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ABSTRACT 18 

One of the challenges being faced in the twenty-first century is the biological control of 19 

plant viral infections. Among the different strategies to combat virus infections, those 20 

based on pathogen-derived resistance (PDR) are probably the most powerful approaches 21 

to confer virus resistance in plants. The application of the PDR concept not only 22 

revealed the existence of a previously unknown sequence-specific RNA-degradation 23 

mechanism in plants, but has also helped to design antiviral strategies to engineer viral 24 

resistant plants in the last 25 years. In this article, we review the different platforms 25 

related to RNA silencing that have been developed during this time to obtain plants 26 

resistant to viruses and illustrate examples of current applications of RNA silencing to 27 

protect crop plants against viral diseases of agronomic relevance. 28 

 29 

1. Introduction 30 

Plant viruses represent important threats to modern agriculture. Although accurate 31 

figures for crop losses due to viruses are not available, it is generally accepted that 32 

among the different plant pathogens, the economic relevance of viruses comes second to 33 

fungi. Until the emergence of genetic engineering technologies, plant viruses have been 34 

partially controlled using conventional cultivation techniques such as crop rotation, 35 

early detection and eradication of the diseased plants, cross protection, breeding for 36 

resistance, or chemical control of their vectors [1]. In the 1980s, the successful transfer 37 

of foreign DNA into the nuclear genome using Agrobacterium as a vector prompted the 38 

introduction of genetic engineering for crop improvement and the development of virus-39 

resistant plants [2, 3]. Today, different antiviral strategies are being undertaken, either 40 

by exploiting natural plant defence mechanisms, or designing new tools, which in most 41 

cases are ultimately also based on natural defence mechanisms. 42 

Most of the achievements obtained in plant biotechnology in the area of plant virus 43 

resistance are based on the principle of pathogen-derived resistance (PDR) [4]. The 44 

concept of PDR was proposed by Sanford and Johnston [5] twenty-five years ago using 45 

the bacteriophage Qß as a model, and considers that expression of pathogen genetic 46 

elements outside the context of infection may lead to resistance. This approach opened 47 

an interesting possibility for the practical control of diseases. For plant viruses, the 48 

concept of PDR was first validated with its use in tobacco plants transformed with the 49 

tobamovirus Tobacco mosaic virus (TMV) coat protein (CP) gene [6]. Soon this 50 

observation was validated using other viral CPs and other viral sequences that code for 51 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proteins such as replicases, proteinases and movement proteins [for review, see 7-11]. 52 

CP is the most successful and widely applied viral protein for PDR. However, the 53 

protection conferred by CP-mediated resistance varies significantly from strong 54 

interference with virus multiplication to delay or attenuation of symptoms. The PDR 55 

based on the expression of viral proteins, with either the wild type or the mutated one, 56 

in transgenic plants has several general characteristics: i) it is not very specific, and 57 

protects against a broad range of viral strains; ii) it shows a positive correlation between 58 

the levels of accumulation of the viral product and the effectiveness in resistance; iii) it 59 

is usually overcome by high doses of inoculum. Despite extensive studies, the 60 

molecular mechanisms underlying protein-mediated resistance are not fully understood. 61 

What appears to be certain is that they are diverse, that they probably affect several 62 

steps of the infection process, and that each virus/transgenic plant combination has 63 

specific features. Moreover, it soon became apparent that many virus resistances 64 

initially envisaged as protein-mediated PDR did not rely on the expression of the 65 

corresponding viral proteins and that a majority of PDR phenomena seemed to work 66 

through RNA-mediated mechanisms [12]. 67 

  68 

2. RNA silencing and virus resistance 69 

In the early nineties, two independent research groups found that the expression of 70 

a transgene mRNA with a high sequence similarity to an endogenous mRNA, led to 71 

specific degradation of both mRNAs through post-transcriptional gene silencing 72 

(PTGS), also known as “cosuppression” [13, 14]. Later, the W. Dougherty research 73 

group suggested that a similar mechanism might be involved in the resistance 74 

phenomena observed in transgenic plants transformed with viral genes. Some of the 75 

transgenic lines showed anomalous phenotypes; unexpectedly and unpredictably the 76 

highest level of resistance was observed in the transgenic lines showing very low levels 77 

of transgene mRNA accumulation, whereas plant lines expressing the same gene at high 78 

levels were fully susceptible. Interestingly, the virus resistant plants had actively 79 

transcribed genes but they had low steady-state levels of transgene mRNA. A 80 

breakthrough discovery, from transgenic lines included to serve as negative controls, 81 

showed that resistance occurred even with non-translatable versions of the viral genes, 82 

which demonstrated that the RNA itself was responsible for the virus resistance 83 

observed in the transgenic plants [15-17]. All the molecular analysis of these transgenic 84 

plants challenged the existing paradigm of genetic regulation and became the first 85 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demonstration of an RNA-activated sequence-specific RNA degradation mechanism in 86 

a biological system, a phenomenon now referred to as RNA silencing or RNA 87 

interference (RNAi) [18, 19]. 88 

 English et al. provided an elegant approach to demonstrate the role played by RNA 89 

silencing in virus resistance in plants transformed with transgenes homologous to viral 90 

genome sequences [20]. These authors showed that while a recombinant Potato virus X 91 

(PVX) whose engineered genome contained coding sequences of GUS (PVX-GUS) was 92 

able to infect both wild type plants and plants actively expressing a GUS transgene, 93 

transgenic plants in which the GUS transgene was silenced, were resistant to PVX-94 

GUS, but not to wild type PVX (Figure 1). These results provide an explanation for the 95 

negative correlation between accumulation levels of the transgene RNA and virus 96 

resistance that had been observed in plants transformed with virus-derived transgenes 97 

[21]. However, a transgenic plant actively expressing a virus-derived transgene is not 98 

always fully susceptible. Very often viral infection causes the silencing of a 99 

homologous transgene, which was initially active, thus leading to a phenomenon of 100 

delayed resistance referred to as “recovery” [17, 22] (Figure 2). Subsequent discoveries 101 

showed that RNA silencing naturally protects plants from viruses, indeed, recovery in 102 

tobacco plants infected with the nepovirus Tobacco ringspot virus was already 103 

documented as early as 1928 ([23], cited by [24]).  Today, this phenotype has been 104 

shown to result from delayed resistance caused by virus-specific RNA silencing [25]. 105 

Even more importantly, later on, this RNA-mediated defence was shown to be a general 106 

response to viral infections that acts against the elicitor virus and can also cross-protect 107 

the infected plants against secondary infections [26, 27]. 108 

In response to this type of antiviral innate defence, it is not unexpected that viruses 109 

have devised counteracting mechanisms that interfere with it, mainly by means of 110 

factors that are able to suppress RNA silencing. Moreover, the ability of a virus to 111 

systemically infect a particular plant is greatly dependent on the effectiveness of these 112 

contra defence mechanisms [28-34] (Figure 2). Suppression of the antiviral silencing 113 

response of the plant by a virus can facilitate the replication of a second virus, giving 114 

rise to synergistic mixed infections [35]. In addition, the specific antiviral resistance 115 

conferred by silenced viral transgenes can be disturbed by the silencing suppression 116 

activity of heterologous viruses [36-39] (Figure 2). However, RNA silencing-based 117 

virus-immune transgenic plants do not always revert to a susceptible phenotype 118 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following an infection by a heterologous virus [40], even in cases in which the 119 

transgene silencing is suppressed [39]. 120 

 121 

   122 

3. RNA-mediated transgenic resistant plants 123 

The trigger of RNA silencing is a double-stranded RNA (dsRNA), which is 124 

processed by a specific RNase III-type Dicer enzyme into 21- to 24-nt small molecules 125 

(siRNA), then, the siRNAs are loaded into Argonaute protein-containing effector 126 

complexes called RNA-induced silencing complexes (RISCs) to guide degradation or 127 

translation repression of complementary RNA targets [41, 42]. By contrast, the first 128 

examples of transgenic plants described to undergo RNA-mediated PTGS had been 129 

transformed with transgenes designed to generate viral RNA fragments of positive 130 

polarity. Although a single copy of the transgene was capable of inducing RNA 131 

silencing [43], in general, induction of RNA silencing was enhanced by the existence of 132 

multiple copies of the transgene [44], mainly when they were arranged in inverted 133 

repeats able to form dsRNA [45]. Subsequent studies revealed the existence of two 134 

branches of transgene-induced PTGS [46]. In the cases of transgenes transcribed as a 135 

single strand RNA (S-PTGS), the dsRNA substrate cleaved by Dicer to produce the 136 

siRNAs is generated by a host-encoded RNA-dependent RNA polymerase (RDR), 137 

which can somehow recognize aberrant versions of highly abundant transgene RNAs 138 

and copy them into dsRNA [47, 48]. Transgenes with inverted repeats producing long 139 

double strand RNA regions do not depend on host RDRs to produce primary siRNAs 140 

and efficient RNA silencing (IR-PTGS), but RDRs are involved in an amplification step 141 

producing secondary siRNAs, which reinforces silencing and spreads it beyond the 142 

initial trigger sequence (transitive RNA silencing) [49, 50]. In accordance with the key 143 

role of dsRNA in the induction of RNA silencing, whereas transformation with 144 

transgenes coding for single stranded viral RNAs gives rise to low and erratic numbers 145 

of virus-resistant transgenic lines, most of the plants transformed with transgenes 146 

producing viral dsRNA show a high level of virus resistance [51]. Transgenes encoding 147 

intron-spliced hairpin RNAs are especially efficient as silencing triggers, and 148 

consistently confer viral resistance when directed against virus genomes [52-54]. This 149 

RNA silencing approach, known as hpRNAi, is now widely used in many plant species 150 

and information for convenient generic plasmids for transgene generation is currently 151 

available at http://www.pi.csiro.au/rnai/. 152 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Nevertheless, the reasons why a viral transgene is silenced and confers resistance in 153 

some transgenic lines, whereas other lines actively express the same transgene and are 154 

fully susceptible to the homologous virus are still not completely understood [55]. As 155 

expected, in most cases, transgene silencing and virus resistance is associated with high 156 

accumulation of siRNAs specific to the viral transgene [56, 57]. Methylation of the 157 

transcribed region of the transgene DNA is also an usual hallmark of constitutive or 158 

virus-induced transgene silencing and virus resistance [58-60], but the cause-159 

consequence relationship of transgene methylation with RNA silencing and virus 160 

resistance has not been unravelled yet. 161 

Most studies on RNA-silencing-mediated antiviral resistance have focussed on 162 

plus-stranded RNA viruses -the largest group of plant viruses- but RNA silencing of 163 

viral transgenes has been shown to be effective to protect plants against other viruses 164 

such as tospoviruses [61-63], with a minus-strand RNA genome, or geminiviruses, with 165 

a single-strand DNA genome [64-69]. Although DNA viruses appear to be less 166 

susceptible to transgene-derived RNA silencing than RNA viruses [70, 71], this 167 

antiviral strategy can sometimes be very effective against geminiviruses [72]. 168 

Interestingly, DNA virus infections induce not only postranscriptional gene silencing, 169 

but also transcriptional gene silencing [73-76], which can be used in biotechnological 170 

approaches to engineer viral resistance [77].  171 

Transgenes expressing viral proteins can display protein-mediated and RNA-172 

mediated overlapping resistance mechanisms, which can differ in intensity and 173 

broadness [78, 79]. Although these mechanisms can collaborate to protect plants against 174 

a range of viruses, it is also possible that a weak RNA silencing, unable to confer 175 

complete viral resistance, can suppress the expression of the transgene and thus 176 

inactivate the protein-mediated resistance [80]. 177 

The accumulation of large amounts of specific siRNAs in viroid infections 178 

demonstrates that the viroidal RNA is a substrate of Dicer-like enzymes [81-84]. Some 179 

reports suggest that, whereas these siRNAs are biologically active in guiding RISC-180 

mediated cleavage, the secondary structure of the viroidal RNA protects it from RISC 181 

activity [85-87]. However, the fact that a transgenic tomato expressing a viroid hairpin 182 

transgene and accumulating high amounts of viroid-specific siRNAs, exhibits resistance 183 

to the homologous viroid, indicates that viroid RNA can be the target of RISC-mediated 184 

degradation [88]. 185 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Although effective RNA silencing can be induced by sequences as short as 23-60 nt 186 

[89], it appears that induction of RNA silencing-mediated antiviral resistance may  need 187 

transgenes with regions of similarity to viral RNAs larger than 100 nt [90, 91]. 188 

However, transgenes with larger similarity regions, 300-800 nt, are usually preferred. In 189 

general, the effectiveness of the transgene RNA-mediated virus resistance is 190 

proportional to the sequence similarity between the transgene and the inoculated virus, 191 

however, there are exceptions that are not fully understood [92, 93]. Viruses whose 192 

sequence differs from that of the transgene by more than 10% usually escape RNA 193 

degradation [61]. To circumvent this limitation, different strategies to co-express 194 

several genetic fragments of different viruses, either as independent transcription units 195 

or as a single hairpin cassette have been explored [94, 95]. The transgenic expression of 196 

these types of constructs rendered a high proportion of transgenic lines heritably 197 

resistant against all or some of the source viruses, thus allowing broader virus 198 

resistance. 199 

The methods used to engineer RNA silencing-mediated antiviral resistance in 200 

transgenic plants normally involve transgenes corresponding to a limited region of the 201 

viral genome. However, transgenic plants transformed with full-length copies of viral 202 

genomes, named amplicons, have also been constructed. They used to be silenced and 203 

resistant to exogenous infection with the virus from which the transgene was derived, 204 

however, amplicon lines showing transgene-derived virus infection have also been 205 

described [96-101]. In some cases, reactivation of a silenced amplicon and efficient 206 

replication of the resulting virus can be achieved by deliberate co-expression of a strong 207 

silencing suppressor [102, 103], but often this also occurs spontaneously, as a 208 

consequence of poorly characterized environmental or developmental signals [101, 104, 209 

105]. 210 

 211 

4. RNA silencing-mediated resistance without transgenesis 212 

Concerns regarding transgenic plants are quite strong in some places in the world, 213 

especially in Europe, thereby prompting increasing interest in approaches to generate 214 

viral resistance that do not rely on the use of genetically modified plants. Since dsRNA 215 

is a pivotal factor of RNA silencing processes, the most important efforts have been 216 

devoted to the exogenous delivery of this kind of molecules. Initial reports showed that 217 

dsRNA derived from viruses of three different families, and directly delivered to plant 218 

leaves either by mechanical inoculation of in vitro-synthesized molecules or via an 219 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Agrobacterium-mediated transient expression system, interfered with virus infection in 220 

a sequence-specific manner [106]. Further research demonstrated that bacterial systems 221 

could be used to synthesize viral dsRNA able to promote specific antiviral interference 222 

at a very low cost [107-110]. These antiviral approaches could take advantage of 223 

recently-developed systems for large-scale production of dsRNA in vitro and in bacteria 224 

utilizing the RNA polymerase of phage ø6 [111]. 225 

Delivery of viral dsRNA cannot cure already infected plants and, in contrast with 226 

virus-resistant transgenic plants, it is not able to confer a permanent protection, 227 

however, research shows that spraying plants with an extract of bacteria expressing viral 228 

dsRNA confers specific antiviral protection for at least 5 days [107, 108]. 229 

Recent results demonstrate that the exogenous delivery of specific dsRNA can also 230 

protect plants against chloroplast- and nuclear-replicating viroids [112]. Moreover, they 231 

state that homologous viroid small RNAs co-delivered mechanically can interfere with 232 

one of the viroids examined. These results support the conclusion that the secondary 233 

structure of viroids does not provide them with complete protection against RISC 234 

activity. 235 

  236 

5. Antiviral resistance mediated by artificial miRNAs 237 

RNA silencing regulates a large range of important processes by making use of 238 

different populations of small RNAs [113-117].  Among them, microRNAs (miRNAs) 239 

are known to play fundamental roles in organism development, and adaptation to 240 

environmental stresses [118-121]. These ~21-nt RNAs are the result of the processing 241 

of hairpin-like primary transcripts by specific RNAse III-type enzymes (Drosha plus 242 

Dicer in animals, and DCL1 in plants). MiRNAs negatively regulate endogenous target 243 

genes by cleavage or translational inhibition of their mRNAs. The miRNA primary 244 

transcript can be engineered to introduce several mutations within the miRNA 21-nt 245 

sequence without affecting its biogenesis [122]. Based on modified miRNAs, named  246 

“artificial miRNA” (amiRNA), a new RNA silencing technique has been developed. 247 

AmiRNAs were first generated and used in human cell lines and were shown to 248 

interfere with the expression of cognate mRNAs [123]. Later, amiRNA technology was 249 

also successfully used to direct endogenous gene silencing of individual genes or groups 250 

of endogenous genes in different organisms, including several plant species, mosses and 251 

unicellular algae [124-129]. 252 



  9 

Host- and virus-encoded miRNAs have been shown to participate in animal virus 253 

infections, either by helping the virus or by contributing to host defence mechanisms 254 

[130-135]. Moreover, although a role for miRNAs in natural plant virus infections has 255 

not been demonstrated yet, endogenous miRNAs have been shown to interfere with 256 

engineered plant viruses [136]. Thus, amiRNAs targeted to degrade the invading viral 257 

RNA are suggestive candidates to be used in biotechnological approaches to fight plant 258 

viral diseases. The first evidence of the effectiveness of this strategy came from the 259 

demonstration that the stable expression of amiRNAs targeting RNA sequences that 260 

encode the silencing suppressors of the tymovirus Turnip yellow mosaic virus (TYMV) 261 

and the potyvirus Turnip mosaic virus (TuMV) confer specific virus resistance to 262 

transgenic Arabidopsis plants [137]. Following this, other reports confirmed the validity 263 

of this approach for other viral sequences, virus species and host plants [138-141]. 264 

Moreover, Niu et al. [137] explored the possibility of using a dimeric pre-amiRNA that 265 

expressed two sequences from different viruses to confer resistance to both viruses on a 266 

single transgenic plant. The combined production of multiple virus-specific amiRNAs 267 

in plants allows increased virus resistance against a broad spectrum of virus. 268 

 Whereas efficient amiRNA-mediated resistance was observed against TYMV and 269 

TuMV when stretches of the coding sequence of their silencing suppressors were 270 

included in the amiRNA [137], when the coding sequence of the silencing suppressor 271 

2b of the cucumovirus Cucumber mosaic virus (CMV) was targeted, the transgenic 272 

plants showed various degrees of responses to CMV infection such as: full resistance, 273 

delayed infection, recovery and susceptibility [140]. As previously reported, the 274 

strength of the effect of siRNAs [93, 142, 143] and amiRNA [136] in their target 275 

sequences not only depend on their own nature, but also on the position in which they 276 

are included in the target transcript; this probably indicates either that some sites are 277 

more accessible than others to the RNA silencing machinery or that processing is 278 

somehow influenced by the flanking sequences rather than by the si/miRNA sequence 279 

alone. To avoid amiRNA target positional defects, Duan et al. [139] have reported an 280 

experimental approach to design miRNAs that target putative RISC accessible sites to 281 

engineer effective  RNA silencing and virus resistance in plants by amiRNAs. 282 

The miRNA precursors produce miRNA-miRNA* duplexes with particular 283 

structural features such as mismatches or bulges, and, in most cases, only the mature 284 

miRNA associates preferentially with Argonautes [144, 145]. When the duplex region 285 

in the miRNA precursor backbone is substituted by amiRNA and amiRNA* and the 286 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mismatched positions are retained, the amiRNA strand will likely be accumulated and 287 

loaded in the correct effector RISC. An interesting possibility in the case of designing 288 

amiRNAs to produce virus-resistant transgenic plants is to replace the duplex by exact 289 

complementary sequences. There is evidence which shows that miRNA-directed RNA 290 

silencing targets both plus strand genomic RNA and those RNAs complementary to the 291 

viral genome synthesized during viral replication [136]. With constructs producing both 292 

amiRNA and amiRNA* complementary to the genomic RNA and the complementary 293 

strand respectively, that can be loaded in antiviral RISCs, two targets could be reached 294 

with a single amiRNA precursor. 295 

One predicted drawback of amiRNA-mediated resistance is that the combination of 296 

the high specificity of miRNA cleavage and the high mutability of plant viruses make it 297 

possible for virus variants escaping resistance to emerge [146]. A study with 298 

recombinant PPV chimeras bearing miRNA target sequences provided the first evidence 299 

that viruses readily escape the negative pressure of miRNA activity through mutations 300 

within the miRNA target sequence [136]. The escape from the resistance was enhanced 301 

in a transgenic Arabidopsis line expressing the silencing suppressor P1/HCPro, which 302 

has been shown to inhibit miRNA activity [147, 148].  A frequent emergence of escape 303 

mutants was also observed in transgenic plants expressing an amiRNA that targeted 304 

non-essential sequences engineered in a recombinant TuMV [149]. Viruses escaping the 305 

miRNA-derived resistance showed deletions affecting the 21-nt target site or point 306 

mutations, which mainly affected nucleotides matching the 5’ terminal region of the 307 

miRNA, thus, pointing out the relevance of this region in amiRNA-mediated cleavage 308 

activity. Recent results demonstrate that wild type viruses might also evolve to 309 

overcome amiRNA-mediated resistance through the selection of virus variants with 310 

point mutations in the amiRNA target sequence (Santiago Elena, personal 311 

communication). 312 

 313 

6. Agronomic applications of antiviral RNA silencing 314 

Although other biotechnological strategies that interfere with virus infections in 315 

plants have been developed [4, 10, 150], PDR remains the most powerful approach to 316 

produce virus resistant plants, and RNA silencing appears to be the most promising 317 

PDR strategy, which potentially makes this technology of great agronomic relevance 318 

[9]. This could be specially applicable to developing countries, whose economy largely 319 

depends on agricultural activities, since they might use these relatively cheap tools to 320 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solve specific local problems [151]. While the molecular processes and biological 321 

functions of RNA silencing are still not fully understood, our current knowledge of this 322 

RNA-mediated mechanism has enabled the development of new platforms for crop 323 

improvement. Nevertheless, despite the abundant scientific information obtained since 324 

the demonstration of the viability of the PDR concept 25 years ago, and although a large 325 

number of field trials have been conducted for diverse viruses and hosts species [152], 326 

not many crop plants expressing viral genetic elements and showing virus resistance 327 

have reached the commercialization stage [153]. The first virus-resistant cultivar for 328 

commercial application in the USA using RNA silencing for crop improvement was 329 

summer squash ZW-20 expressing the CP genes of the potyviruses Zucchini yellow 330 

mosaic virus (ZYMV) and Watermelon mosaic virus (WMV), which was developed by 331 

Asgrow Seed Co. [154, 155]. This line was later replaced by CZW-3, which also 332 

expresses the CP of the cucumovirus CMV [156, 157]. These plants were also used as 333 

parents to develop other cucurbit cultivars by conventional breeding [9]. In 1998 and 334 

1999, Monsanto also commercialized the potato varieties NewLeaf Plus and NewLeaf 335 

Y, which were resistant to the polerovirus Potato leafroll virus (PLRV) and the 336 

potyvirus Potato virus Y (PVY), respectively 337 

(http://www.monsanto.com/newsviews/Pages/new-leaf-potato.aspx). However, these 338 

lines were withdrawn from the market in 2001 due to the reluctance of certain important 339 

food processors to use genetically modified potatoes [9, 158]. So far, the most 340 

prominent success of PDR against viruses have been the transgenic papayas Rainbow 341 

and SunUp, which are resistant against the potyvirus Papaya ringspot virus (PRSV) by 342 

virtue of expression of the viral CP gene, indeed, it has contributed to saving the papaya 343 

industry in Hawaii [159, 160]. Another virus-resistant papaya, X17-2, which is 344 

protected against a Florida isolate of PRSV is in an advanced stage towards 345 

commercialization in USA [9]. Very recently, the plum cultivar “HoneySweet”, 346 

transformed with the CP gene of another potyvirus, Plum pox virus, [161] has been 347 

deregulated in USA. This cultivar has proven a highly effective and durable resistance 348 

to PPV in several field trials in different European countries [40, 162-164] (Figure 4). 349 

This plum variety has a great potential for fighting this worldwide-spread devastating 350 

disease, both as a high-quality commercial variety and as a progenitor in Prunus 351 

breeding.  352 

The People’s Republic of China is investing heavily in biotechnologies, and 353 

looking for a transgenic green revolution as a way to secure its food supply [165]. In 354 



  12 

addition to PRSV-resistant papaya, both tomato and sweet pepper resistant to CMV 355 

have also been released in China [166]. However, the performance of these tomato and 356 

sweet pepper transgenic lines was apparently not very satisfactory, and investment in 357 

their commercial production was discontinued [151]. Another virus-resistant transgenic 358 

plant that is expected to be commercialized in China in the following years is wheat 359 

resistant to the bymovirus Wheat yellow mosaic virus [167, 168].  360 

The interest in using PDR technology, mainly RNA silencing-mediated, is 361 

increasing worldwide [158]. Thus, the development of a number of virus-resistant 362 

transgenic plants appears to be close to commercial release in different countries. These 363 

include PVY-resistant potato in Argentina, rice resistant to the tungrovirus Rice tungro 364 

bacilliform virus in India, and bean resistant to the begomovirus Bean golden mosaic 365 

virus in Brazil [72, 169, 170]. 366 

There are three main factors that can determine the practical usefulness of antiviral 367 

strategies in plants: efficiency, durability and safety; and only further long-term 368 

research in the field of resistant varieties can provide us with definitive data on the 369 

stability of different forms of RNA silencing-based resistance. Unfortunately, social 370 

concerns, primarily in Europe, over the potential ecological impact of virus-resistant 371 

transgenic plants have so far significantly limited the use of virus-resistant crops. But 372 

the situation is changing since a significant increase worldwide in hectarage of 373 

Biotech/GM crops has been reported [153] and RNA silencing-based technologies will 374 

help, among other challenges faced by productive agriculture, to mitigate the impact of 375 

virus diseases in the twenty-first century. 376 

 377 

7. Open questions in RNA silencing-mediated virus resistance and concluding 378 

remarks 379 

Since the first successful application in 1986 [6] of PDR used to confer virus 380 

resistance to transgenic plants, a range of powerful strategies using pathogen-derived 381 

sequences have been described. Initially main interest was focussed on the expression of 382 

wild type and mutated viral proteins, but RNA-mediated approaches based on natural 383 

antiviral RNA silencing have yielded the most promising results [150, 171, 172]. In 384 

these, specific resistance is the result of an accumulation of antiviral RISC complexes 385 

loaded with small RNAs derived from the viral transgene, which are ready to target and 386 

degrade the invading viral RNA before the virus has time to mount effective counter-387 

defence mechanisms. The first transgenic lines resistant to viruses by an RNA-mediated 388 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mechanism were found by chance as barely-characterized rare exceptions among a 389 

majority of lines actively expressing sense viral RNA from the transgene and fully 390 

resistant to the virus [12]. The huge progress in the understanding of RNA silencing 391 

mechanisms, mainly the unravelling of the pivotal role played by dsRNA, allowed the 392 

design of more rational strategies to achieve RNA-mediated viral resistance, such as 393 

hpRNAi, which gave more consistent results [51, 53]. However, it is still not possible to 394 

accurately predict the frequency of resistant lines and the level of resistance in plants 395 

transformed with a particular viral transgene, even when the transgene is designed to 396 

produce dsRNA.  The silencing efficiency appears to depend, on specific features, still 397 

not characterized, of the targeted sequences, as has been shown in a high throughput 398 

analysis of the hpRNAi silencing of endogenous plant genes [173]. Further scientific 399 

studies are required to understand the sequence and structure features affecting the 400 

susceptibility of viral RNAs to antiviral silencing; this will allow us to design more 401 

reliable strategies to construct proficient virus resistant transgenic plants. 402 

An important value of RNA silencing-mediated resistance is the fact that it is 403 

suitable for application on a very broad range of virus-host combinations. Although 404 

viruses with plus stranded RNA genomes have been the main target of studies of 405 

antiviral RNA silencing, RNA silencing-mediated resistance has been shown to be 406 

effective against other viruses, including DNA viruses, such as geminiviruses [72], and 407 

even against viroids [88]. By contrast, a limitation of RNA silencing-mediated 408 

resistance is its high specificity, since it is only effective against virus isolates that are 409 

very similar to the isolate from which the transgene derives. The relevance of this 410 

problem will be different for each particular case, depending on the genetic diversity of 411 

the virus populations challenging the resistant plant. The extent to which it may be 412 

overcome by transforming plants with several viral transgenes or with chimeric 413 

transgenes assembled with small genomic fragments derived from various viruses or 414 

virus isolates is still unknown. 415 

Since the application of transgene RNA silencing to produce virus resistant plants, a 416 

number of different concerns have been raised. As most viruses produce silencing 417 

suppressors, infection with a non-target virus could breakdown resistance [36-39]. 418 

Experimental tests have shown that this could happen in some cases, but not all, and it 419 

seems to require a very precise coupling of the two viral inoculations [39, 40]. Thus, 420 

although mixed infections by several viruses are abundant in nature, it is too early to 421 

predict the effect they may have on the effectiveness of the RNA-mediated PDR in the 422 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field. Reports show that RNA silencing can be disturbed at low temperatures [174], but 423 

evidence that this fact could mean an important threat for the stability of virus resistance 424 

in field conditions is still missing. There have also been no reports on ecological 425 

problems derived from heteroencapsidation, RNA recombination between the transgene 426 

and the viral RNA or emergence of more virulent resistance-breaking virus isolates, or 427 

significant off-target effects caused by the transgene, in virus-resistant transgenic plants 428 

[10, 152, 158]. However, the field experience is still too limited to make a confident 429 

assessment on the relevance of these potential safety risks. 430 

Direct administration of viral dsRNA cannot circumvent most of the potential risks 431 

associated with RNA silencing-mediated virus resistance, but probably is less 432 

concerned by the worry that genetically modified organisms pose in many people. 433 

However, the short effect of dsRNA release, which needs to be closely coupled to the 434 

viral challenge, limits the present utility of this technology. In this context, the COST 435 

Action FA0806 of the EU is an important initiative that has as its main objective to 436 

explore suitable, efficient and cost-effective non-transgenic gene silencing approaches 437 

for managing plant viral diseases in Europe. 438 

In contrast, the recently developed amiRNA technology, which depends on the 439 

transgenic expression of a very short viral sequence, is not concerned with some 440 

potential risks affecting plants expressing long viral transgenes, such as RNA 441 

recombination or undesired off-target effects [146]. In addition, amiRNA-derived virus 442 

resistance appears to be efficient even at low temperatures [137]. AmiRNA-derived 443 

resistance can be as effective as virus resistance derived from long viral RNA hairpins 444 

[137], but this is not the case for all viral amiRNAs [139, 140]. This can depend on the 445 

accessibility to RISC of amiRNA targets in the viral RNA, but also on sequence and 446 

structure features of the different pre-amiRNA constructs, which could condition their 447 

exact processing sites, the levels of accumulation of amiRNA and amiRNA* strands, 448 

and the ability of these strands to be loaded in effective antiviral RISCs. Much more 449 

research on these topics is required to allow rational designs of efficient amiRNAs with 450 

well-defined properties. Current information suggests that viruses can easily evolve to 451 

escape amiRNA-derived resistance [136, 146, 149]. The expression of more than one 452 

amiRNA targeting different sequences of the same virus or the use of highly conserved 453 

regions on viral genomes is expected to mitigate the likelihood of resistance breakdown. 454 

Although it may be anticipated that amiRNA technology could be applied to any crop 455 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plant, as has been shown in the tomato, the general effectiveness of this approach needs 456 

to be studied further. 457 

An interesting RNA silencing-related technology to be explored for virus resistance 458 

is the use of artificial trans-acting (ta) siRNAs (atasiRNAs). Like miRNAs, tasiRNAs 459 

are also negative regulators of gene expression that belong to a plant-specific class of 460 

endogenous small RNAs whose biogenesis requires an initial miRNA-mediated 461 

cleavage of its precursors [175-178]. Engineered atasiRNAs have been used 462 

successfully for RNA silencing of endogenous genes in Arabidopsis [179], and can be 463 

envisaged as promising antiviral tools. 464 

The development and application of different approaches to achieve resistance to 465 

viruses based on PDR have certainly reached a remarkable maturity and there is 466 

increasing evidence supporting their effectiveness. But there is no doubt that the outlook 467 

is even better and in the course of this century an explosion in the use of RNA silencing 468 

to obtain plant cultivars "à la carte" that are resistant to a particular virus or have some 469 

other improved agronomic traits will be witnessed. 470 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Legends to figures 482 

 483 

Figure 1. RNA silencing of a nuclear gene in a transgenic plant can suppress the 484 

accumulation of a cytoplasmic virus and confer virus resistance. Modified from [20]. 485 

 486 

Figure 2. Schematic representation of natural and artificial RNA silencing based 487 

antiviral resistance. Depending on the final outcome of the confrontation between 488 

defence/contradefence mechanisms, different results of resistance, recovery or 489 

susceptibility after virus infection can be obtained. 490 

 491 

Figure 3. Schematic representation of antiviral activity conferred by transgenic 492 

expression of an artificial miRNA in a plant. 493 

 494 

Figure 4. Leaf symptoms caused by Plum pox virus in a susceptible cultivar. 495 

Asymptomatic leaf and fruits from the resistance cultivar HoneySweet. Courtesy of R. 496 

Scorza and M. Cambra. 497 

  498 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