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’ INTRODUCTION

Most of the organic molecules for electronic applications are
based on π-conjugated electronic systems, which display a strong
tendency to maximize the overlap of the π-orbitals with the
electronic cloud ofmetallic surfaces (i.e., they adsorb flat onmetals).
On the contrary, they display little interactionwithmost of the oxide
dielectrics, thus favoring the van der Waals intermolecular interac-
tion that drives the molecular assembling. As a consequence,
molecular reorientation is typically observed at the interface with
electrodes in hybrid devices, thus yielding bad contact resistance
because of the formation of topological defects.1 For a better
tailoring of the molecular orientation, alternative routes must be
followed such as increasing the device complexity by chemical
modification of the electrodes2 and dielectrics3 or searching the best
matching molecular conformation and substrate structure.

The availability of suitable molecule/substrate pairs is also
relevant for the development of specific organic devices (thin film
transistors, OTFTs, light emitting devices, OLEDs, and photo-
voltaic cells, OPVs), where different functionalities are favored by
different coupling geometries between the organic molecule and
the substrate. For example, planar molecules oriented parallel to
the surface of electrodes are favored in the design of bottom-
contact OTFTs since the corresponding π-stacking of the
molecules in the channel favors the optimal electron transport.4

On the contrary, light emission is rather enhanced when
π-conjugated systems are oriented parallel to the dielectric
substrates.

Pentacene is one of the most widely employed molecules
for organic devices since it has been used to build OTFTs
with high carrier mobility5,6 and high efficiency OPVs.7-9 These

performances are mainly due to the intrinsic properties of the
individual molecules, while the pentacene assembling structure
and morphology are much harder to be tailored. In fact, the
growth of the molecular crystal proceeds along the (001) natural
direction of growth by stacking of layers, where the molecules are
packed in a herringbone structure with an orientation almost
normal to the stacking layers.10 The possibility to stabilize a few
layers of pentacene in a lying-down geometry would be highly
desirable in order to enhance specific functionalities, such as
substrate charge transfer and light emission. The formation of a
well-ordered first layer where pentacene lays flat has been
reported for most of the metal surfaces,11 but the molecules
have a strong tendency to tilt up from the early stage of the
second-layer formation.12,13 Thin films of flat-orientedmolecules
on metals have been seldom reported, i.e., only when the
substrate periodicity closely matches that of the pentacene bulk
planes.14-16 So far, no lying-down layers of pentacene have been
reported on dielectric substrates.

TiO2 is instinctively associated with the engineering of dye-
sensitized solar cells, but its high dielectric constant makes it a
valuable material also for the fabrication of low threshold voltage
and high output current OTFTs.3 In particular, the rutile TiO2-
(110) surface attracts much attention thanks to the possibility of
changing its catalytic and charge transport properties by trim-
ming the concentration of oxygen vacancies in the surface region
(either by thermal annealing or by ion bombardment). In fact,
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the desorption of oxygen atoms leads to the appearance of a new
electronic state in the band gap,17 which is associated with a
redistribution of the local excess of charge among multiple sites
around the Ti atoms.18 This electronic effect on the surface Ti
atoms is further enhanced upon the formation of a (1 � 2) sur-
face reconstruction, induced by high-temperature annealing.19

Very recently, the strong structural anisotropy of the TiO2-
(110) surface has been tentatively exploited as a template to drive
the oriented growth of planar organic molecules, such as phtha-
locyanines,20-22 porphyrins,23 and perylene derivatives.24-26

When these molecules adsorb flat onto the substrate, the
intralayer lateral transport is inhibited, but a much faster charge
transfer to the substrate has been reported.27 However, this effect
is strongly quenched beyond the first monolayer because of the
poor coupling, hence ordering, of the next-layer molecules.
Structural improvements of the molecular overlayer have
been found for the deposition on different TiO2 faces and
reconstructions.20,22,24

Apart from the highly symmetric C60 molecule (forming at
least one commensurate monolayer28,29), the choice of planar
molecules better matching the substrate lattice might allow
improvement of the coherence of the growing film. This route
has been attempted by deposition of uniaxial molecules like
anthracene,30 R-sexithiophene, 6T,31 and para-sexiphenyl, 6P.32

While a large density of substrate surface defects inhibited the
possible ordering of anthracene,30 the substrate anisotropy was
effectively found to drive the azimuthal orientation of 6T and
6P.33 However, the natural direction of growth of the bulk
molecular crystal was still found to dominate the molecular
aggregation from the very first layer, that is, standing-up orienta-
tion for sexiphenyl and lying-down orientation for sexithiophene
(because this orientation is characteristic of the 6T bulk
polymorphs34 and thin films35).

Here we show the formation of a compact monolayer of lying-
down pentacene on the unreconstructed and stoichiometric
TiO2(110) surface. This ordered phase is formed by molecules
oriented along the [001] direction and coupled side-by-side into
stripes running in the [110] direction. The molecules within the
stripes have the same spacing of the substrate periodicity, 6.49 Å,
and display a tilt of 25� around the long axis. The monolayer
phase mimics the structural arrangement of the molecular bulk
crystal in the (010), i.e., a-c, plane,10 thus allowing to preserve
the lying-down orientation in the next few layers.

’EXPERIMENTAL SECTION

We have used several samples of TiO2(110) from Mateck,
with thickness ranging from 0.5 to 1mm. Samples are attached to
a molybdenum spacer by silver paste and slowly heated up to
400� overnight before insertion into the UHV experimental
chambers. The sample is mounted on a compact holder
(POD) provided with two thermocouples in direct contact with
the Mo spacer, a coldfinger for sample cooling, and a filament for
sample heating by electron bombardment. The sample tempera-
ture is cross-checked bymeans of the PODK-thermocouples and
a pyrometer. The POD is fully interchangeable between the He
atom scattering (HAS) apparatus and the ALOISA experimental
chamber, which allows us to reproduce the same temperature
treatments in the two chambers.

Once outgassed, the surface is prepared by 10-20 min of Arþ

ion bombardment at 1 keV followed by annealing up to 800�,
with a maximum pressure in the 10-8 mbar range. After this

treatment the sample assumes a characteristic black color with a
reflective surface. We have quantitatively verified that this
procedure yields the best (1 � 1) HAS diffraction pattern in
terms of both peak intensity and peak width, i.e., lowest density of
surface defects and largest domain size (mean terrace width of
∼1000 Å). In these conditions, most of the oxygen vacancies are
confined in the subsurface region. This is also confirmed by the
almost complete disappearance of the oxygen vacancy band gap
state, which may only be detected at resonance with the Ti 2p
ionization threshold.18 Lower temperature annealing (blue
sample) yields a larger density of surface defects that also
deteriorates the ordering of the pentacene planar phases. Within
the Aloisa chamber, a RHEED system is eventually employed to
check a posteriori the surface symmetry of both the clean and
pentacene-covered substrate. In fact, RHEED illumination pro-
duces oxygen vacancies and must be carefully operated.

Pentacene (Sigma, 99.5% purity) is evaporated from home-
made crucibles (both tantalum baskets and boron nitride
crucibles) operated at 190-200�. The evaporation rate in the
HAS chamber is monitored in real time byHe scattering, whereas
a quartz microbalance is employed in the Aloisa chamber for rate
calibration. In the STM apparatus, the evaporation rate is
calibrated a posteriori from the molecular density of the planar
phases in the first layer. In the latter case, we estimate a coverage
uncertainty of 10%. The films are prepared at typical rates in the
range of 0.1-1 Å/min.

The HAS apparatus is attached to the branch line of the
ALOISA Synchrotron beamline for real time measurements of
X-ray photoemission and He scattering. The He diffraction
setup, which is described in detail elsewhere,36 is equipped with
a six-degrees-of-freedom manipulator, which allows a precision
of 0.005� on its three rotations. The apparatus has a fixed 110�
source-to-detector scattering geometry, where one-dimensional
diffraction patterns are taken by rotating the manipulator around
an axis perpendicular to the scattering plane. The He beam is
operated while cooling at liquid nitrogen the nozzle source,
which yields a beam wave vector of 6.074 Å-1. At the corre-
sponding He beam energy of ∼19 meV, the He atoms cannot
perturb the surface atoms/molecules and are scattered at about
3 Å above the nuclei plane, thus probing only the outermost
surface charge density (see Figure 4 of ref 37 for a comparison
among the probing depth of different surface diffraction tech-
niques). The HAS apparatus allows us to collect consecutive
diffraction scans during pentacene deposition, thus monitoring
in real time the evolution of the diffraction pattern.

We have employed a linearly polarized photon beam at the
ALOISA beamline of the Synchrotron Elettra (Trieste) to
measure the near-edge X-ray absorption fine structure, NEXAFS,
at the carbon K-shell ionization threshold (with ∼90 meV
photon energy resolution). NEXAFS spectra are taken by rotat-
ing the sample around the photon beam axis (polar scan) while
keeping the grazing angle fixed at 6�. A sketch of the scattering
geometry can be seen in Figure 1 of ref 37. The NEXAFS signal is
collected in partial electron yield by means of a full aperture
detector (channeltron) in front of the sample with an electro-
static high-pass filter set to-230 V, in order to reject secondary
electrons. The photon energy is calibrated with a precision of
0.01 eV thanks to the carbon absorption feature in the I0
reference (drain) current. The latter has been formerly cali-
brated by simultaneous acquisition of the C1s f π* gas phase
transition of CO with the Aloisa in-line windowless ionization
chamber.38



All STM measurements are carried out at the ESISNA group
of the Instituto de Ciencia de Materiales de Madrid (ICMM-
CSIC). The UHV chamber is equipped with a commercial room
temperature STM (Omicron) driven by a Nanotec electronics,
LEED optics, and a cylindrical mirror electron analyzer for Auger
spectroscopy. We have used chemically etched tungsten tips
prepared in situ by high-temperature annealing and field
emission.39 We have recorded topographical images in the
constant current mode using always a positive voltage applied
to the sample (empty states) due to the well-known complexity
of this substrate for using negative bias.40 We have analyzed the
STM images with the WSxM software from Nanotec.41

’RESULTS AND DISCUSSION

Monolayer. The (1 � 1)-TiO2(110) surface exhibits char-
acteristic oxygen rows protruding over the surface, extending
along the [001] direction (lattice unit a1 = 2.959 Å) and spaced
by a2 = 6.495 Å in the [110] direction.42 In standard STM images

(W tip, positive sample bias), this pronounced anisotropy
appears as bright lines stemming from the Ti atoms in between
the oxygen rows.40 This large substrate corrugation along the
[110] direction is well suited to accommodate an uniaxial
molecule such as pentacene (∼5-6 Å wide and ∼15.5 Å long)
with its long edge aligned parallel to the oxygen rows, as
effectively observed. Pentacene molecules result to be very
mobile on this substrate already at room temperature, RT, as
indirectly confirmed by the difficulty of imaging the surface by
scanning tunneling microscopy, STM, in the very low
coverage range.
In Figure 1, STM images are shown in the submonolayer

range, where the monolayer, ML, is defined as the maximum
coverage of pentacene accommodated in the first layer. At a
coverage of about 0.5 ML, molecular domains are formed, which
are characterized by irregular stripes running in the [110]
direction and roughly spaced by ∼20 Å. Notwithstanding the
pronounced blurring due to the motion of molecules at this
coverage, each stripe can be resolved into small parallel segments
that are perfectly aligned along the [001] direction (as deter-
mined from STM images where the pentacene stripes coexist
with bare TiO2 areas). Since the length of the segments is in the
range of 16 Å, we associate them with lying-down pentacene
molecules aligned side-by-side within the stripes, as shown in the
drawing of Figure 1. Pentacene growth thus proceeds by an
interplay between the molecule-to-substrate interaction (that
drives the molecular azimuthal orientation and planar config-
uration) and the intermolecular side-by-side attraction (that
drives the formation of continuous stripes).
At higher coverage, we have observed the emergence of a

certain degree of lateral long-range order associated with a
straightening of the stripes and a decrease of the interstripe
spacing. At 0.8 ML, the stripe spacing is more regular and the
stripe shape appears steady, thus confirming the establishment of

Figure 1. Three STM images taken in constant-current mode with
positive sample bias values ranging from 1.0 to 1.8 V and typical tunnel
current of 0.15 nA. The images are set to the same horizontal scale of
40 nm. (a) STM image taken at a coverage of∼0.5 ML. The stripes are
very irregular and mobile, but, in the image areas where more regular
arrangements are seen, one can resolve their inner structure as made of
adjacent bright segments, perfectly parallel to the oxygen rows in the
[001] direction. (b) At a coverage of ∼0.8 ML pentacene, the stripes
display a regular spacing, even if their orientation is still not homo-
geneous. Individual molecules can be clearly resolved within the stripes.
Molecules in adjacent stripes are always aligned head-to-head, while
side-by-side spacing preserves the substrate periodicity along the [110]
direction. (c) At∼0.9 ML of pentacene, the spacing between the stripes
decreases and the stripes run almost homogeneously along the [110]
direction. Bottom: a drawing of the pentacene arrangement at the
monolayer coverage. The pentacene register with the substrate is
arbitrary and must only be considered as a guide to the eye for the
comparison of the molecular orientation and size with the substrate
lattice ones.

Figure 2. Consecutive HAS diffraction scans taken along the [001]
direction during pentacene deposition with the substrate at RT. The
scans are vertically displaced by a linear offset, according to the
increasing coverage. The bottom scan is taken at a nominal coverage
of 0.45ML and the topmost one at 1.5ML. Each angular scan is recorded
in about 1.5 min, corresponding to the deposition of about 0.08 ML. On
the right, a vertical dotted line marks the position of the (0, 0) reflection;
an additional vertical dotted line is traced on the left, marking the
nominal position of a fractional peak with sixfold periodicity.



an equilibrium phase. As can be appreciated in the middle panel
of Figure 1, the molecules of adjacent stripes display a perfect
head-to-head alignment along the [001] direction. Additional
pentacene deposition decreases further the spacing between the
stripes, which also become more regularly aligned along the
[110] direction. Pentacene molecules within the stripes always
display the same side-by-side spacing along the [110] direction
that corresponds to the substrate spacing between oxygen rows
(see drawing in Figure 1).
In order to have a more quantitative evaluation of the

evolution of the stripe spacing, i.e., molecular density, of the
growing layer, we have taken consecutive one-dimensional HAS
diffraction scans during pentacene deposition. In agreement with
the STM sequence, no additional periodicity can be detected
along the [110] direction, whereas new diffraction features
appear along the [001] direction from a coverage of 0.5 ML.
A representative set of diffraction scans along the [001]

direction is shown in Figure 2, as recorded in a coverage range
from 0.5 to 1.5ML during deposition at 300 K (RT). Initially, the
intensity of the specularly reflected (0, 0) peak decreases steeply
without broadening, thus indicating the gradual covering of the
substrate by uncorrelatedmolecules. Close to the specular peak, a
new incommensurate diffraction feature is formed at about 0.5
ML, which grows in intensity and gradually shifts away from the
(0, 0) reflection up to a steady angular position. Further
deposition simply decreases the overall intensity of the diffrac-
tion pattern. Only when the angular position of the new
diffraction peak corresponds to the (0, 1/6) fractional peak do
we have observed the emergence of weak second-order peaks of
the same sixfold periodicity (both by HAS and RHEED); at
different deposition stages, the new diffraction feature only
displays a single diffraction order aside the substrate Bragg peaks
(0, 0), (0, (1).
A quantitative analysis of the evolution of the diffraction

pattern is shown in Figure 3. The spacing associated with the
new diffraction peak is found to match well the spacing between
the stripes for the corresponding coverage, as derived from STM
images. The (0, 0) reflectivity displays only one weak intensity
oscillation with coverage. The appearance of a reflectivity max-
imum during heteroepitaxial growth is associated with the
formation of a new spatially ordered surface (layer). The new

diffraction feature appears in correspondence of the shallow
minimum of the (0, 0) reflectivity, and its intensity displays a
maximum corresponding to the maximum of the (0, 0) reflectiv-
ity. The mean spacing associated with the new peak is shown in
the upper graphic, where the steady value of 16.9 Å is reached at
the intensity maximum of the new peak. As a consequence, we
consider this coverage to define the monolayer, i.e., the coverage
corresponding to the most dense first layer.
The continuous variation of the stripe spacing from 24 to 16.9 Å,

i.e., beyond the commensurate sixfold periodicity (17.7 Å), suggests
that the straightening and alignment of the stripes is driven by
pentacene head-to-head repulsion without a significative con-
tribution from the substrate atomic structure. Only when the
stripe spacing is commensurate with the substrate do we observe
the appearance of a few very weak fractional peaks of higher
sixfold order. At different coverage, the head-to-head repulsion
alone is not strong enough to establish a long-range order and the
new diffraction feature simply represents the occurrence of a
preferred (most probable) spacing among the stripes, rather than
a true periodicity. On the contrary, the substrate corrugation due
to the oxygen rows is dictating the pentacene azimuthal orienta-
tion and, coupled with the side-by-side pentacene attraction,
drives the strictly commensurate side-by-side spacing between
the pentacene molecules within the stripes.
Finally, both the absence of an additional periodicity along the

[110] direction and the stripe spacing being only compatible
with a single lying-down pentacene molecule suggest that
pentacene molecules are all equivalent in the first wetting layer.
The monolayer phase yields a molecular density of 0.91 ( 0.01
molecule nm-2. This value is larger than the density of the
monolayer phase on Cu(110) (0.83 molecule nm-2), which is
already known to allow the growth of a few additional lying-down
layers.16 In particular, the pentacene spacing along the stripes in
the substrate [110] direction perfectly matches the d[100] peri-
odicity (a axis) of the pentacene crystal in the thin film phase,
whereas the monolayer head-to-head spacing is ∼8% larger
than the d[001] pentacene crystal periodicity (a = 6.49 Å, b =
7.41 Å, c = 14.75 Å).10 We remark that the molecules in the a-c
bulk plane also display a slight rotation around the long axis by
∼25� off the a-c plane because of the pentacene herringbone
packing.
Both STM and HAS measurements are concurrent in indicat-

ing the lying-down adsorption geometry; however, they do not
yield any information about the possible rotation of the molec-
ular plane around its long axis. X-ray absorption spectroscopy is a
suitable technique for determining the geometric orientation of
the adsorbed molecules. In fact, pentacene is a planar molecule
(D2h symmetry), whose transition dipole moment from the
s-symmetry core levels to the π*-symmetry unoccupied molec-
ular orbitals, LUMOs, is oriented perpendicular to the molecular
plane. On the contrary, the transition dipole moments to σ*-
symmetry LUMOs are lying within the molecular plane. The
intensity of the LUMO resonances at the carbon K-edge thus
depends on the orientation of the molecule with respect to the
electric field of the photon beam. The occurrence of a prefer-
ential orientation of pentacene on TiO2(110) would allow us to
determine its tilting angle by measuring the NEXAFS dichroism
of the LUMO resonances at the C K-edge for different orienta-
tions of the surface with respect to the linear polarization of the
X-ray beam.
The carbon K-edge NEXAFS spectra taken on a monolayer

phase for representative surface orientations are shown in

Figure 3. Intensity of the HAS (0, 0) specular reflectivity (open
squares) shown together with that of the new diffraction feature
(filled circles, amplified by a factor of 20). The variation with coverage
of the spacing along the [001] direction, corresponding to the angular
position of the new peak, is shown in the upper part of the graphic (open
circles, right vertical axis). Data points have been determined from the
deposition sequence of the former Figure 2.



Figure 4. In our grazing scattering geometry, the spectra are taken
keeping the photon beam at a constant grazing incidence of 6�,
while rotating the surface around the beam axis to change its polar
orientationθwith respect to electric field, from transversemagnetic
(TM, θ = 90�, or p-polarization), when the magnetic field is
perpendicular to the scattering plane, to transverse electric (TE,θ=
0�, or s-polarization). By comparing the spectra taken with the
photon beam along the substrate [001] direction, i.e., along the
molecular long axis, one notices the strong intensity decrease of the
spectral features in the 283-287 eV range, when passing from TM
to TE polarization. In fact, this multiplet structure stems from the
π-symmetry pentacene LUMO and LUMOþ1,43 and this dichro-
ism indicates that the molecules are adsorbed with a small tilt angle
with respect to the surface. An opposite dichroism is also observed
for the broad spectral lines in the 292-305 eV range that stem from
σ-symmetry LUMOs, indeed.
By fitting the NEXAFS spectra, a quantitative evaluation of

the molecular tilting angle γ can be obtained from the LUMO
intensity dependence on the polarization angle θ.44 For aπ-plane
transition symmetry and twofold surface symmetry, the ratio
between the two opposite polarizations ITE/ITM is proportional
to tan2 γ; thus, we obtain amolecular tilt angle γ = 25�( 2�. This
angle is associated with a rotation of pentacene around its long
axis, as quantitatively confirmed from the comparison of the
NEXAFS spectra taken in TE polarization for different azimuthal
orientations of the surface (also see Figure 1 in ref 13 for a sketch
of the scattering geometry), where an additional dichroism is
detected. As it can be seen in Figure 4, the residual intensity of the
π-symmetry LUMOs observed when the beam is oriented along
the [001] direction (corresponding to the electric field oriented
along the [110] direction) practically vanishes when the surface
azimuth is rotated by 90�, bringing the photon beam along
the [110] direction. In this case, the absence of π-symmetry
resonances implies that the molecular plane is perfectly parallel
to the electric field, when the latter is oriented along the [001]
direction.

We have previously found the same strong azimuthal dichro-
ism for the pentacene nanorails grown on the Au(110) surface,
where 1/3 of the molecules lay on its long edge rotated by 90�
with respect to the surface.13 From comparison with the latter
system, the tilted molecules are expected to display a strong
rotational vibration around the main pentacene axis, which is
consistent with the strong Debye-Waller intensity attenuation
observed by HAS. We remark that a molecular tilt angle of∼28�
was also reported for anthracene on TiO2, but for an otherwise
disordered monolayer phase, as witnessed by the absence of
azimuthal changes, suggesting a mix of lying-down and standing-
up molecules.30 On the contrary, here we can unequivocally state
that the pentacene long axis is parallel to the surface.
Finally, the NEXAFS spectrum taken in TM polarization

shows additional spectral features at 288.8 and 290 eV, as is
typically observed only in thick pentacene films. The identifica-
tion of these peaks has been controversial in the past since they
are typically absent or largely shifted in the single-layer
phases.45,46 In any case, they are expected to yield a negligible
contribution to the NEXAFS spectra when the electric field is
parallel to the long axis of pentacene, as confirmed by the perfect
azimuthal dichroism we observe in TE polarization. From
comparison with data and calculations for the case of benzene,
there is now a general consensus in assigning the peak at 288.8 eV
to the σ*-state of the C-H bond, while the state at 290 eV has
possibly aπ*-character with relevant contributions fromRydberg
states.47 Beyond substrate-induced rehybridization effects, it
must be considered that the energy position of the σC-H* state
is also affected by the stretching of the C-H bond length. In
addition, no spectral features can be detected in the gas phase
spectra of pentacene at 289-290 eV.43 Thus, the full develop-
ment of these NEXAFS resonances can be regarded as the
resultant of the intermolecular interaction in the pentacene
herringbone packing, i.e., of the interaction of the pentacene
rim atoms and bonds with the electronic cloud of adjacent
molecules. As a matter of fact, the full bulklike development of
these electronic states may be detected at the monolayer thick-
ness only for a homeotropic (standing-up) orientation,48,49 but,
so far, it has never been reported for a lying-down phase, where
molecule-to-substrate interactions typically dominate over inter-
molecular interaction. On the contrary, the present weak inter-
action with the substrate together with the strong side-by-side
attraction and molecular tilting yield an interaction between
adjacent pentacene molecules that is strong enough to fully
develop a bulklike electronic structure along the stripes, although
in a lying-down monolayer phase.

Figure 4. NEXAFS taken at the C K-edge in the monolayer phase for
two opposite orientations of the surface with respect to the X-ray
polarization (TM and TE polarization, full line and markers, re-
spectively), and for two different azimuthal orientations in TE polariza-
tion (E ) [110] and E ) [001], markers and dashed line, respectively).

Figure 5. Intensity of the HAS specular reflectivity (0, 0) during
deposition at different substrate temperature. See text for details about
the deposition curve at 410 K.



Multilayer. The peculiar pentacene spacing of the monolayer
phase, the 25� tilt angle of the molecules, and the occurrence of
the fully developed bulklike electronic states are promising
conditions for the accommodation of a few additional layers of
lying-down molecules. We have first monitored by HAS reflec-
tivity the growth of additional pentacene layers. As it can be seen
in Figure 5, at room temperature the (0, 0) reflectivity rapidly
vanishes beyond the maximum corresponding to the completion
of the first layer. This behavior is indicative of a proliferation of
uncorrelated defects (either static or dynamical, like enhanced
molecular vibration). At a substrate temperature of 350 K, we
have found an improvement of the structural quality of the
monolayer (from the peak intensity and width, as measured after
cooling the sample to RT), but further deposition simply leads to
a gradual vanishing of the monolayer diffraction pattern without
the appearance of any additional periodicity. In addition, the
corresponding dichroism of the NEXAFS spectra (not shown)
indicates that multilayers grown at 350 K display the onset of
standing-upmolecular clusters already at a nominal thickness of 3
ML. Finally, the monolayer phase is found to correspond to the
saturation coverage at Ts = 410 K. In fact, after a small intensity
decrease beyond the monolayer maximum, the reflectivity soon
reaches a steady intensity. By stopping of the deposition at
constant substrate temperature, the (0, 0) intensity quickly
recovers the intensity of the monolayer maximum. As a conse-
quence, no second-layer molecules can be accommodated at
410 K on the lying-down pentacene phase, in full agreement with
previous findings for the pentacene flat phases on the Au(110)
surface.50

Notwithstanding the absence of a well-defined diffraction
pattern associated with second-layer pentacene, STM images
show that pentacene molecules preserve a lying-down geometry
at least up to the third layer. In Figure 6, we show second-layer
domains measured at a nominal coverage of 1.7 ML, where the
molecular packing preserves the striped morphology and inter-
molecular spacing. The residual molecular vacancy islands,
observed in the second layer, are always one-dimensional, and
they extend along the stripes; moreover, the stripes adjacent to
the pentacene vacancies appear unperturbed. These observations
are indicative of a relatively strong intermolecular attraction both
side-by-side and with the molecules underneath. This attractive
interaction exceeds the head-to-head repulsion that drives the
stripe spacing.
Images taken at 2.5 ML in Figure 6 show that third-layer

molecules start to lose the striped morphology and grow by
squared irregular patches, even if the molecules preserve a certain
degree of vertical coherence with the monolayer phase. The early
occurrence of the overlayer fragmentation is not surprising, since
it was also observed for the more “flexible” system of sexithio-
phene on Au(110). In the latter case, despite the formation of a
perfectly commensurate second layer, the natural herringbone
structure (planar orientation in the (120) 6T crystal plane) is
recovered at 4 ML, as driven by the strain release (mainly
rotational) among adjacent bulk lattice cells.35 Here the same
mechanism is possibly operative both along the pentacene stripes
and along themolecular axis. In fact, even if the lateral coupling of
the molecules mimics well the herringbone structure along the
substrate [110] direction, one must recall that in the bulk crystal
the molecules stacked along the pentacene c axis are tilted with
respect to the a-b plane.10 Thus, apart from the 8% spacing
mismatch, the perfect head-to-head azimuthal orientation along
the substrate [001] direction is not compatible with the

pentacene bulk packing along the c axis, and some azimuthal
reorientation of the molecules must take place as soon as the
herringbone stacking developes.
The optimal lying-down geometry of these few layer films is

confirmed by the polarization dichroism of the NEXAFS spectra.
At 3 ML, the NEXAFS spectra of Figure 7 preserve the same
dichroic behavior of the monolayer phase. The overall tilt angle
increases to 30� that is still compatible with the herringbone bulk
packing, also considering a layer-by-layer vertical gradient of the
tilt,. Even if we still observe a strong azimuthal dichroism in TE
polarization, the NEXAFS spectra display a residual π*-LUMO
intensity when the electric field is oriented along the [001]
direction in TE polarization. From comparison with STM
images, we attribute this intensity to lying-down molecules that

Figure 6. STM images recorded at constant current with a sample bias
of 1.8 V. The images are set to the same horizontal scale of 50 nm. Top:
at ∼1.7 ML, second-layer molecules preserve the striped morphology
and the stripes are well aligned along the [110] direction. Molecular
vacancy islands can be appreciated in this compact striped phase.
Bottom: at ∼2.5 ML, squared irregular islands are formed on top of
the striped phase. Resolving individual molecules becomes increasingly
difficult in third- and fourth-layer terraces. However, the height of the
terrace steps indicates that pentacene preserves its lying-down
orientation.



have slightly changed their azimuthal orientation, rather than to
uncorrelated clusters of standing-up molecules.
Due to the high pentacene mobility, we could not follow with

sufficient resolution the vertical stacking of the molecules. In
particular, by the overall small tilt angle we cannot exclude a close
cofacial stacking of the second-layer molecules, a packing struc-
ture that has been recently claimed to enhance the pentacene
photosensitivity to the solar spectrum.51 In any case, thanks to
the strong molecular coupling along the stripes in the [110]
direction, as also witnessed by the full development of the
bulklike electronic states from the first layer, the pentacene
stripes may favor the charge mobility parallel to the substrate,
although in a lying-down molecular orientation. This is in
contrast with what is commonly observed for pentacene2,5 and
most of the oligomers,4,52 where the intralayer lateral transport is
rather enhanced by the homeotropic alignment to the dielectric
substrate. The present geometry also implies that the charge
transfer at electrodes would be favored in a top-contact archi-
tecture. This geometry overcomes the bad contact resistance of
the most common bottom-contact geometry, which requires the
chemical modification of the electrode surface by a self-as-
sembled monolayer in order to limit the formation of topological
defects at the metal/organic interface.2 In addition, the crystal-
line nature of the substrate preserves a good structural coherence
of the organic semiconductor film without the need of chemical
modification of the gate dielectric surface.3

’CONCLUSION

We have shown that the unreconstructed (1� 1)-TiO2(110)
rutile surface is well suited to host the growth of a few planar
pentacene layers. The adsorption geometry is dictated by the
6.5 Å periodicity of the substrate that perfectly matches the
intermolecular spacing along the a axis of the pentacene crystals
in the thin film phase. The molecule-to-substrate interaction
drives the azimuthal orientation of pentacene along the [001]
direction, whereas the intermolecular side-by-side attraction results
in the appearance of continuous stripes along the [110] direction.
The molecules within the stripes are tilted around their long axis by

25�. The interstripe spacing decreases with increasing coverage
as a result of head-to-head intermolecular repulsion up to the
saturation of the first monolayer. The latter displays the full
development of the pentacene bulklike electronic states, as
probed by NEXAFS resonances. Both the tilting angle and the
spacing of the monolayer mimic the structure of the pentacene
a-c crystal planes, thus allowing further deposition of molecules
in a lying-down configuration at least up to the third layer.
Notwithstanding the overall planar orientation, the strong inter-
molecular coupling along the stripes suggests an optimal charge
mobility parallel to the substrate already from the first layer. At
the same time, this geometry implies that a top-contact device
architecture would be best suited to limit the formation of defects
at the metal/organic interface, i.e., to yield the best performance
in terms of charge transfer at the electrodes.
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