3). By applying to HV the same
transformation as in Sec. II, we can write the Hamiltonian
(29) in the form

H(k) =

⎛
⎜⎜⎜⎝

−t1 vF k− −V 0

vFk+ −t1 0 −V

−V 0 t1 vFk−
0 −V vFk+ t1

⎞
⎟⎟⎟⎠ , (31)

which admits the eigenenergies

εV
λ,s(k) = s

√
t2
1 + V 2 + λvF k, (32)

where s = ±1 and λ = ±1, and the eigenfunctions

�V
s,λ(k) = 1√

1 + β2
s (t1,V )

(
βs(t1,V )ψλ(k)

ψλ(k)

)
, (33)

where ψλ(k) has been given in Eq. (8) and

βs(t1,V ) = t1

V
+ s

√
1 + t2

1

V 2
. (34)

Also for this case, it is important to notice that the overlap
of the electron and hole wave functions FV

ss ′;λλ′(k,k′) =
|〈�V

s,λ(k)|ei(k−k′)·r|�V
s ′,λ′ (k′)〉|2 is

FV
ss ′;λλ′ (k,k′) =

{
1+λλ′β2

s (t1,V ) cos(φk−φk′ )
2[1+β2

s (t1,V )] for s = s ′

0 for s �= s ′ . (35)

Therefore, because from Eq. (35),FV
ss ′;λλ′(k,k′) = 0 for s �= s ′,

then only electron-hole transitions between bands with the
same index s contribute to the polarizability, as in the V = 0
case.

Following the same scheme as in Sec. IV, we find the
dispersion relation for plasmons. The low-energy dispersion
relation for the optical mode in this case changes to

ω+(q) ≈
⎛
⎝e2gσgv

√
t2
1 + V 2

κ
q

⎞
⎠

1/2

, (36)

whereas the acoustic plasmon is

ω−(q) ≈
⎛
⎝e2gσgvd

√
t2
1 + V 2

2κ

⎞
⎠

1/2

q. (37)
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FIG. 4. (Color online) Left: Numerical solution for he dispersion
relation of the plasmon modes of AA-BLG in the presence of an
external potential V = t1 (solid blue lines) and their fitting to the
analytical low-energy expressions (36) and (37) (dashed black lines).
The approximated dispersion relation of the acoustic mode given by
(39) is shown by the full black line. Right: Dispersion relation of the
plasmon for three different values of V : V = 2t1 (dotted green lines),
V = t1 (solid blue lines) and V = t1/4 (dashed red lines).

In the left panel of Fig. 4 we show the numerical solution
for the plasmons in the RPA (solid blue lines) together with
the long-wavelength approximations (36) and (37), as shown
by the dashed black lines. Notice that the velocity of the mode
(the slope of the corresponding dispersion relation) can be
controlled by tuning the strength of the external potential
V . This effect is shown in the right panel of Fig. 4, where
the dispersion of the modes for different strengths of the
external field are shown. Those results are in agreement with
the numerical calculations of AA-stacked multilayer graphene
of Ref. 29.

Finally, as we have discussed in Sec. IV A, we notice here
that the dispersion relation (37) is only valid for√

t2
1 + V 2 d

vF κ
� 1. (38)

A more accurate calculation of the long-wavelength limit of
the acoustic mode, following the method of Refs. 26 and 27,
gives a more accurate expression for the dispersion relation

ω−(q) =
1 + gσ gv

√
2e2d

√
t2
1 +V 2

2κv2
F(

1 + gσ gv

√
2e2d

√
t2
1 +V 2

κv2
F

)1/2 vF q. (39)

The fitting to the numerical dispersion relation obtained from
Eq. (39) is shown by the full black line in the left panel of
Fig. 4. Here it is interesting to notice that both long-wavelength
approximations, (37) and (39), almost coincide for this case.
This is due to the fact that the presence of a finite bias V , which
acts as an effective doping of the sample, helps the condition
(38) for the applicability of the approximation Eq. (37) to be
fulfilled.

C. Drude weight and plasmons in doped AA-BLG

In this section we study the characteristics of the plasmon
dispersion of AA-BLG in the presence of doping. For this aim,
we exploit the fact that the Drude weight of the whole system

controls the dispersion relation of the optical ω+(q) ∼ q1/2

mode at long wavelengths.30 Indeed, in the vF q  ω  2μ

limit (μ being the chemical potential), the real part of the
interacting polarization function χ (q,ω) = �0(q,ω)/ε(q,ω)
can be approximated by

Re χ (q,ω) ≈ Dq2

πe2ω2
, (40)

where D is the Drude weight. Furthermore, D can be obtained
from the optical conductivity σ (ω), which in the dynamical
limit is simply Im σ (ω) ≈ D/πω. As a result, Eq. (40) leads
to a solution for the plasmon dispersion of SLG of the form
ω(q) = √

2Dq/κ . Furthermore, in Ref. 30 it was shown that
if vertex and self-energy corrections are neglected, the RPA
Drude weight of a SLG is D = gσgvμσ0, where σ0 = e2/4h̄
is the usual background conductivity.

In a doped AA-stacked graphene bilayer, as a consequence
of the characteristic electronic dispersion (6) and DOS (9), the
Drude weight has two independent contributions, each of them
associated to one cone in the band structure:18

D = D1 + D2 = gσgv|t1 − μ|σ0 + gσgv(t1 + μ)σ0

= 2gσgv max(t1,μ)σ0. (41)

Therefore, the dispersion relation of the optical plasmon in a
doped bilayer is, in the long-wavelength limit

ω+(q) ≈
√

gσgve2 max(t1,μ)

κ
q. (42)

It is important to notice that for values of doping such that
|μ| � t1 ∼ 0.2 eV, which corresponds to carrier densities of
the order of n ∼ 1.2 × 1013 cm−2, the plasmon dispersion is
completely independent of doping, ω+(q) =

√
(gσgve

2t1/κ)q.
This makes the plasmons in AA-BLG of special interest
because their dispersion relation is protected against un-
intentional doping, due, e.g., to charged impurities in the
substrate.

V. DISCUSSION

In this section we summarize the main characteristics of
the collective modes in AA-BLG, and discuss their differences
with respect to the plasmons in other 2D systems. We consider
first the most stable AB stacking, which presents a completely
different band structure as compared to AA-BLG, with energy
dispersion εs,s ′ (q) = s

√
v2

F q2 + t2
⊥/4 + s ′t⊥/2, where s,s ′ =

±1 and t⊥ is the interlayer hopping between A and B atoms
of different layers.31 It contains four parabolic bands with
effective mass m = t⊥/2v2

F : two of them that touch each other
at the zero energy Dirac point, plus other two with maxima
and minima at ∓t⊥, respectively.32 The absence of carriers
in the undoped case leads to an electron-hole continuum
in which only interband excitations are allowed, preventing
the existence of long-lived plasmons. This is also the case
of SLG, whose band structure consists of two Dirac cones,
which touch at ε = 0. In those two cases, AB-BLG and
SLG, there is no phase space available for the propagation of
coherent plasmons above the threshold of interband transitions.
Therefore, collective modes are allowed to exist only in the
doped regime.4–7,11,33 Completely different is the case of
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AA-BLG discussed here, for which long-lived plasmons are
present even in the absence of any doping. Furthermore, the
dispersion relation of the optical mode of AA-BLG, ω+(q) =√

e2gσ gvt1
κ

q, is not affected by doping, unless the chemical
potential exceeds the interlayer hopping energy |μ| � t1. For
higher doping, the optical plasmon recovers the well-known

dispersion relation of AB-BLG, ω(q) =
√

e2gσ gvμ

κ
q.9,11,34

On the other hand, AB-BLG presents additional gapped
high-energy modes, which are highly damped since they
lie entirely in the interband zone of the electron-hole con-
tinuum. The first of those modes, which has its origin in
interband particle-hole transitions from the low-energy band
[with energy ε(0) = 0] to the high-energy band [with energy
ε(0) = t⊥], was studied by Gamayun in Ref. 11, who found
the dispersion relation ω(q) ∼ t⊥ + e2gσ gv

2κ
q ln(1 + 2μ/t⊥). A

higher-energy mode, with a gap of � = 2t⊥, is also expected,
associated to interband transitions between the low-energy
band with energy ε(k) < −t⊥, and the high-energy band with
ε(k) > +t⊥.35 Those gapped and damped modes, which are
allowed in AB-BLG, do not have their counterpart in AA-
BLG. The reason is that the completely decoupled bonding
and antibonding sectors in AA-BLG forbids electron-hole
excitations of the same nature, and therefore no gapped modes
are expected to exist in AA-BLG.

It is also interesting to compare our results to those of
a coupled 2DEG bilayer structure.36 Here the differences
are quite significant as well. In fact, whereas in both cases there
is a coexistence of a ω+ ∼ q1/2 mode and a ω− ∼ q mode,
the acoustic linearly dispersing mode becomes gapped in the
2DEG-BL when the effect of interlayer tunneling is included.36

However, we have seen that in AA-BLG the acoustic mode
remains ungapped even in the presence of interlayer tunneling.
It is interesting to notice that the gap opened in the 2DEG-BLG
when interlayer hopping t⊥ is considered, with a size of
� = 2t⊥, is the counterpart of the above mentioned gapped
mode in AB-BLG. Therefore, whereas interlayer tunneling
opens a gap in the dispersion relation of the acoustic mode in
2DEG-BLG, the acoustic mode remains ungapped in AA-BLG

whereas AB-BLG presents both gapped and ungapped linearly
dispersing collective modes.

VI. CONCLUSION

In conclusion, we have studied the screening properties of
AA-BLG. For this, we have calculated the dynamical polar-
ization function, including the electron-electron interactions
in the RPA. We have shown that the static screening in
AA-BLG is similar to that of SLG, containing a metallic
contribution (which is dominant at long wavelengths) and
an insulating one (which dominates at large wave vectors).
However, whereas the metallic screening in SLG depends on
the chemical potential (doping), here we have shown that in
AA-BLG this metallic contribution is controlled uniquely by
the interlayer hopping energy.

We have also studied the collective excitations of AA-BLG.
We have obtained analytic low-energy dispersion relations
for the acoustic ω−(q) ∼ q and for the optical ω+(q) ∼ q1/2

plasmon modes. Our main result is that due to the characteristic
band structure and electron-hole continuum of AA-BLG, long-
lived plasmons can disperse in AA-BLG even in the absence
of doping. This is significantly different to SLG and AB-BLG,
for which it is necessary to induce charge carriers in the sample
to have coherent plasmon excitations. Furthermore, we have
shown that the dispersion relation of the optical plasmon in
AA-BLG does not depend on the amount of doping, unless
high carrier concentrations with |μ| > t1 are reached. The
effect of an electric field perpendicular to the sample has been
considered, and we have shown that the dispersion of those
modes can be manipulated by the application of a gate voltage.
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