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Abstract: This paper studies the changes in chemical composition of the thin 

oxide surface films induced by heating in air at 200ºC for time intervals from 5 

minutes up to 60 minutes on the freshly polished commercial AZ31 and AZ61 

alloys with a view to better understanding their protective properties. This 

thermal treatment resulted in the formation of layers enriched in metallic 

aluminium at the interface between the outer MgO surface films and the bulk 

material. A strong link was found between the degree of metallic Al enrichment 

in the subsurface layer (from 10 to 15 at %) observed by XPS (X-ray 

photoelectron spectroscopy) in the AZ61 treated samples and the increase in 

protective properties observed by EIS (Electrochemical Impedance 

Spectroscopy) in the immersion test in 0.6M NaCl. Heating for 5 to 60 minutes 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Digital.CSIC

https://core.ac.uk/display/36150431?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:sfeliu@cenim.csic.es


2 
 

in air at 200ºC seems to be an effective, easy to perform and inexpensive 

method for increasing the corrosion resistance of the AZ61 alloy by 

approximately two or three times.   

 Keywords: Magnesium alloys, Thermal treatments; Surface segregation; 

corrosion; X-ray photoelectron spectroscopy (XPS), 
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1. Introduction 

Chosen materials for this study are Mg-Al alloys, which have aroused great 

scientific and technological interest over the last two decades. From a practical 

point of view magnesium is the structural metal of lowest density, which makes 

it highly attractive for use in the automotive, aerospace, IT, and electronics 

industries where weight plays a decisive role. However, as magnesium is one of 

the most chemically active metals, insufficient resistance to atmospheric and 

aqueous corrosion sometimes limits its applications. Thus it is desirable to have 

as complete as possible information on the factors that influence the corrosion 

of these magnesium base materials. This work seeks to contribute to such 

information. 

 Many researchers have carried out studies to find relationships between 

changes in the alloy microstructure (amount and distribution of β-phase 

precipitates) with long term heat treatments (T4 (solution treatment) or T6 

(aging treatment)) [1-10] and changes in corrosion resistance. In the literature a 

great deal of attention has been paid to the role of the β-phase in the corrosion 

mechanism of magnesium/aluminium alloys. A generally accepted idea is that 

this phase acts as an effective cathode and/or barrier against corrosion, 

depending on its size and distribution [1].   

In our previous studies [11-14], we have observed that the properties of the thin 

oxide/hydroxide native oxide surface film (only a few nanometres thick) may 

affect the corrosion properties of magnesium alloys in the atmosphere [11, 12] 

or in NaCl solution [13,14]. XPS analysis has revealed notable differences in the 

native oxide films formed in air on the surface of AZ31 and AZ61 alloys in as-
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received and freshly polished conditions. In the joint analysis of XPS and EIS 

data, attention has been drawn to the increase in the corrosion resistance value 

on the AZ61 alloy in freshly polished conditions, which showed a higher 

thickness and greater uniformity of the native oxide film. Following up the idea 

that the thin native oxide film may provide resistance to magnesium corrosion 

initiation and its propagation [1,13,14], in the present research studies have 

been carried out into the possibility of improving its corrosion resistance by 

short heat treatments at 200ºC. As Jeurgens et al. noted [15], the thermal 

oxidation of metallic alloys at low temperatures (e.g. at T < 600 K) and for short 

times has only scarcely been investigated. The detailed chemical composition 

and constitution of the oxide films formed on such alloy surfaces at low 

temperatures for short heating times are unknown. Furthermore, there is no 

comprehensive knowledge of the effect of the concurrent processes of chemical 

segregation and preferential oxidation on both the developing oxide-film 

microstructure and the induced compositional changes in the alloy subsurface.   

Czerwinski [16] studied the oxidation behaviour of AZ91D Mg alloy at different 

temperatures. His results showed that AZ91D exhibited protective oxidation 

only at a temperature of 197ºC, while at higher temperatures the behaviour was 

non-protective and associated with the formation of oxide nodules and their 

coalescence into a loose fine-grained structure. On the basis of these results, 

this study has selected a low-temperature heat treatment process at 200ºC to 

study the possibility of improving the protective properties of the native oxide 

film formed on AZ31 and AZ61 Mg alloy surfaces. 
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One of the main obstacles to characterise the thermally oxidised film formed on 

the surface of magnesium alloys after heating at low temperatures (200ºC) is its 

small thickness. As Czerwinski [16] reported, the maximum oxide thickness 

achieved during heating (as converted from weight gain data) was equal to 64 

nanometres for 197ºC. This film thickness is too small to produce a sufficient 

signal for conventional materials characterisation techniques (Optical 

microscopy, SEM/EDX, XRD or TEM) [13]. The use of the XPS surface analysis 

technique makes it possible to reduce the analysed thickness to only 3 nm and 

supplies information on the oxidation state of the detected element. 

The objectives of this research are as follows: 

1. To study the chemical changes in the native oxide surface film of AZ31 

and AZ61 alloys induced by short heat treatments at 200ºC in order to try 

to find relationships between the chemistry of the thin oxide films, the 

nature of the alloy and the heating time. 

2. To contribute to better understanding the effect of the chemistry and 

structure of the thin films (approximate thickness of 1-3 nanometers) 

formed on the surface of commercial Mg-Al alloys and their corrosion 

resistance in saline solutions. 
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2. Experimental 

The chemical compositions of the tested magnesium alloys, AZ31 and AZ61, 

are listed in Table 1. They were manufactured in wrought condition and 

supplied in 3 mm thick plates by Magnesium Elecktron Ltd. Freshly polished 

specimens were dry ground through successive grades of silicon carbide 

abrasive papers from P600 to P2000 followed by finishing with 3 and 1 μm 

diamond paste, rinsed in water and dried with hot air. Due to the high affinity of 

magnesium to the ambient atmosphere, it was attempted to keep to a minimum 

(around 1 h) the exposure time to the atmosphere prior to characterisation of 

the specimens. 

The two alloys were oxidised in the same conditions in a thermogravimetric 

analyser (TGA) (TA instruments Q600 SDT) using cylindrical specimens of 4 

mm in diameter by 2 mm in height (weighing approximately 44 mg). The 

apparatus was capable of accommodating a specimen with a maximum weight 

of 0.5 g and had a measurement accuracy of 0.1 μg. The reaction temperature 

was monitored by a Pt/Pt–Rh thermocouple. Weight change kinetics were 

measured in air under isothermal conditions at a temperature of 200ºC. The 

heating rate before reaching the isothermal condition was 50ºC/min.  

The  simple thermal treatment consisted of horizontal exposure of 2 cm x 2 cm 

square specimens of AZ31 and AZ61 alloys in a convective stove at 200°C in 

air for 5, 20, and 60 minutes. 

XPS analysis of the samples was performed using a Thermo Scientific K-Alpha 

ESCA instrument equipped with aluminium Kα1,2 monochromatized radiation at 

1486.6 eV X-ray source. The system is fitted with a charge compensation dual-
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beam source to minimize surface charging. Photoelectrons were collected from 

a take-off angle of 90° relative to the sample surface. The measurement was 

performed in a constant analyser energy mode with a 100 eV pass energy for 

survey spectra and 20 eV pass energy for high-resolution spectra. 

Composition–depth profiling was performed by sequential XPS surface analysis 

and sputter etching using 3 keV argon ion flux. Our previous results [13] on 

AZ31 and AZ61 alloys in polished condition, where we observed a sputtering 

rate of 5 Å/min, leads us to believe that this is approximately the rate which is 

obtained on specimens with the bombardment conditions and spectrometer 

used in this study. Survey scans and detailed scans of Mg 2p, Al 2s, C 1s and O 

1s photoelectron emissions were recorded for each sample. The intensities 

were estimated by calculating the area under each peak after smoothing and 

subtraction of the S-shaped background and fitting the experimental curve to a 

combination of Lorentzian and Gaussian lines of variable proportions. Binding 

energies (BEs) were referenced to the adventitious C1s peak at 285.0 eV. The 

atomic ratios were computed from the peak intensity ratios and the reported 

atomic sensitivity factors [17]. The sampled areas were 1 x 1 mm2.  

 

Electrochemical impedance measurements were conducted with the specimens 

immersed in 0.6 M NaCl after 1 hour, 1 day, 7, 14, 21 and 28 days of exposure 

at room temperature (25ºC). An AUTOLAB potentiostat, model PGSTAT30, with 

frequency response analyser (FRA) software was used. The frequency ranged 

from 100 kHz to 1 mHz with 5 points/decade, whereas the amplitude of the 

sinusoidal potential signal was 10 mV with respect to the open circuit potential. 

A typical three-electrode setup was employed: Ag/AgCl and graphite were used 
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as reference and counter electrodes, respectively, and the material under study 

was the working electrode. 

  

For the hydrogen evolution determinations, the corrosion of magnesium alloys 

during solution immersion was estimated by determining the volume of 

hydrogen evolved during the corrosion process. Samples for hydrogen 

collection were cut into square coupons with dimensions of 2 × 2 x 0.3 cm and 

vertically immersed in 700 ml of quiescent 0.6M NaCl for 14 days in a beaker 

open to laboratory air at 25 ± 2 °C. The entire specimen surface was exposed to 

the electrolyte. Evolved hydrogen was collected in a burette above an inverted 

funnel placed centrally above specimen. All these experiments were run 

simultaneously and each sample was subjected to essentially the same 

temperature and exposure history. The experimental difficulties and limitations 

of such test was recently documented [18]. For the gravimetric determination of 

corrosion, the specimens were weighed before exposure and then after testing 

were pickled in chromic acid to remove the corrosion products, rinsed with 

isopropyl alcohol, dried in hot air and reweighed in order to calculate the mass 

loss per unit of surface area. 
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33. Results 

3.1. Thermogravimetric analysis 

Figure 1 compares the weight change kinetics curves obtained for alloys AZ31 

and AZ61 after heating at 200ºC in an air environment. It is interesting to note 

that the mass change values are similar in the case of the two alloys (Fig. 1) 

and that some mass loss is observed during the first 35 minutes of exposure, 

followed by an approximately steady state region and then a slight increase in 

weight.  Liu et al [19], studying the oxidation of pure Mg and Mg-Gd-Y-Zr alloys 

at 300ºC, attributed the mass loss at the start of the mass change 

measurements due to dehydration and disintegration of the external Mg(OH)2 

layer formed during mechanical polishing. 

3.2. Microstructural characterization 

Figure 2 compares the size and amount of the precipitates on the surface of the 

non-heated AZ31 and AZ61 alloys and heated for 60 minutes. The SEM 

micrographs obtained for other heat treatment times are fairly similar and are 

not shown. Throughout the work, in order to avoid repeating similar results 

(micrographs or XPS spectra), only those necessary to support the 

corresponding facts are displayed. A small amount of precipitates is observed 

for the non-heated AZ31 alloy (Fig. 2a) and AZ61 alloy (Fig. 2b). The 

backscattered electrons produce a sharp contrast between the bright particles 

and the magnesium-rich matrix. By comparing Fig. 2a with Fig. 2c for AZ31 

alloy and Fig. 2b with Fig. 2d in the case of the AZ61 alloy, it is apparent that 

the size and amount of the precipitates on the surface do not change 

significantly with the treatment time.   
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Fig. 3 shows elemental mapping results of the non-heated AZ31 alloy surface. 

Fig. 3a-3d respectively shows the surface morphology (backscattering electron 

imaging: BEI) and elemental maps of Al, Mn and Fe. The elemental mapping 

results indicate that the bright particles contain Al and Mn (Figs. 3b and 3c). In 

contrast, it is interesting to note that no iron is detected on the particles or on 

the matrix (Fig. 3d). 

Figure 4 compares the surface microstructures for the non-heated AZ31 and 

AZ61 magnesium alloys and heated for 60 minutes. The microstructure of the 

AZ31 alloy is formed practically by an α-matrix with Al in solid solution (Fig. 4a), 

while a large part of the Al in the microstructure of the AZ61 alloy is precipitated 

in the form of β-phase (Fig. 4b). As commented earlier for the Al-Mn 

precipitates, no significant differences in the grain morphology and size are 

observed in both alloys after 60 minutes of heat treatment (Figs 4c and 4d) 

compared with the non-heated alloy (Figures 4a and 4b).  

3.3. Changes in the chemistry of the surface films formed on AZ31 and AZ61 

alloys with the heating treatment 

Figure 5 shows the high resolution spectra for C1s peak obtained on the non-

sputtered surfaces of the AZ31 alloy: non-heated (a) and heated for 60 minutes 

(b) and of the AZ61 alloy: non-heated (c) and heated for 60 minutes (d), with 

those corresponding to the same surfaces after 2 minutes of sputtering (e-h), 5 

minutes of sputtering (i-l) and 10 minutes of sputtering (m-p). The spectra can 

be fitted using two components at different binding energies: at 285.0 eV, which 

may be associated with the presence of C–C/C–H groups; and a less intense 

component about 4.5–5.0 eV higher which is associated with the presence of 

http://www.sciencedirect.com/science/article/pii/S0169433211007045#fig0020


11 
 

magnesium carbonate [20]. The first component, C–C/C–H groups, appears on 

the outer surface (<3 nm in thickness) of almost any metal in contact with the 

atmosphere at room temperature, irrespective of its composition. Magnesium 

carbonate formation can be explained by the diffusion of CO2 from the 

environment and its reaction with the oxide film on the freshly polished 

surface [21]. After 2 minutes of sputtering, the intensity of the magnesium 

carbonate component observed on the surface of the AZ61 alloy (Fig. 5g and 

5h) was higher than on the AZ31 alloy (Fig. 5e and 5f). In a previous 

study [12] some correspondence was observed between the presence of β-

phase (Mg17Al12) and the amount of magnesium carbonate formed on the 

surface after atmospheric exposure. The results of this work tend to support this 

behaviour. From the point of view of magnesium alloy protection mechanisms, 

the formation of a carbonate product layer, thicker than that observed in this 

work, provides better passivation of the surfaces and retards chloride-induced 

corrosion in the passivation zone [22]. It is interesting to note that the 

magnesium carbonate content observed in the XPS analysis of the outer 

surface of the alloys (Fig. 5a-5h) tends to decline quickly with sputtering time 

(Fig. 5i-5p), probably because its presence is limited to the outermost surface of 

the magnesium specimen.   

Figure 6 compares the high resolution spectra for Al2s peak obtained on the 

non-sputtered surfaces of the AZ31 alloy: non-heated (a) and heated for 60 

minutes (b) and of the AZ61 alloy: non-heated (c) and heated for 60 minutes 

(d), with those corresponding to the same surfaces after 2 minutes of sputtering 

(e-h), 5 minutes of sputtering (i-l) and 10 minutes of sputtering (m-p). No 

appreciable aluminium signal is detected on the spectra obtained on the non-

http://www.sciencedirect.com/science/article/pii/S0169433211007045#bib0100
http://www.sciencedirect.com/science/article/pii/S0169433211007045#bib0145
http://www.sciencedirect.com/science/article/pii/S0169433211007045#bib0020
http://www.sciencedirect.com/science/article/pii/S0169433211007045#bib0140
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sputtered surfaces (Figs. 6a-6d). After 2 minutes of sputtering, the spectra 

obtained on the AZ31 alloy non-heated (Fig.6e) and heated for 60 minutes (Fig. 

6f), as well as on the AZ61 alloy heated for 60 minutes (Fig. 6h), contain one 

single component at a binding energy of approximately 120.0 eV associated 

with the presence of aluminium in the form of Al3+ . The spectra obtained on the 

non-heated AZ61 alloy after 2 minutes of sputtering (Fig. 6g) show the most 

intense component at a binding energy of 118.0 eV, associated with the 

presence of metallic aluminium (Al0), and a less intense component at a binding 

energy of 120.0 eV. After 5 minutes of sputtering (Figs. 6i-6l) the intensity of the 

metallic aluminium (Al0) signal tends to rise and the intensity of the aluminium 

oxide (Al3+) signal tends to decline quickly. No appreciable changes in the 

shape of the spectra have been observed after 10 minutes of sputtering 

between the non-heated alloys (Figs. 6m and 6o) and heated for 60 minutes 

(Figs. 6n and 6p). Attention is drawn to the significant increase in the metallic to 

oxide height (intensity) ratio in the Al2s peak obtained on the AZ61 alloy surface 

after 5 (Figs. 6k and  6l) or 10 minutes of sputtering (Figs. 6o and 6p) compared 

to that corresponding to the AZ31 alloy (Figs. 6i, 6j, 6m and 6n). This difference 

in trend suggests that a large part of the Al is in metallic state in solid solution in 

the AZ61 alloy, and as aluminium oxide particulates in the layers close to the 

outermost surface in the case of the AZ31 alloy [13]. 

Figure 7 compares the evolution with sputtering time of the high resolution 

spectra Mg2p peak obtained on the AZ31 alloy surface non-heated (a, e, i, m) 

and heated for 60 minutes (b, f, j, n) with those obtained on the AZ61 alloy 

surface non-heated (c, g, k, o) and heated for 60 minutes (d, h, l, p). The 

spectra obtained on the non-sputtered surface (Figs. 7a-7d) contain one single 
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component at a binding energy of 50.8 eV associated with the presence of 

magnesium in the form of magnesium hydroxide/carbonate [20]. After 2 minutes 

of sputtering, a higher intensity second component appears at a binding energy 

of 49.7 eV, associated with the presence of magnesium in metallic state on the 

surface of the non-heated AZ31 and AZ61 alloys (Figs. 7e and 7g). Attention is 

drawn to the different shape of the spectra obtained on alloys AZ31 or AZ61 

heated for 60 minutes after 2 min of sputtering (Figs 7f and 7h, respectively), 

with a higher intensity of the Mg2+ component respect to the Mg0 component 

which could be explained by the formation of a thicker magnesium oxide layer 

after the heat treatment. After 5 minutes of sputtering, the intensity of the Mg0 

component observed in the heated samples (Figs 7j and 7l) increased 

significantly and no differences are observed in the Mg2+ to Mg0 component 

height (intensity) ratio in the Mg2p peak  compared to the non heated samples 

(Figs. 7i and 7k). No appreciable changes between the samples non-heated 

and heated for 60 minutes have been observed in the shape of the spectra after 

10 minutes of sputtering (Figs. 7m - 7p). The fact that Al3+ and Mg2+ signals  do 

not cease to be present on the surface of the specimens after long sputtering 

times (Figs. 6i-6p and 7i-7p)  may be due to the presence of residues of Al2O3 

and MgO that cannot be removed by the incident argon ions. 

 

Figure 8 compares the variation in the Al0/(Al0+Mg0) x 100 atomic ratio obtained 

by XPS on the AZ31 and AZ61 alloy surfaces as a function of heating and 

sputtering times. This ratio was calculated from the area of the Al0 and Mg0 

components in the fitting of the Al2s (Fig. 6) and Mg2p (Fig. 7) spectra and the 

atomic percentages of Al and Mg obtained by XPS on the surface of the alloys 
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(not shown). It is interesting to note that the fraction of area occupied by the 

intermetallic precipitate of β- phase in the grain boundaries of alloy AZ61 is very 

small (Figs. 4b and 4d). Thus, the XPS results (which refer to an analysis area 

of 1mm x 1mm) give an average surface chemistry which is dominated to a 

large extent by the effect of the α-phase.  

Strong Al enrichment develops in the alloy subsurface region upon sputter-

cleaning, as experimentally confirmed in Ref. [15] . However, the fact that the 

Al/(Al0+Mg0) x 100 atomic ratio obtained by XPS on the non-heated AZ31 and 

AZ61 alloy surfaces are practically identical to that of the aluminium content in 

the bulk of these materials  (Table 1) and remain approximately stable during 

the 10 minutes of sputtering (Fig. 8) suggest that this is not the origin of the 

phenomenon observed in our study. 

3.4.Electrochemical measurements 

3.4.1. Charge transfer resistance measurements or corrosion rate. 

3.4.1.1 Electrochemical impedance measurements  

The evolution of the corrosion process on the heat-treated AZ31 and AZ61 

alloys immersed in 0.6 M NaCl solution has been monitored by means of 

impedance measurements. The Nyquist diagrams (Fig. 9) show the presence of 

a capacitive loop at high frequencies (HF) and an inductive loop at low 

frequencies (LF).  In the literature about the corrosion of magnesium alloys is 

normal to associate the diameter of the capacitive loop in the HF frequency 

region with the charge transfer resistance (RCT) of the corrosion process [23-

25], value which is inversely related to the corrosion current (icorr) through the 

well known Stern-Geary equation [26]. In a previous investigation [13], an 

http://www.sciencedirect.com/science/article/pii/S135964540800387X#bib14
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empirical determination of the proportionality constant B from the correlation 

between electrochemical and gravimetric measurements yielded values of 

around 65 mV for the AZ31 alloy and of around 120 mV for the AZ61 alloy.  

Figure 10 shows the evolution of the charge transfer resistance (RCT) deduced 

from the capacitive loop at high frequencies (HF) with immersion time in 0.6M 

NaCl solution.   

RCT data together with Stern-Geary equation have enabled electrochemical 

calculations of corrosion rate and amount of corroded metal. For determination 

of the amount of corroded metal over an extended period of time, icorr values 

have been converted into weight losses by applying Faraday´s law and 

integrating the weight changes for individual exposure periods over the 

considered interval. This way, the results depicted in Fig. 11 were determined, 

which show the instantaneous corrosion rate variations with time over 28 days 

immersion. On the other hand, Fig. 12 shows the average corrosion rates of the 

specimens after 14 days of exposure to the 0.6 M NaCl solution. 

3.4.1.2. Hydrogen evolution measurements 

Fig. 13 is instructive in showing the differences in the hydrogen volume data 

between heat treated AZ31 and AZ61 alloys over 14 days of immersion in 0.6 M 

NaCl. It is interesting to note that similar trends regarding the corrosion 

behaviour are deduced from these hydrogen evolution determinations that from 

the electrochemical ones. 

Fig. 12, which compares the amounts of corroded metal determined by 

hydrogen evolution, gravimetric and electrochemical measurements, also gives 
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us an idea of the degree of similarity between these three types of 

determinations.  

4. Discussion 

4.1. Changes in chemical composition of the thin oxide films grown on AZ31 

and AZ61 alloys by themal oxidation  at 200ºC 

As can be seen in figure 1, the time interval of 35-60 minutes of heating at 

200ºC was characterised by a very small weight gain, around only 0.6 µg/cm2, 

similar for the two alloys, which corresponds approximately to an oxide film 

thickness of 17 Å. This data is consistent with the small increase in the 

thickness of the MgO film on the surface of the alloys as seen by XPS after 60 

minutes of heating and commented above.  It is generally accepted that the 

growth of compact MgO films is controlled by solid sate diffusion through 

adherent oxide areas followed by the reaction with oxygen at the oxide/gas 

interface. Hence, a lack of easy-paths for fast Mg transport could be a possible 

explanation of highly protective behaviour [16]. Since the diffusivity of Mg within 

the MgO lattice is expressed by [27]: 

DL = 1.0 x 10-6 exp( - 150000/ RT)  m2 / s 

at 473 K the value of D is as low as 2.67 x 10-23 m2/s justifying negligible weight. 

Similarly, in previous work [13] with the same alloys in 0.6M NaCl solution, we 

observed that the homogeneous and continuous native oxide film formed on 

freshly polished samples had a possible inhibiting effect on the diffusion of 

magnesium atoms during the corrosion process. 
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In general, the XPS analyses of the AZ61 heated samples show an important 

aluminium enrichment, mainly as metallic aluminium, at the interface between 

the surface oxide and the bulk of the alloy compared to the Al content on the 

non-heated alloy or in the bulk alloy (Fig. 8b). The relative Al0/(Al0+Mg0) x 100 

atomic ratio determined by XPS for the heated samples is 2-3 times higher than 

for the Al alloying bulk content or non-heated AZ61 alloys. This behaviour 

suggests the possibility of a considerably higher diffusion rate of Al than the Mg 

throughout the heat treatment. This idea could be sustained if the diffusivity 

values for Al in MgO are much higher than those corresponding to the diffusion 

of Mg. Recent data in the literature [28, 29] suggest diffusion coefficients for Al 

about ten orders of magnitude higher than for Mg, which tends to support this 

possibility. 

4.2. Relationship between the chemistry of thin oxide films grown on the surface 

of magnesium alloys by themal oxidation and  their corrosion resistance in 

saline solutions 

It seems likely that some differences revealed in the composition characteristics 

of oxide films formed on alloy AZ31 and AZ61 surfaces after the heat treatment 

may have an impact on the corrosion behaviour of the specimens in saline 

solutions. In this respect, attention is drawn to: (a) very thin MgO layer, only few 

nanometers thick, grown on the surface of polished commercial AZ31 and AZ61 

alloys with the heat treatment conditions used in this study and (b) metallic Al 

enrichment in the subsurface layers of the thermally treated AZ61 alloy. 

As pointed out in early studies by Pilling and Bedworth [30], due to the large 

difference in densities between the oxide and metal, expressed by the MgO to 
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Mg volume ratio of 0.81, oxide scale should not form a compact layer. Justified 

by our gravimetric and XPS results it may be inferred that a minimal formation 

of magnesium oxide occurs during the heating treatment. In a previous study 

[13] it was seen that the freshly polished AZ61 and AZ31 alloys showed better 

corrosion resistance than the alloys in as-received condition, probably due to 

the formation of a homogeneous, uniform passive thin layer on the polished 

surface. It is interesting to note that heating at 200ºC avoids the adverse effect 

of the growth of thick MgO oxide layers at higher temperatures which may break 

the compact structure of the initial native oxide film impairing their diffusion 

barrier properties in a NaCl aqueous environment. 

Jeurgens et al. [15] have investigated the growth kinetics and the evolution of 

the chemical composition and constitution of the initial oxide film grown on Mg-

based MgAl surfaces by dry thermal oxidation, and observed that within the 

grown oxide films adjacent to the alloy/oxide interface the interstitial sites were 

preferentially occupied by Al cations. In the present study, attention is drawn to 

the preferential increase in the metallic component compared to the oxide 

component in the Al signal in the subsurface layer as a result of the heat 

treatment. It is speculated that the homogeneous, uniform and compact native 

oxide layer present on the surface of the alloys inhibits significantly the 

oxidation or solid state diffusion of the Al alloying element within the exposure 

times and temperature chosen in our study reducing the adverse effects on the 

protective properties associated to the growth of Al2O3 or MgAl2O4 type species 

[13]. 

In addition to the uniformity and compactness effects, the chemical composition 

of the thin oxide layers on surface of the AZ61 alloy after the thermal treatment 
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also plays a fundamental part in the observed corrosion rate. Figures.10b, 11b, 

12b and 13b reveal that metallic aluminium enrichment of the subsurface layers 

with heat treatment exerts an important effect in the evolution of RCT and 

corrosion values for the AZ61 alloy during the first 14 days of the immersion test 

in solution of NaCl 0.6M. The findings of the present work suggest that the 

higher the amount of aluminium in the subsurface of the heated alloy better is 

corrosion resistance in saline solution. Many studies mention the beneficial 

effect of Al [11, 31-36], which may become the essential factor in determining 

the passivity of the surface, improving the resistance to local breakdown of the 

oxide and reducing the chance of chloride ions penetrating as far as the metal 

surface It is logical to relate a decrease in the corrosion rate with the 

strengthening of the thin magnesium oxide film spontaneously formed on the 

metallic surface of magnesium alloys by the Al enrichment induced by the heat 

treatment. Any increase in the percentage of passivating points or aluminium 

hydroxide areas on the metallic surface will reduce the tendency (stimulated by 

the presence of Cl- ions) for metallic ions to pass from the reactive bare surface 

into the aqueous solution. 

 

Finally, in the case of the AZ31 specimens, it is interesting to note the absence 

of significant variations in the corrosion rate, (Figs.11a and 12a) or in the 

volumes of hydrogen evolved (Fig. 13a) as a function of the heating time, where 

the XPS analyses (Figs.8a) has revealed Al contents on the heated specimens 

similar to those observed on the non-heated alloy or in the bulk alloy (Table 1). 

This fact tends to support the idea that the aluminium incorporation in the 
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magnesium oxide film that covers the surface of the magnesium alloys after the 

heat treatment plays a fundamental part in the observed corrosion rate.  

 

5. Conclusions 

XPS analysis has been used to characterise the subtle changes in the chemical 

composition of native films formed in air on the surface of AZ31 and AZ61 alloys 

as a result of heating at a temperature of 200ºC for a time of between 5 minutes 

and 1 hour. Attention is drawn to the metallic aluminium enrichment on the 

subsurface layers of the AZ61. Close to two or three times higher metallic 

aluminium contents have been found in these layers compared to the bulk 

content. 

The native oxide film formed on the surface of polished AZ31 and AZ61 alloys 

seems to significantly inhibit the growth of magnesium oxide- or Al 3+ enriched 

surface layers during thermal treatment in air at 200ºC and periods of 60 

minutes. 

Charge transfer values (RCT), obtained from EIS measurements in an interval  

between 1 h and 28 days of immersion in 0.6M NaCl solution, have allowed the 

establishment of relationships between the chemical composition of the thin 

surface films formed as a result of the heating treatment and the corrosion 

resistance of the alloys. There is a notable rise in the RCT values of the AZ61 

alloy in NaCl as a result of the prior heating process, even for the earliest 

stages (only 5 minutes). This effect is less evident in the AZ31 alloy. 

Combined analysis of XPS and EIS data suggests a favourable effect for 

corrosion resistance of: a) metallic Al enrichment in the subsurface of the 
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thermally treated alloy; and b) the absence of significant changes in the 

uniformity, homogeneity and compactness of the native oxide film formed on the 

surface of polished commercial AZ31 and AZ61 alloys during thermal oxidation 

of the alloys at 200ºC in air. 
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Figure Captions 

Figure 1. Evolution of mass change values obtained in the polished AZ31 and 

AZ61 alloys as a function of the time of heating at 200ºC in an air environment. 

Figure 2. SEM micrographs (BSE mode) morphologies for AZ31 (a, c) and AZ61 

magnesium alloys (b, d) non-heated (a, b) and heated for 60 min (c, d), 

respectively. 

Figure 3.  SEM micrographs (BSE mode) morphologies for AZ31 (a, c) and 

AZ61 magnesium alloys (b, d) non-heated (a, b) and heated for 60 min (c, d), 

respectively. 

Figure 4.  Microstructure for AZ31 (a, c) and AZ61 magnesium alloys (b, d) non-

heated (a, b) and heated for 60 min (c, d), respectively. 

Figure 5. Variation of the C1s high resolution peak obtained by XPS on the 

surface of the AZ31 and AZ61 alloys non-heated and heated for 60 minutes as 

a function of the time of sputtering.   

Figure 6. Variation of the Al2s high resolution peak obtained by XPS on the 

surface of the AZ31 and AZ61 alloys non-heated and heated for 60 minutes as 

a function of the time of sputtering.   

Figure 7. Variation of the Mg2p high resolution peak obtained by XPS on the 

surface of the AZ31 and AZ61 alloys non-heated and heated for 60 minutes as 

a function of the time of sputtering.   

Figure 8. Variation in the Al0/(Al0+Mg0) x 100 atomic ratio obtained by XPS on 

the surface of the AZ31 and AZ61 alloys as a function of the time of heating and 

time of sputtering.   



28 
 

Figure 9. Variation in Nyquist plot for AZ31and AZ61 alloys with immersion time 

(hours or days on the Y-axis) and times of heating.  

Figure 10.  Variation in RCT values as a function of alloy type and of time of 

heating over 28 days immersion in 0.6M NaCl.  

Figure 11. Variation in corrosion rates (mm/y) obtained from EIS as a function of 

the time of heating and alloy type over 28 days immersion in 0.6M NaCl.  

Figure 12.  Comparison of corrosion rates (mm/y) obtained from EIS with weight 

loss and hydrogen evolution measurements after 14 days immersion in 0.6M 

NaCl. 

Figure 13.  Variation in H2 evolution volume values as a function of the time of 

heating and alloy type over 14 days immersion in 0.6M NaCl.  
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Table I. Chemical composition of Mg-Al alloys (wt%) 

Alloy Al Zn Mn  Si Cu Fe Ni Ca Zr Others 

AZ31 3.1 0.73 0.25 0.02 <0.001 0.005 <0.001 0.0014 <0.001 <0.30 

AZ61 6.2 0.74 0.23 0.04 <0.001 0.004 <0.001 0.0013 <0.001 <0.30 

 

 

 

 

 

 

 

 

 

 

 

 


