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Abstract This study provides a comprehensive evalu-

ation of seven Earth System Models (ESMs) from the

Coupled Model Intercomparison Project Phase 5 in present

climate conditions from a downscaling perspective, tak-

ing into account the requirements of both statistical and

dynamical approaches. ECMWF’s ERA-Interim reanal-

ysis is used as reference for an evaluation of circulation,

temperature and humidity variables on daily timescale,

which is based on distributional similarity scores. To ad-

ditionally obtain an estimate of reanalysis uncertainty,

ERA-Interim’s deviation from the Japanese Meteoro-

logical Agency JRA-25 reanalysis is calculated. Areas

with considerable differences between both reanalyses

do not allow for a proper assessment, since ESM per-

formance is sensitive to the choice of reanalysis.

For use in statistical downscaling studies, ESM per-
formance is computed on the grid-box scale and mapped

over a large spatial domain covering Europe and Africa,

additionally highlighting those regions where significant

distributional differences remain even for the centered/zero-

mean time series. For use in dynamical downscaling

studies, performance is specifically assessed along the
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lateral boundaries of the three CORDEX domains de-

fined for Europe, the Mediterranean Basin and Africa.
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1 Introduction

At the onset of the Coupled Model Intercomparison

Project Phase 5 (CMIP5), a new generation of Gen-

eral Circulation Models (GCMs) has become available

to the scientific community. In comparison to the former

model generation, these ‘Earth System Models’ (ESMs)

incorporate additional components describing the at-

mosphere’s interaction with land-use and vegetation, as

well as explicitly taking into account atmospheric chem-

istry, aerosols and the carbon cycle (Taylor et al, 2012).

The new model generation is driven by newly defined

atmospheric composition forcings —the ‘historical forc-

ing’ for present climate conditions and the ‘Representa-

tive Concentration Pathways’ (RCPs, Moss et al, 2010)

for future scenarios. The dataset resulting from these

global simulations will be the mainstay of future climate

change studies and is the baseline of the Fifth Assess-

ment Report (AR5) of the Intergovernmental Panel on

Climate Change (IPCC). Moreover, this dataset is the

starting point of different regional downscaling initia-

tives on the generation of regional climate change sce-

narios, which are being coordinated worldwide for the

first time within the framework of the COordinated Re-

gional Climate Downscaling EXperiment (CORDEX)

(Jones et al, 2011). These initiatives use both dynami-

cal and statistical downscaling (SD) approaches to pro-

vide high-resolution information over a specific region
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of interest (e.g. Europe or Africa) at the spatial scale re-

quired by many impact studies (Fowler et al, 2007; Ma-

raun et al, 2010; Winkler et al, 2011b,a). This is done

by either running a Regional Climate Model (RCM),

driven by GCM data at its lateral boundaries, or by

applying empirical relationships, usually found between

a large-scale reanalysis and small-scale station data,

to GCM output (Giorgi and Mearns, 1991). The ba-

sic assumption of applying downscaling methods in this

context is that the ESMs should closely reproduce the

observed climatology of the large scale variables used

as predictors/drivers in statistical/dynamical schemes

(Timbal et al, 2003; Deque et al, 2007; Charles et al,

2007; Laprise, 2008; Maraun et al, 2010).

In this study, we provide a comprehensive evaluation

of the new GCM generation from a downscaling per-

spective, taking into account the requirements of both

statistical and dynamical approaches. To this aim, we

test the ability of seven ESMs to reproduce present-

day climate conditions as represented by ERA-Interim

reanalysis data (Dee et al, 2011), which is hereafter re-

ferred to as the ‘performance’ of the ESMs (Giorgi and

Francisco, 2000). ERA-Interim is used as reference for

evaluating ESM performance, not because it is assumed

to be superior to other reanalysis products, but because

it is the one used within the CORDEX initiative (http:

//wcrp-cordex.ipsl.jussieu.fr). The performance

is assessed by the ability of the models to reproduce

the mean and the cumulative distribution function of

season-specific daily data, which are hereafter jointly

referred to as the ‘climatology’.

Middle-tropospheric circulation, temperature and hu-

midity variables are of particular importance for the

purpose of downscaling since they are either used as

predictor variables in statistical schemes (Cavazos and

Hewitson, 2005; Sauter and Venema, 2011; Brands et al,

2011b) or form the lateral boundaries of dynamical ap-

plications (Fernández et al, 2007; Laprise, 2008). There-

fore, we focused on these variables and, in order to

test ESM performance under different climate condi-

tions, we considered a large spatial domain covering

Europe and Africa. Specific information for the dynam-

ical downscaling approach is provided by assessing ESM

performance along the lateral boundaries of the three

domains used in the Euro-CORDEX, Med-CORDEX

and CORDEX-Africa initiatives.

In downscaling studies, reanalysis products are com-

monly used as a surrogate of observational data. How-

ever, reanalyses present biases with respect to observa-

tions and, consequently, data from different reanalyses

can differ significantly over certain regions (see Brands

et al, 2012, and references therein). As outlined by Sterl

(2004), the difference between two distinct reanalysis

datasets is a reasonable estimator of observational un-

certainty, especially in case an accepted observational

dataset for the variables in question is not available. Al-

beit seldom assessed in downscaling studies (Koukidis

and Berg, 2009; Brands et al, 2012), reanalysis uncer-

tainty is relevant for 1) the evaluation of ESM per-

formance and 2) the applicability of the downscaling

methods themselves. With respect to 1), large differ-

ences between JRA-25 and ERA-Interim indicate that

ESM performance is sensitive to the choice of reanal-

ysis used as reference for validation and, consequently,

cannot be objectively assessed (Gleckler et al, 2008).

With respect to 2), calibrating SD-methods and cou-

pling RCMs require the large-scale predictor/boundary

data to reflect ‘real’ atmospheric processes (Maraun

et al, 2010). Strictly speaking, downscaling is not ap-

plicable in regions where reanalysis uncertainty is large

since the latter assumption does not hold. Therefore,

apart from assessing ESM performance, we provide a

simple estimate of reanalysis uncertainty by calculat-

ing the climatological differences between an additional

reanalysis product, the Japanese Reanalysis JRA-25

(Onogi et al, 2007), and ERA-Interim. Note that a com-

prehensive assessment of this issue, which would involve

a comparison with observations, is out of the scope of

the present paper.

Our results are expected to be of value for the down-

scaling community because little to no information on

the relative performance of the CMIP5-ESMs is avail-

able at a time when ESMs to be downscaled need to

be selected. We intent to fill this lack of knowledge

with the present study. Our approach provides a general

overview on ESM performance on hemispheric to conti-

nental scale and, as such, is not meant to replace stud-

ies on the synoptic-scale performance (Maraun et al,

in print). The additional assessment of reanalysis un-

certainty is an update of Brands et al (2012), who as-

sessed the differences between ECMWF ERA-40 (Up-

pala et al, 2005) and NCEP/NCAR reanalysis 1 from

a downscaling perspective, and is meant to foster the

scientific discussion on this important issue within the

downscaling community.

2 Data

The study area considered in this work is shown in

Fig. 1. It extends from the Arctic to South Africa and

from the Central Atlantic to the Ural Mountain Range

and Arabic Peninsula. Thus, it covers the Euro-CORDEX,

Med-CORDEX and CORDEX Africa domains.

We consider data from the seven ESMs listed in

Tab. 1, which were obtained from the Earth System
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Grid Federation (ESGF) gateways of the German Cli-

mate Computing Center (http://ipcc-ar5.dkrz.de), the

Program for Climate Model Diagnosis and Intercom-

parison (http://pcmdi3.llnl.gov), and the British At-

mospheric Data Center (http://cmip-gw.badc.rl.ac.uk).

Since we evaluate performance in present climate con-

ditions, we considered the CMIP5 experiment number

‘3.2 historical’ (Taylor et al, 2012). This new genera-

tion of control runs is forced by observed atmospheric

composition changes of both natural and anthropogenic

nature in the period 1850–2005. The first historical run

of the available ensemble was chosen for the variables

listed in Table 2. These variables are standard predic-

tors in statistical downscaling studies (Hanssen-Bauer

et al, 2005; Cavazos and Hewitson, 2005), and they are

also taken into account for defining the lateral boundary

conditions in the process of nesting a Regional Climate

Model (RCM) into a global one.

As reference for assessing ESM performance, we con-

sider the European Centre for Medium Range Weather

Forecasts ERA-interim reanalysis data (Dee et al, 2011).

As a second quasi-observational dataset, the Japanese

Meteorological Agency JRA-25 reanalysis (Onogi et al,

2007) is used for comparison with ERA-Interim in or-

der to obtain an estimate of reanalysis uncertainty (see

Sec. 3 for more details).

Due to distinct native horizontal resolutions (see Ta-

ble 1), both reanalyses and ESM data were regridded

to a regular 2.5◦ grid by using bilinear interpolation,

which is a common step in downscaling and GCM per-

formance studies. The period under study is 1979-2005,

common to all data sets. Daily mean values were used

and, when not provided by the original data set, they

were derived from 6-hourly instantaneous values.

3 Methods

The methodological approach followed in this study is

two-fold. First, to evaluate the degree of reanalysis un-

certainty, atmospheric variables from JRA-25 are vali-

dated against those from ERA-Interim. Due to the lack

of observational datasets for free-tropospheric variables

on daily timescale, the difference between two distinct

reanalysis datasets is a reasonable estimator of obser-

vational uncertainty. If a close agreement is found, both

reanalyses are likely driven by assimilated observations,

while in case of considerable differences at least one of

them is dominated by internal model variability rather

than observations and, hence, does not reflect reality

(Sterl, 2004). Consequently, validating JRA-25 against

ERA-Interim does not yield an ‘error’ in the sense of

one reanalysis being ‘better’ than the other, but is in-

terpreted as an estimate of reanalysis uncertainty.

Second, ESM performance in present climate condi-

tions is assessed by validating the ESMs listed in Table

1 against ERA-Interim. At this point, the reanalysis un-

certainty estimates obtained from the first step allow for

testing if the degree of reanalysis uncertainty permits

for assessing ESM performance in an objective man-

ner. Large reanalysis uncertainties indicate that ESM

performance is sensitive to reanalysis choice and, con-

sequently, cannot be objectively assessed. On the con-

trary, in case reanalysis uncertainty is negligible, ESM

performance is not sensitive to reanalysis choice and

applying JRA-25 as reference for validation would lead

to similar results.

The first measure for evaluating reanalysis uncer-

tainty and ESM performance in this study is the mean

difference (bias). Note that the variability of the daily

variables used is much larger in the tropics than in

the mid-latitudes and that it additionally varies from

one season to another. Thus, to make results compa-

rable, the bias is normalized by the standard deviation

of ERA-Interim (Brands et al, 2011b) and is hereafter

referred to as ‘normalized bias’ or ‘normalized mean

difference’ (when applied to two reanalyses).

To detect distributional differences, we apply the

two-sample Kolmogorov Smirnov test (KS test) to the

original time series and to the time series centered to

have zero mean, which are obtained by subtracting the

seasonal mean from each timestep. For simplicity, the

resulting time series will hereafter be referred to as ‘cen-

tered’. Validating centered time series is equivalent to

removing the mean difference and, consequently, per-

mits for detecting distributional differences in higher or-

der moments. Note that comparing centered ESM data

to centered ERA-Interim data is one possible solution

of correcting the mean error of the ESM, which is com-

monly done in statistical downscaling studies (Wilby

et al, 2004) and, recently, has also been proposed within

the dynamical downscaling approach (Colette et al, 2012;

Xu and Yang, 2012).

The KS test is a non-parametric hypothesis test as-

sessing the null hypothesis (H0) that two candidate

samples (e.g. reanalysis and ESM series for a partic-

ular gridbox and season of the year) come from the

same underlying theoretical probability distribution. It

is defined by the statistic:

KS–statistic =
2n

max
i=1
|E(zi)− I(zi)| (1)

where n is the length of the time series, E and I are the

empirical cumulative frequencies from a given ESM (or

JRA25, in case reanalysis uncertainty is assessed) and

the ERA-Interim reanalysis, which serves as reference

for validation in any case. Moreover, zi denotes the i-th

data value of the sorted joined sample. This statistic is
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Table 1 CMIP5 Earth System Models considered in this study.

Model Hor. Resolution Reference

CanESM2 2.8◦ × 2.8◦ Chylek et al (2011)
CNRM-CM5 1.4◦ × 1.4◦ Voldoire et al (2011)
HadGEM2-ES 1.875◦ × 1.25◦ Collins et al (2011)
IPSL-CM5-MR 1.5◦ × 1.27◦ Dufresne et al (submitted)
MIROC-ESM 2.8◦ × 2.8◦ Watanabe et al (2011)
MPI-ESM-LR 1.8◦ × 1.8◦ Raddatz et al (2007); Jungclaus et al (2010)
NorESM1-M 1.5◦ × 1.9◦ Kirkevag et al (2008); Seland et al (2008)

Table 2 Variables considered in this study.

Code Name Height Unit Acronyms
Z Geopotential 500hPa m2s−2 Z500
T Temperature 2m, 850hPa, 500hPa K T2, T850, T500
Q Specific humidity 850hPa kg kg−1 Q850
U U-wind 850hPa ms−1 U850
V V-wind 850hPa ms−1 V850
SLP Sea-level pressure mean sea-level Pa SLP

bounded between zero and one, with low values indicat-

ing distributional similarity. In this study we use the p-

value of this statistic as a measure of distributional sim-

ilarity. Thus, decreasing values indicate an increasing

confidence on distributional differences between both

series. Note that a base 10 logarithmic transformation

is applied to the p-values in order to better indicate

the different significance levels, 10−1, 10−2, 10−3, cor-

responding to increasing confidences (90, 99, 99.9% re-

spectively) on the dissimilarity of the distributions.

Since the daily time series applied here are serially

correlated, we calculate their effective sample size be-

fore estimating the p-value of the KS statistic in order

to avoid committing too many type I errors (i.e. erro-

neous rejections of the H0). Under the assumption that

the underlying time series follow a first-order autore-

gressive process, the effective sample size, n∗, is defined

as follows (Wilks, 2006):

n∗ = n
1− p1
1 + p1

(2)

where n is the sample size and p1 is the lag-1 autocor-

relation coefficient.

If not specifically referred to in the text, all of the

above mentioned validation measures are applied at the

grid-box scale, using season specific time series.

4 Results

In this section we first assess reanalysis uncertainty (by

comparing JRA-25 with ERA-Interim) and then eval-

uate ESM performance (by comparing the ESMs with

ERA-Interim). The normalized bias is applied to assess

reanalysis differences and ESM errors in the mean of

the distribution. Then, to detect reanalysis differences

and ESM errors in higher order moments, we apply the

KS test to the centered time series. Note that in the

latter case the degrees of freedom are reduced by -1,

which is a negligible problem since n* is of the order of

several hundreds in any case.

Finally, model performance for the original (i.e. non-

transformed) data is specifically assessed along the lat-

eral boundaries of the three CORDEX domains defined

in Fig. 1, which is of particular interest for the dynam-

ical downscaling community. Unless RCMs are nudged

to the large scale information (von Storch et al, 2000),

ESM performance in the interior of the aforementioned

domains is less important for the purpose of dynamical

downscaling, since the corresponding atmospheric vari-

ability is simulated by the RCM, which is driven by the

ESM at the boundaries of the domain only.

4.1 Reanalysis Uncertainty

In Fig. 2, the results of validating JRA-25 against ERA-

Interim in boreal winter (DJF, first and second col-

umn) and summer (JJA, third and forth column) are

mapped for the variables SLP, T2, T850, Q850, U850,

V850, T500 and Z500 (from top to bottom). Along the

first and third column, the normalized mean differences

(Bias/Std) are shown. The second and fourth columns

display the logarithm to base 10 of the KS statistic’s p-

value, which we obtained by applying the KS test to the

centered time series. Recall that applying centered data

at this point permits for detecting reanalysis uncertain-
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ties in higher order moments. Values below -1.301 indi-

cate that these high-order distributional differences are

significant (α = 0.05), whereas values exceeding this

threshold represent non-significant differences (see the

white area in the panels). For simplicity, the latter will

hereafter be referred to as ‘perfect’ distributional simi-

larity. A grid box is marked with a black dot if signifi-

cant distributional differences for the original data dis-

appear when the KS test is applied to the centered time

series, thereby indicating that reanalysis uncertainty is

restricted to a shift in the mean of the distribution.

Reanalysis uncertainty for SLP (see row 1 in Fig.

2) is negligible north of 45◦N and clearly depends on

season in the Northern Hemisphere subtropics (25◦N−
45◦N), where it is more (less) pronounced in JJA (DJF).

Over Africa (and especially in JJA), SLP from JRA-25

is much lower than in ERA-Interim, while the opposite

is the case over the adjacent ocean areas. Consequently,

JRA-25 is characterized by a more pronounced land-sea

pressure gradient than ERA-Interim. For the Southern

and Northern Hemisphere mid-latitude oceans, reanal-

ysis differences are negligible.

Reanalysis uncertainty for T2 (see row 2 in Fig. 2)

is more widespread than for any other variable under

study, with JRA-25 being systematically warmer than

ERA-Interim. Exceptions from this general result occur

over land areas north of 45◦N and the northern Arctic

Ocean, where differences are negligible or even negative

during DJF and MAM (the latter season is not shown).

As was the case for SLP, reanalysis uncertainty for

T850 (see row 3 in Fig. 2) is most pronounced over

Africa and negligible over the the Northern-Hemisphere

extratropics (with the exception of the Scandinavian

Mountains in DJF and Greenland in all seasons). For

the Intertropical Convergence Zone (ITCZ), JRA-25 is

considerably warmer than ERA-Interim, while the op-

posite is the case for the large-scale subsidence zones.

Interestingly, the resulting meridional tripole structure

(JRA-25 colder, JRA-25 warmer, JRA-25 colder) fol-

lows the seasonal march of the ITCZ.

The tripole difference structure found for T850, as

well as its associated seasonality, also appears in Q850

(see row 4 in Fig. 2). At the ITCZ, JRA-25 is dryer

than ERA-Interim, while the opposite is the case at the

margins of the Hadley-Cell. Except for central-to-east

Europe and the northern North Atlantic, differences for

Q850 are remarkable over the whole study area.

For U850 and V850 (see row 5+6 in Fig. 2), re-

analysis uncertainty is generally weaker than for the

other variables under study and is confined to regions

of high orography in the extratropics only. During the

core of the monsoon season (JJA), U850 and V850

over West Africa are weaker in JRA-25 than in ERA-

Interim, while over East-Africa the sign of the difference

is more heterogenous.

Considerable reanalysis uncertainties for T500 (see

row 7 in Fig. 2) are mainly confined to the Tropics.

In DJF, JRA-25 is generally colder than ERA-Interim

(exception: western South Africa), whereas in JJA it is

colder near the Equator but warmer over the semi-arid

to arid regions of the Northern Hemisphere.

Finally, although reanalysis uncertainty for Z500 (see

row 8 in Fig. 2) is generally lower than for any other

variable under study, considerable differences are found

over the tropics and subtropics. Over Africa and the

tropical Oceans, and especially during DJF and MAM,

Z500 in JRA-25 is lower than in ERA-Interim. This

leads to a generalized reduction of the latitudinal height/pressure

gradient, which is most pronounced over the South At-

lantic in the area of the St. Helen’s High.

For SLP, T500 and Z500, reanalysis uncertainty can

be completely removed by using centered data, whereas

for T850 and T2 the area of significant distributional

differences is reduced to Central Africa (Kongo Basin),

where it follows the seasonal march of the ITCZ, as

was the case for the original data (see Fig. 2, columns

2 and 4). For U850 and V850, the area of significant

distributional differences is largely reduced as well, the

remaining areas being confined to high-orography re-

gions and, in case of V850, to the Guinea Coast (with a

widespread error in JJA, i.e. during the core of the sum-

mer monsoon). For Q850, distributional differences in

the extratropics can be essentially removed by applying

centered data, while large areas of significant differences

remain over the South Atlantic, Tropical Africa and,

with a considerable error magnitude (i.e. low p-value),

over the Indian Ocean.

As an anticipated conclusion to bear in mind when

interpreting the results of the next section, the mean

difference between JRA-25 and ERA-Interim generally

exceeds a magnitude of one standard deviation for central-

to-south Africa. Even if the data is centered to have zero

mean, i.e. if differences in the mean are removed, there

remain significant differences in higher order moments.

Consequently, it is neither possible to objectively assess

ESM performance for central-to-south Africa, nor does

the basic assumption of ‘real’ or ‘perfect’ large scale

data hold in these regions.

In contrast to the tropics, reanalysis uncertainty in

the extratropics is generally negligible and the above

mentioned problems may consequently be ignored, mean-

ing that ESM performance can be assessed and the ba-

sic downscaling assumption can be affirmed.
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4.2 Performance maps

Fig. 3 to 10 show the results of validating the 7 ESMs

listed in Tab.1 against ERA-Interim for the case of

SLP, T2, T850, Q850, U850, V850, T500 and Z500 re-

spectively. Columns 1 and 2 (3 and 4) refer to the re-

sults for DJF (JJA). For each season we show the bias

normalized by the standard deviation of ERA-Interim

(Bias/Std), as well as the logarithmic p-value of the KS

statistic obtained from the centered/zero-mean data.

For the ease of comparison, the corresponding panels

for reanalysis uncertainty (copied from Fig. 2) are dis-

played at the bottom of each figure.

Regarding the ESM error for SLP (see Fig. 3), a

largely exaggerated Northern-Hemispheric (NH) lati-

tudinal pressure gradient is found for CanESM2, IPSL-

CM5A-MR, MIROC-ESM, MPI-ESM-LR and NorESM1-

M during DJF and MAM (the latter not shown). In

JJA, CanESM2 and CNRM-CM5 suffer from a negative

bias over a large fraction of the land areas. For MIROC-

ESM, MPI-ESM-LR and NorESM1-M, and in the light

of considerable reanalysis uncertainty, both the Sahara

Heat Low and the St. Helen’s High are too weak dur-

ing JJA, leading to an underestimation of the land-sea

pressure gradient during the West African rainy season.

Over the North Atlantic, SLP in JJA is overestimated

by all ESMs except MPI-ESM-LR, the latter showing

a slight underestimation.

The T2 bias is generally larger and more widespread

than at 850hPa (compare Fig. 4 to Fig. 5). The afore-

mentioned largely exaggerated latitudinal pressure gra-

dient during boreal winter and spring is associated with

too-strong westerlies in the Northern Hemisphere mid-
latitudes, which lead to an exaggerated advection of

oceanic air masses, resulting in too mild and too moist

conditions in continental Europe, an effect that extends

throughout the whole planetary boundary layer (see

Fig.4 to 6 for T2, T850 and Q850 respectively).

During the core of the West African monsoon (JJA),

and as revealed by U500 (not shown), a too strong

Subtropical Jet, as well as a too weak African East-

erly Jet (Cook, 1999) are simulated by the ESMs, with

NorESM1-M performing best for these features. The

monsoonal winds over West Africa, as represented by

U850 in JJA, are underestimated over the Sahel but

overestimated over the subhumid to humid zones along

the Guinea Coast in all ESMs except IPSL-CM5A-MR;

the latter underestimating this variable over the entire

region (see Fig. 7). Also reflected in U850 is the above

mentioned overestimation of the wintertime westerlies

in the North Atlantic-European region. In general, the

bias for U850 is larger and more widespread than for

V850 (compare Fig. 7 to Fig. 8).

For all ESMs except IPSL-CM5A-MR, a cold bias

was found in the middle troposhere (see Fig. 9), which

covers a large fraction of the domain under study in

any season and, with the exception of CanESM2 and

IPSL-CM5A-MR, is associated with an underestima-

tion of the geopotential at 500 hPa over the Tropics

(see Fig. 10).

Remarkably, one should expect the spatial pattern

of the normalized ESM error to be independent from

the spatial patterns of the normalized reanalysis differ-

ence. However, a considerable agreement between both

types of patterns is found central-to-south Africa, at

least for some variables. To mention an example, the

pattern of reanalysis uncertainty for T850 (JRA-25 is

warmer than ERA-Interim over central Africa) is ap-

proximately resembled by a warm bias in all of the 7

ESMs under study (compare last row to remaining rows

in 5). This could indicate substantial error over this area

in the reference data set (ERA-Interim), which is com-

mon to all maps. However, this cannot be deduced from

our analyses, since reanalysis error against observations

was not assessed and is only estimated from reanalysis

disagreement.

For all applied variables, ESM performance largely

improves when applying centered time series (see columns

2 and 4 in Fig. 3 to Fig. 10). In case of SLP, errors

in higher order moments are detected over the high-

orography regions of the Middle-East (for CanESM2,

IPSL-CM5-MR and MIROC-ESM in at least one season

of the year), over the Red-Sea and adjacent land areas

(MIROC-ESM in JJA and SON, the latter season not

shown), the Mediterranean (MIROC-ESM, NorESM1-

M and MPI-ESM-LR in JJA), South Africa (CanESM2,

IPSL-CM5-MR and MIROC-ESM in SON and/or DJF)

and West Africa (CNRM-CM5 in JJA). Best overall

performance is yielded for HadGEM2-ES, which, at least

in case of SLP, does not suffer from errors in higher or-

der moments at all.

In case of the centered T850 data (see Fig. 5), any

ESM except CanESM2 and HadGEM2-ES suffers from

significant distributional differences over the tropics,

the Southern-Hemisphere subtropics and the North At-

lantic, while errors for T2 (see Fig. 4) are more widespread

and additionally cover the Southern Hemisphere mid-

latitudes. Interestingly, HadGEM2-ES again outperforms

any other ESM for both T850 and T2, the performance

of CanESM2 being comparable in case of T850.

Regarding the centered U850 and V850 data (see

Fig. 7 and 8), performance is generally better for U850.

Errors in higher order moments appear over the trop-

ics and subtropics. Large inter-model differences are

found for both variables, with HadGEM2-ES and IPSL-
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CM5-MR performing clearly better than the remaining

ESMs.

Albeit the errors in T500 are largely reduced by us-

ing centered data, CanESM2, MIROC-ESM, and NorESM1-

M suffer from errors in higher order moments along the

ITCZ in JJA (see Fig. 9). For IPSL-CM5-MR, this er-

ror type appears in DJF between the Azores and the

Bay of Biscay.

As shown in Fig.10, ESM errors for Z500 disappear

almost completely for the centered data.

4.3 Performance along the lateral boundaries of the

CORDEX domains

Fig. 11 displays the medians (bars) of the samples formed

by the absolute normalized differences along the lateral

boundaries (LB) of the 3 CORDEX domains shown in

Fig 1. From top to bottom (left to right) the results for

different variables (LBs) are shown, while the season-

specific results are displayed within each panel (see x-

axes). For reasons of simplicity, the interquartile ranges

(IQRs) are not shown. They are roughly proportional

to their respective medians (i.e. the higher the median,

the broader the IQR).

It is remarkable that ESM performance along the

lateral boundaries of the 3 domains is generally very

similar, i.e. the models do not perform systematically

worse for any single domain compared to the other

two. For any domain under study, ESM performance

is best for V850, followed by U850, and is worse for

T2 and T500 (note the distinct scaling of the y-axis for

the latter two). Intermodel performance differences are
smallest for U850 (except over the African domain) and

V850 and generally larger for the remaining variables.

Also, intermodel performance differences for the Med-

CORDEX and CORDEX Africa domains are more pro-

nounced than for the Euro-CORDEX domain. While

MPI-ESM-LR and HadGEM2-ES are among the best

models in any case, MIROC-ESM and IPSL-CM5-MR

generally perform poorer, the remaining ESMs lying in-

between in most cases.

5 Discussion and Conclusions

This study has shown that distributional differences be-

tween free tropospheric circulation, temperature and

humidity data from JRA-25 and ERA-Interim are com-

parable to those obtained from validating the ESMs

against ERA-Interim in central-to-south Africa. This

questions the basic downscaling assumption of ‘real’

or ‘perfect’ reanalysis data (Maraun et al, 2010) and

hinders the objective evaluation of ESM performance

(Gleckler et al, 2008) in these regions.

The reason behind the differences cannot be inferred

from our analyses. However, the large differences be-

tween JRA-25 and ERA-Interim over central-to-south

Africa are consistent with Betts et al (2009), who found

ERA-Interim compared to in-situ station data to be

cold-biased over the Amazon basin. Moreover, the cold

bias of ERA-Interim over African tropical regions, which

was systematically found against JRA-25 and 7 ESMs,

indicate that ERA-Interim might not reflect ‘real’ at-

mospheric conditions in that area and that, in a strict

sense, it should not be applied there for the purpose

of downscaling. This should be a warning sign for the

CORDEX Africa community, indicating that the errors

of the downscaled times series may originate from the

driving reanalysis, apart from being caused by SD or

RCM errors.

In contrast, reanalysis uncertainty for the Northern

Hemispheric extratropics is negligible, which 1) affirms

the above mentioned basic downscaling assumption and

2) permits for assessing ESM performance. A largely

overestimated meridional pressure gradient was found

in 5 out of 7 ESMs during boreal winter and spring,

leading to too mild and moist conditions in continental

Europe. This is in agreement with van Ulden and van

Oldenborgh (2006) and Vial and Osborn (2011), who

found serious circulation biases and an underestima-

tion of the frequency and duration of wintertime atmo-

spheric blocking in most CMIP3-GCMs. Consequently,

artificial feedback processes in the scenario period re-

sulting from ESM errors in the control/historical period

(Raisanen, 2007) cannot be ruled out for Europe.

HadGEM2-ES and MPI-ESM-LR generally outper-

form the remaining models along the lateral boundaries

of the Euro-CORDEX, Med-CORDEX and CORDEX

Africa domains, which is in qualitative agreement with

Brands et al (2011a), who validated the former versions

of these models over southwestern Europe. The system-

atic superiority of these models questions the paradigm

of equiprobable treatment of the driving models in down-

scaling studies.

Interestingly, ESM performance (and reanalysis agree-

ment) along the lateral boundaries of the CORDEX

Africa domain is systematically better than in the in-

terior of the domain, which might be one argument

against using RCM nudging (von Storch et al, 2000)

in this CORDEX domain. In this context it is worth

mentioning that GCM control runs nudged to reanaly-

sis data (Eden et al, 2012) fail to reproduce the tem-

poral variability of observed precipitation in the trop-

ics (where reanalysis uncertainty is large) whereas they

perform well in the extratropics (where reanalysis un-
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certainty is low). This indicates that the success of

nudging GCMs (and also RCMs) into reanalysis data

might critically depend on the degree of reanalysis un-

certainty.

The final message is that many of the errors found

in the CMIP3-GCMs are still present in current Earth

System Models. For instance, the systematic domain-

wide cold bias in the middle troposphere found in this

study is consistent with John and Soden (2007), who

found similar results for the CMIP3-GCMs. Thus, the

shortcomings and corresponding recommendations for

working with GCM data in the context of downscal-

ing (Wilby et al, 2004) remain valid for the new model

generation.
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Decharme B, Cassou C (2011) The CNRM-CM5.1

global climate model: description and basic evalua-

tion. Clim Dyn DOI {10.1007/s00382-011-1259-y}
Watanabe S, Hajima T, Sudo K, Nagashima T, Take-

mura T, Okajima H, Nozawa T, Kawase H, Abe

M, Yokohata T, Ise T, Sato H, Kato E, Takata K,

Emori S, Kawamiya M (2011) MIROC-ESM 2010:

model description and basic results of CMIP5-20c3m

experiments. Geosci Model Dev 4(4):845–872, DOI

{10.5194/gmd-4-845-2011}
Wilby R, Charles S, Zorita E, Timbal B, Whet-

ton P, Mearns L (2004) Guidelines for uses

of climate scenarios developed from statisti-

cal downscaling methods. supporting material,

http://www.narccap.ucar.edu/doc/tgica-guidance-

2004.pdf

Wilks D (2006) Statistical methods in the atmospheric

sciences, 2 edn. Amsterdam, Elsevier

Winkler JA, Guentchev GS, Liszewska M, Perdinan

A, Tan PN (2011a) Climate scenario development

and applications for local/regional climate change

impact assessments: An overview for the non-climate

scientist. Geography Compass 5(6):301–328, DOI

10.1111/j.1749-8198.2011.00426.x, URL http://dx.

doi.org/10.1111/j.1749-8198.2011.00426.x

Winkler JA, Guentchev GS, Perdinan A, Tan PN,

Zhong S, Liszewska M, Abraham Z, Niedzwiedz T,

Ustrnul Z (2011b) Climate scenario development and

applications for local/regional climate change im-

pact assessments: An overview for the non-climate

scientist. Geography Compass 5(6):275–300, DOI

10.1111/j.1749-8198.2011.00425.x, URL http://dx.

doi.org/10.1111/j.1749-8198.2011.00425.x

Xu Z, Yang ZL (2012) An Improved Dynamical Down-

scaling Method with GCM Bias Corrections and

Its Validation with 30 Years of Climate Simu-

lations. J Clim 25(18):6271–6286, DOI {10.1175/

JCLI-D-12-00005.1}



Validation of the CMIP5 Earth System Models for Downscaling 11

Fig. 1 Geographical domain considered in the study (black dots) and CORDEX exterior (solid) and interior (dashed) domains
(in colors) used for the lateral boundary conditions in the Euro-CORDEX, Med-CORDEX and CORDEX Africa domains.
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Fig. 2 Columns 1+3: Mean differences between JRA-25 and ERA-Interim, normalized by the standard deviation of the latter;
Columns 2+4: P-value (in logarithmic scale) of the KS test applied to the time series from JRA-25 and ERA-Interim, both
centered to have zero mean. Grid boxes are whitened if the p-value does not exceed the threshold value of -1.301, i.e. if the
distributional differences are not significant (α = 0.05). Colour darkening corresponds to increasing (and significant) distribu-
tional differences/reanalysis uncertainties. Grid boxes marked with a black dot indicate areas where significant distributional
differences for the original reanalysis data are eliminated by using the centered time series.
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Fig. 3 Columns 1+3: Mean differences (columns 1+3) between the seven ESMs listed in Tab. 1 and ERA-Interim, normalized
by the standard deviation of ERA-Interim; Columns: 2+4: P-value (in logarithmic scale) of the KS test applied to the time
series from the respective ESM and ERA-Interim, both centered to have zero mean. Grid-boxes are whitened if the p-value does
not exceed the threshold value of -1.301, i.e. if the distributional differences are not significant (α = 0.05). Colour darkening
corresponds to increasing (and significant) distributional differences/ESM errors. Grid boxes marked with a black dot indicate
areas where significant ESM errors in the original data are eliminated by using the centered time series; results for SLP. For
the ease of comparison, the corresponding panels for reanalysis uncertainty (copied from Fig. 2 are displayed at the bottom of
the figure (last column).
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Fig. 4 As Fig. 3, but for T2.
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Fig. 5 As Fig. 3, but for T850, green grid boxes refer to lack of data at the ESGF-portals
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Fig. 6 As Fig. 3, but for Q850, empty panels and green grid boxes refer to lack of data at the ESGF-portals
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Fig. 7 As Fig. 3, but for U850, green grid boxes refer to lack of data at the ESGF-portals
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Fig. 8 As Fig. 3, but for V850, green grid boxes refer to lack of data at the ESGF-portals
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Fig. 9 As Fig. 3, but for T500.
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Fig. 10 As Fig. 3, but for Z500, empty panels refer to lack of data at the ESGF-portals.
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Fig. 11 Median of the absolute normalized mean differences between JRA25 and ERA-Interim (reanalysis uncertainty, first
bar in each panel) and between the ESMs and ERA-Interim (ESM errors, remaining bars) along the lateral boundaries of the
three CORDEX domains shown in Fig. 1. Left: EURO-CORDEX, middle: Med-CORDEX, right: CORDEX Africa. Results
are shown for all seasons, grey bars indicate lack of availability at the ESGF portals. Due to the larger error magnitude, y-axes
have been stretched for T2 and T500


