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Summary 7	  

1. Fragmentation is a major agent of seagrass meadow decline, yet little is 8	  

known about how it interacts with processes like herbivory, an important 9	  

functional driver of seagrass meadows. The interaction with external stressors 10	  

like fragmentation could exacerbate the effects of internal ecosystem drivers 11	  

like herbivory, with distinct implications for ecosystem management. 12	  

2. We used manipulative field experiments to assess these interactive effects in 13	  

two Posidonia oceanica seagrass meadows. We monitored replicated plots in 14	  

small and large patches in two meadows suffering fragmentation with and 15	  

without herbivores (using exclusion cages) to test if fragment size and 16	  

herbivory could act together to alter ecosystem functioning. We measured 17	  

changes in defoliation rates, primary production, canopy height and nutrient 18	  

content in all plots after four months of herbivore exclusion. 19	  

3. Our results show that herbivores increased defoliation rates resulting in 20	  

reduced primary production, nutrient content and canopy structure (canopy 21	  

height). Patch size (fragment) on its own also reduced primary production, 22	  

nutrient content and canopy structure. We also observed significant synergies 23	  

between herbivores and fragmentation on canopy structure and production 24	  

responses. In addition, small patches showed nutrient limitation but were able 25	  

to accumulate more carbohydrate reserves, probably due to a higher light 26	  

availability. This may explain why small patches can persist under significant 27	  

herbivore pressure. 28	  

4. Synthesis. While fragmentation has already been identified as an important 29	  

external agent of seagrass decline, the combination of fragmentation and 30	  

herbivory can seriously exacerbate structural losses and affect primary 31	  

production, profoundly compromise the role of seagrasses as habitat-forming 32	  

ecosystems. These interactions between external stressors and internal 33	  



drivers may result in large unexpected consequences that may flow on to the 34	  

rest of the ecosystem. 35	  

 36	  
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  40	  



Introduction 41	  

 42	  

Ecosystems are often affected by multiple stressors, which, although not 43	  

individually catastrophic, may collectively result in dramatic shifts in ecosystem 44	  

function associated with the removal of habitat-specific species or functionally 45	  

important attributes (Thrush et al. 2008). Predicting the joint impacts of co-occurring 46	  

drivers is a major concern for conservation ecology because they can act 47	  

independently when they influence unrelated ecosystem functions, or interact if they 48	  

simultaneously affect the same ecosystem functions (Sala et al. 2000; Didham et al. 49	  

2007; Brook, Sodhi & Bradshaw 2008; Crain, Kroeker & Halpern 2008; Darling & 50	  

Côté 2008; Graham et al. 2011). In the instance that multiple stressors (or drivers) 51	  

act independently from each other, a simple additive model may be adequate to 52	  

predict ecosystem responses to their co-occurrence (Sala et al. 2000; Halpern et al. 53	  

2008). If, however, multiple stressors have interactive effects, alternative (i.e. 54	  

synergistic or antagonistic) models are required. The lack of knowledge about how 55	  

stressors and/or drivers behave when co-occurring represents a major source of 56	  

uncertainty for projections of biodiversity and ecosystem resilience (Sala et al. 2000; 57	  

Folke et al. 2004). To date, there have been few studies explicitly exploring the joint 58	  

effects of external stressors such as fragmentation with internal drivers such as 59	  

herbivory on ecosystem functioning. 60	  

Anthropogenic habitat fragmentation has been recognized as a major threat to 61	  

plant communities and can cause significant impacts on ecosystem functioning by 62	  

altering major ecosystem processes (Lienert 2004). Fragmentation changes patterns 63	  

of connectivity, potentially isolating populations and communities and limiting them to 64	  

suboptimal habitats (Kohn & Walsh 1994; Thrush et al. 2008), leading to a higher risk 65	  

of local extinction due to stochastic events (Stoll et al. 2006). Even where local 66	  

populations are highly interconnected, or connected to a mainland, if too many 67	  

patches of habitat degrade, the remaining healthy ones can catastrophically collapse 68	  



once a critical threshold is passed (Hughes et al. 2005). More perniciously, 69	  

fragmentation is known to influence crucial ecosystem processes such as primary 70	  

production, nutrient dynamics, pollination, plant–pathogen and intraspecific 71	  

interactions in ways that may affect plant performance or population fitness (Kunin 72	  

1997; Lienert & Fischer 2003). However, few studies have explicitly examined how 73	  

fragmentation interacts with herbivory (Vásquez et al. 2007), often one of the most 74	  

significant ecosystem drivers of plant-dominated communities that is sometimes 75	  

capable of triggering major shifts in ecosystem state (Heck & Valentine 2006; del-Val 76	  

et al. 2007; Veblen & Young 2010; Veblen 2012). The evidence is equivocal; as the 77	  

impact of grazing has been observed to be either offset or exacerbated in small 78	  

habitat fragments, depending on the choices herbivores make in relation to individual 79	  

patches and the type of processes they affect (Simonetti et al. 2007). From an 80	  

optimal foraging perspective, mobile herbivores should be expected to 81	  

abandon/selectively-avoid smaller, less nutritious, putatively less profitable patches, 82	  

thereby reducing herbivore pressure on these small fragments (Belisle 2005; 83	  

Baguette & Van Dyck 2007; del-Val et al. 2007; Fáveri, Vasconcelos & Dirzo 2008; 84	  

Kolb 2008; Haynes & Crist 2009). Overall, for terrestrial ecosystems, the most 85	  

frequent outcome of forest fragmentation is a lowered level of herbivory (Kéry, 86	  

Matthies & Fischer 2001; Simonetti et al. 2007; Fáveri, Vasconcelos & Dirzo 2008; 87	  

Ruiz-Guerra et al. 2010) although the opposite has also been observed (Lienert, 88	  

Diemer & Schmid 2002; Terborgh et al. 2006; Kolb 2008; Haynes & Crist 2009). 89	  

Even if herbivores do not make selective choices between fragments, herbivory and 90	  

fragmentation may still have interactive effects on ecosystem responses as 91	  

fragmentation reduces a patch’s ability to withstand the impacts of herbivory (Crain, 92	  

Kroeker & Halpern 2008).  93	  

In marine systems, seagrass meadows are the most important structural habitat 94	  

on sandy bottoms, making major contributions to coastal primary production and 95	  

nutrient dynamics and are a critical ecosystem for several associated species as well 96	  



as serving an important nursery role for surrounding ecosystems as well (Hemminga, 97	  

Harrison & Van Lent 1991; Hemminga & Duarte 2000; Boström, Jackson & 98	  

Simenstad 2006).  A raft of recent research has established herbivory as one of the 99	  

most important drivers of seagrass communities (Heck & Valentine 2006; Unsworth 100	  

et al. 2007; Planes et al. 2011; White, Westera & Kendrick 2011; Christianen et al. 101	  

2012). Fragmentation per se is also an important external stressor in seagrass 102	  

ecosystems and much of the existing literature focuses on how seagrass-associated 103	  

species respond to this process (Eggleston et al. 1999; Frost, Rowden & Attrill 1999; 104	  

Hovel & Lipcius 2001; Vega Fernández et al. 2005; Johnson & Heck 2006; Reed & 105	  

Hovel 2006; Hirst & Attrill 2008; Mills & Berkenbusch 2009; Borg et al. 2010; Boström 106	  

et al. 2011; Arponen & Boström 2012).  In addition, authors have discussed the 107	  

seascape-level impacts of meadow fragmentation on gap dynamics and patch shape 108	  

(Vidondo et al. 1997; Bell, Robbins & Jensen 1999; Ramage & Schiel 1999; Borg et 109	  

al. 2005; Diaz-Almela et al. 2008). However, as these ecosystems become 110	  

increasingly vulnerable to multiple anthropogenic stressors, including eutrophication, 111	  

coastal development and fish trawling among others (Duarte & Sand-Jensen 1990; 112	  

Cebrián et al. 1996; Duarte 2002; Sleeman et al. 2005; Reed & Hovel 2006; Diaz-113	  

Almela et al. 2008; Prado et al. 2008; Planes et al. 2011), a high percentage of 114	  

shallow seagrass meadows, at least in the N-W Mediterranean, are becoming 115	  

increasingly patchy (Alcoverro et al. 2012), making fragmentation one of the biggest 116	  

challenges for extant seagrass ecosystems (Frederiksen et al. 2004; Sleeman et al. 117	  

2005). 118	  

This study was designed to determine the combined effects of seagrass 119	  

fragmentation and herbivory. We took advantage of two Posidonia oceanica 120	  

seagrass meadows suffering a sustained reduction in patch size (Alcoverro et al. 121	  

2012). Together with increased patch isolation, edge effect and within-patch habitat 122	  

degradation, patch size reduction is one of the most important effects of 123	  

fragmentation. We used cage-controlled experiments in those two meadows to firstly 124	  



evaluate how fish herbivores select patch size and then to examine plant responses 125	  

(canopy structure, primary production and nutrient content) to herbivory in small and 126	  

large patches. 127	  

 128	  

 129	  

Materials and methods 130	  

 131	  

Study site and experimental design  132	  

This study was designed to test if patch size, herbivory and their combined effects 133	  

can trigger changes in seagrass functional responses. We first evaluated if 134	  

herbivores showed any size-based patch selection by measuring the impact of 135	  

herbivory on different sized seagrass fragments (Objective 1). In addition, we 136	  

evaluated the impacts of increasing fragmentation (addressing specifically the effects 137	  

of reduction in fragment size), herbivory and their joint effects on essential seagrass 138	  

functional responses: primary production, nutrient dynamics and seagrass meadow 139	  

structure (Objective 2). We tested both objectives with a mixed-effects experiment 140	  

conducted in small and large seagrass patches, with and without (using exclusion 141	  

cages) herbivores. To increase the generality of our results, we reproduced this 142	  

protocol in two distinct seagrass meadows (Site 1: Fenals 41°41.3" N, 002°49.7' E; 143	  

Site 2: Giverola 41°44.2´ N, 002°57.3´ E Spain, NW Mediterranean) that have been 144	  

subjected to major storm-related fragmentation events in the last decade (Alcoverro 145	  

et al. 2012). Both sites were selected to represent the most common distinct 146	  

fragmented meadows in that area. Fenals (Site 1) is a meadow, which is fully 147	  

exposed to most storms and winds; Giverola (Site 2) is inside a small bay mainly 148	  

protected from predominant winds. At each site, we identified 10 small (area≤1m2) 149	  

and 10 large (area≥5m2) seagrass fragments. We followed this sampling strategy to 150	  

capture as much spatial variability between fragments as possible, since within-patch 151	  



variability is considerably lower than between-fragment variation (Short & Duarte 152	  

2001). Both meadows are dominated by the seagrass Posidonia oceanica, the most 153	  

important benthic primary producer in the Mediterranean (Cebrián et al. 1996). The 154	  

two main herbivores of this seagrass system are the sparid fish Sarpa salpa and the 155	  

sea urchin Paracentrotus lividus (Boudouresque & Verlaque 2001), although the 156	  

pressure of the former is predominant, consuming on average more than 40% of the 157	  

primary production (Prado et al. 2007). Experimental fieldwork was conducted within 158	  

the depth range and season (i.e. 5 to 8 m depth, from June to September 2010) of 159	  

maximum herbivore activity for both species (Boudouresque & Verlaque 2001; Prado 160	  

et al. 2007). 161	  

At each site, five small fragments and five large meadow fragments were 162	  

randomly selected and subjected to natural grazing intensities, representing a 163	  

Fragmentation and Herbivory effect (Small patch + Herbivores) and an Herbivory 164	  

effect alone (Large patch + Herbivores) respectively. Herbivores were excluded from 165	  

the remaining fragments to represent a Fragmentation (patch size) effect (Small 166	  

patch + No Herbivores) and a Control effect (Large patch + No Herbivores). At these 167	  

fragments, we first extracted all sea urchins and then set up exclusion cages from 168	  

June to the end of September to restrict herbivore access. The cages measured 169	  

1.5m x 1.5m in area and 1m high, and were marked with 1.5 m high iron bars at each 170	  

corner to which green plastic mesh fences (2 cm mesh size) were attached. The 171	  

roofs consisted of fine transparent fishing net (3 cm mesh size). The caged patches 172	  

were visually checked to ensure that no fish or sea urchins entered below the fences. 173	  

Every two weeks SCUBA divers cleaned the cages with brushes in order to reduce 174	  

potential cage-induced light-reduction artefacts. To test for possible cage effects we 175	  

compared above canopy light availability inside and outside the cages. Four 176	  

HOBOware pro light sensors (Onset Computer Corporation: Apogee, Amplified 177	  

Quantum Sensor, model SQ-200) with a 10 min reading interval were deployed for 2 178	  

weeks at both sites (Site 1 and Site 2) inside and outside the cages. The results 179	  



showed no significant differences between treatments (t-test, caged versus uncaged 180	  

light values, P = 0.5238). Additionally to avoid edge effects caused by the cage, we 181	  

restricted all sampling to the central area of the plot (Planes et al. 2011). 182	  

We measured the following variables at each fragment: herbivore pressure and 183	  

type of herbivore mark (Objective 1) and the response variables of the system: leaf 184	  

primary production, rhizome nitrogen and carbohydrate content, shoot density and 185	  

canopy height (Objective 2).  186	  

Herbivore pressure: We assessed shoot defoliation and herbivore type (fish or 187	  

sea urchin) in July when herbivory is at its seasonal maximum (Prado et al. 2007). At 188	  

the beginning of July, SCUBA divers marked 20 shoots per treatment (2 shoots per 189	  

plot, 5 plots, 2 sites, 2x2 treatments) for which we counted the initial number of 190	  

leaves, the initial length and the state of the apical part of each leaf (broken, eaten by 191	  

fish, eaten by sea urchin or intact). Both herbivores leave bite marks of distinctly 192	  

identifiable shapes (Boudouresque & Meinesz 1982; Prado et al. 2007). Leaf 193	  

defoliation (shoot herbivory, cm shoot-1 d-1) was estimated for each of the collected 194	  

shoots after 15 days by adding leaf elongation to the initial length and subtracting this 195	  

total from the final leaf length (Prado et al. 2007), finally divided by the number of 196	  

days elapsed since marking. Only leaves that had clear herbivore marks were 197	  

assigned to herbivory and the rest discarded to avoid herbivory overestimates (Prado 198	  

et al. 2007). Obviously, the measurement of herbivore pressure only makes sense in 199	  

uncaged plots, although we measured it in all plots to confirm the absence of 200	  

herbivore activity in caged plots. 201	  

Seagrass canopy structure: Canopy height (cm) was also estimated in each plot 202	  

during the period of maximum herbivore activity (July) by measuring the height of the 203	  

canopy (vertical distance between the substrate and the top of the standing leaves) 204	  

in two different areas of the plot. Shoot density (shoots m-2) was measured at the end 205	  

of the experimental period (September) using 2 haphazardly placed quadrats (40x40 206	  

cm) for each fragment. 207	  



Primary production: Leaf primary production was measured at the end of the 208	  

experiment (September) to account for the integration of herbivore pressure 209	  

throughout the treatment. At the beginning of September SCUBA divers marked 2 210	  

shoots per plot. In each shoot we marked the base of the leaves (piercing the leaf 211	  

with a syringe needle) to measure leaf elongation rates, using a modified method 212	  

from Zieman (1974). 15 days later we collected all marked shoots and measured for 213	  

each leaf the new leaf tissue produced (between the pierced mark and the ligula) per 214	  

shoot. Leaf elongation rate (cm2 shoot–1 d–1) of pierced shoots was determined by 215	  

dividing the area of new tissue produced by the number of days elapsed since 216	  

marking. 217	  

Nitrogen and carbohydrate content: Rhizome nitrogen (% N) and total non-218	  

structural carbohydrates (% NSC) were analysed at the end of the experiment 219	  

(September). To obtain adequate rhizome biomass for those analyses we pooled 2 220	  

shoots per plot. The top 2 cm of each rhizome were dried at 70ºC for 48 hours and 221	  

ground to a fine powder. Rhizome nitrogen concentration was measured using an 222	  

Elemental Analyzer FlashEA1112 (ThermoFinnigan Unidade de Técnicas 223	  

Instrumentais de Análise, Universidade de Coruña). Total non-structural 224	  

carbohydrates (NSC, sucrose and starch) were also analysed for the same dried 225	  

rhizomes and replicates using a modified method from Alcoverro, Manzanera and 226	  

Romero (2001). Ground rhizomes were dissolved in 96% (v/v) ethanol, heated at 227	  

80ºC for 15 minutes to extract sucrose; this process was repeated 3 times. Starch 228	  

was extracted from the ethanol-insoluble remnant pellet by dissolving it in 0.1 NaOH 229	  

and incubating it for 24 hours at room temperature. Sucrose and starch content were 230	  

determined spectrophotometrically using an anthrone assay with sucrose as 231	  

standard (Alcoverro, Manzanera & Romero 2001). Sucrose and starch content were 232	  

combined as non-structural carbohydrate content (NSC). 233	  

 234	  

Statistical analysis 235	  



To test for ‘patch size’ (F), ‘herbivory‘ (H) (hereinafter called drivers for the sake of 236	  

simplicity) and their combined effects on response variables we used a 3-way mixed 237	  

effects ANOVA design. We considered ‘site’ (St; 2 levels: Site 1, Site 2), ‘patch size’ 238	  

(F; 2 levels: Large, Small), ‘herbivory’ (H; 2 levels: Herbivores, No Herbivores) and 239	  

their interactions (St x F, St x H, F x H and St x F x H) as fixed factors for %N and 240	  

%NSC response variables. For the other response variables (i.e. herbivore pressure 241	  

-only the plots exposed to herbivores-, canopy height, primary production and shoot 242	  

density) an additional random factor ‘plot’, nested within the interaction of the others 243	  

(St x F x H) was added. Site was considered a fixed factor because both meadows 244	  

displayed distinct features, and were deliberately chosen to represent the most 245	  

common typologies of fragmented meadows within the area. Whenever an ANOVA 246	  

was significant, a multiple range contrast test was applied (Tukey’s HSD) to 247	  

determine differences among treatments. All the ANOVA analyses were performed in 248	  

Statistica 8 software. Assumptions of normality (K-S & Lilliefors and Shapiro–Wilk’s 249	  

tests) and homogeneity of variances (Cochran’s test) necessary for the ANOVA were 250	  

not always met despite transformation. Nonetheless, Underwood (Underwood 1981) 251	  

has indicated that the ANOVA F statistic is robust despite these violations of 252	  

assumptions, provided that the working sample size is large enough. When such 253	  

assumptions were not met, we set the significance level to P<0.01 to minimise the 254	  

risk of making a type I error.  255	  

The relationship between rhizome nutrient content and non-structural 256	  

carbohydrates with patch area were further explored using a linear regression model 257	  

in R (RDevelopmentCoreTeam 2010). 258	  

 259	  

 260	  

  261	  



Results 262	  

 263	  

Herbivore pressure 264	  

Herbivore pressure was not significantly different between differently sized 265	  

patches, i.e. we found similar defoliation rates independently of patch size (Fig. 1a 266	  

and Table 1). The fish Sarpa salpa accounted for 62% of the total grazing pressure 267	  

across both sites, with the sea urchin Paracentrotus lividus accounting for the rest. 268	  

Canopy height 269	  

The canopy height of plots exposed to both drivers (Small patch + Herbivores: 270	  

39±3 cm, Fig. 1b) was 39%, significantly lower (see the interaction St×F×H in Table 271	  

1) than the plots without drivers (Large patch + No Herbivores: 64±3 cm, Fig. 1b), 272	  

suggesting additive effects between them on this meadow attribute. Both herbivory 273	  

and fragmentation on their own had also significant effects (Table 1) in reducing 274	  

canopy height relative to plots without drivers (Large patch + No Herbivores, Fig. 1b). 275	  

Site and plot also showed significant effects for this variable (Table 1). 276	  

Primary production 277	  

Primary production responded significantly to herbivory and fragmentation effects 278	  

(Table 1, Fig. 1c). Herbivory alone caused a 32% decrease (comparing production on 279	  

Large patch + Herbivores: 0.39±0.04 cm2 shoot-1 d-1 relative to Large patch + No 280	  

Herbivores: 0.57±0.04 cm2 shoot-1 d-1) and fragmentation caused a 42% reduction in 281	  

seagrass primary production (comparing production on Small patch + No Herbivores: 282	  

0.33±0.04 cm2 shoot-1 d-1 relative to Large patch + No Herbivores). Both drivers 283	  

together (Small patch + Herbivores: 0.23±0.04 cm2 shoot-1 d-1,) showed an additive 284	  

effect that resulted in a 60% decrease in production relative to controls (Large patch 285	  

+ No Herbivores, Fig. 1c). Plot also showed significant effects for this variable (Table 286	  

1). 287	  

Nutrient content 288	  



Nitrogen in the rhizomes responded significantly to fragmentation alone (Small 289	  

patch + No Herbivores: 1.05±0.14 %) with a 43% decrease relative to control plots 290	  

(Large patch + No Herbivores: 1.85±0.14 %N) but not to herbivory (Fig. 1d and Table 291	  

1), evidencing a nutrient limitation of the small fragments. Herbivory and 292	  

fragmentation acting together (i.e. in Small patch + Herbivores), did not produce an 293	  

additive effect on this variable, since the N content decrease observed in grazed 294	  

patches was similar to that found in patches with fragmentation alone (Small patch + 295	  

No Herbivores). Site also showed significant effects for this variable (Table 1). 296	  

Total non-structural carbohydrates 297	  

When both herbivory and fragmentation were acting together, Total non-structural 298	  

carbohydrates in rhizomes (% NSC) increased (Small patch + Herbivores: 15.2±1.0 299	  

%, Fig. 1e) compared to the control plots (Large patch + No Herbivores: 13.2±1.0 %), 300	  

showing a significant interaction (Table 1). This was mainly due to the important 301	  

increase caused by fragmentation (Small patch + No Herbivores: 17.3±1.0 %). The 302	  

interaction between Site and fragmentation was also significant (see St × F in Table 303	  

1). 304	  

Shoot density 305	  

Shoot density increased when both drivers were acting together (Small patch + 306	  

Herbivores: 544±26 shoots m-2, see Fig. 1f), mainly due to their significant interaction 307	  

(F×H, see Table 1). In contrast shoot density decreased significantly when 308	  

fragmentation acted without herbivory (Small patch + No Herbivores: 433±26 shoots 309	  

m-2) but there were no significant differences between the plots without drivers (Large 310	  

patch + No Herbivores) and all the other treatments (Fig. 1f). Site and plot also 311	  

showed significant effects for this variable (Table 1). 312	  

 313	  

Relationship between variables 314	  



Patch area and percentage of nitrogen in the rhizomes showed a significant 315	  

(P<0.01) linear regression (n=40, R2=0.6738), suggesting a possible plant limitation 316	  

by nitrogen availability with decreasing patch size (Fig. 2). Additionally %N and 317	  

%NSC showed a significant (P<0.01) negative linear relationship (n=40, R2=0.219, 318	  

Fig. 3). 319	  

 320	  

 321	  

Discussion 322	  

 323	  

As expected, herbivory alone increased seagrass defoliation rates that were, 324	  

interestingly, sufficient to cause reduced primary production and canopy height in 325	  

seagrass meadows. Patch size did not change herbivore pressure, but resulted in 326	  

very similar trends, also reducing primary production, canopy height and nutrient 327	  

content. What our results suggest, however, is that, when exposed to both drivers 328	  

together, the effects on some meadow attributes are even larger than in isolation. In 329	  

particular, although patch size does not appear to modify the way herbivores graze 330	  

across the landscape, the joint effects of herbivory and fragmentation result in 331	  

significantly reduced canopies in smaller patches. Seagrasses in small fragments 332	  

showed reduced primary production and nutrient content, probably the cause of 333	  

reduced canopies in the absence of herbivores. Despite this deterioration in plant 334	  

conditions shoot density did not reflect these changes, which may even increase 335	  

under herbivory because of reduced self-shading (Vergés et al. 2008; Planes et al. 336	  

2011). However the severe (39%) structural reduction in canopy height of small 337	  

patches might compromise their functional role. The prevalence of joint effects 338	  

between fragmentation and herbivory strongly suggests that predictions based 339	  

exclusively on a single driver will underestimate their ecological impact on seagrass 340	  

meadows. 341	  

The way consumers interact with their landscape for resource acquisition can 342	  



have major implications for ecosystem function, particularly when the resource is also 343	  

a major structural element of the ecosystem. Habitat fragmentation results in 344	  

increasing patchiness, and can seriously modify the way consumers use the 345	  

landscape mosaic.  Optimal foraging theory assumes that natural selection will favour 346	  

the development of feeding preferences that will maximize the net caloric intake per 347	  

individual and unit time (Emlen 1966; MacArthur & Pianka 1966). Adult sea urchins 348	  

may have a limited ability to move between patches, but even without accounting for 349	  

movement, differential herbivore consumption rates may still arise as a function of 350	  

differences in nutrient content between different-sized patches. Other studies have 351	  

demonstrated that sea urchins resort to compensatory feeding in less nutritious 352	  

patches, increasing their consumption of leaves to meet their nutritional requirements 353	  

(Valentine & Heck Jr 2001). Our results indicate, in contrast, that P. lividus did not 354	  

show any compensatory feeding, and had similar rates of herbivory in small and 355	  

large fragments despite the different nitrogen content these patches had. In the case 356	  

of mobile herbivores, ecological theory predicts that they should abandon smaller, 357	  

putatively less nutritious and unprofitable patches (Kolb 2008); this behaviour has 358	  

been repeatedly observed in several terrestrial systems where, for instance, insects 359	  

tend to select larger patches for feeding (Lienert, Diemer & Schmid 2002; Kolb 2008; 360	  

Haynes & Crist 2009). The mobile marine herbivores in our study system however 361	  

appeared indifferent to patch size despite the higher nitrogen content and nutritional 362	  

value of larger fragments (Fig. 2). The mechanisms underlying the feeding 363	  

preferences of Sarpa salpa, the only herbivore that is able to move between patches, 364	  

are not yet completely understood although it has been observed that S. salpa 365	  

counter-intuitively prefer less nutritive, more chemically defended plant tissues 366	  

(Vergés et al. 2008). Where food selection as a function of plant nutrient content has 367	  

been observed, this trend has more to do with epiphyte composition rather than the 368	  

properties of the leaf tissue itself (Prado, Alcoverro & Romero 2010). Moreover, 369	  

habitat-generalist species such as S. salpa (Prado et al. 2007), are potentially less 370	  



likely to display positive density-area relationships than habitat-specialists (Hambäck 371	  

et al. 2007). Additionally, this fish travels in schools that can often reach hundreds of 372	  

individuals feeding in the same area (Raventos, Ferrari & Planes 2009); even if these 373	  

feeding schools showed no patch selection across the mosaic, herbivory impacts 374	  

could accrue more dramatically in the smallest seagrass patches compared with 375	  

larger fragments.  376	  

Despite the lack of patch selection by herbivores, the fact that fragments were 377	  

subjected to similar herbivory rates independent of their size resulted in major 378	  

habitat-level consequences. Herbivory on small patches resulted in rates of primary 379	  

production 44% lower than in larger patches exposed to the same levels of herbivory. 380	  

Herbivory by the sparid fish S. salpa can be very intense in seagrass ecosystems 381	  

with rates as high as 40% of primary production on an annual basis (Prado et al. 382	  

2007), becoming, even higher in Marine Protected Areas (Prado et al. 2008), where it 383	  

can seriously compromise sexual reproduction in P. oceanica (Planes et al. 2011). 384	  

Fish herbivory does not merely affect plant primary production but can also 385	  

substantially alter canopy structure, as observed in this study, with important flow-on 386	  

consequences for the rest of the ecosystem. The impact of herbivores on canopy 387	  

height has been observed to mediate predator-prey interactions by decreasing 388	  

refuges, thus increasing predation rates which can ultimately cause the 389	  

disappearance of important functional species (Pagès et al. 2012). The joint effect of 390	  

herbivory and fragmentation observed in this study could further exacerbate these 391	  

effects with unknown consequences for the rest of the meadow community. 392	  

Our results show that reduction in fragment size altered primary production in 393	  

small fragments. This is probably related to nitrogen limitation, as observed by the 394	  

lower concentration of nitrogen in smaller patches (Fig. 2). The underlying 395	  

mechanism may be linked to a higher export of autochthonous primary production in 396	  

small fragments compared to larger ones, or an enhanced clonal integration in larger 397	  

fragments (Prado, Collier & Lavery 2008). Conversely, small patches accumulate 398	  



more carbon reserves in rhizomes than larger ones, a mechanism that has already 399	  

been observed under conditions of nitrogen limitation (Invers et al. 2004). The higher 400	  

percentage of carbohydrates observed in these smaller fragments could be the result 401	  

of less self-shading and a consequent increase in light availability (Burke, Dennison 402	  

& Moore 1996; Hamilton et al. 2001). In fact, the correlation between carbohydrates 403	  

and nitrogen (Fig. 3) also points to a possible nutrient limitation given the low nutrient 404	  

content observed in this work when compared with plants under nitrogen limitation 405	  

(Duarte 1990). Similar effects have been detected in terrestrial ecosystems when 406	  

habitat fragmentation imposes nutrient limitations and poor physical conditions in 407	  

small patches, affecting the survival of non-mobile herbivores due to the change in 408	  

abundance of food and the risk of predation (Villafuerte, Litvaitis & Smith 1997). 409	  

Despite the profound effects that herbivores have on small patches by indirectly 410	  

reducing patch biomass, the plant appears to be able not merely to resist but also to 411	  

partially compensate for these combined stressors. In effect, P. oceanica shoot 412	  

density in small fragments subjected to herbivory was maintained at values similar to 413	  

the controls indicating that the clonal growth was not limited by the biomass lost to 414	  

herbivores and fragmentation effects, even though the ecosystem itself accrues 415	  

significant impacts (see previous paragraph). However, the effects of herbivory and 416	  

reduction in patch size on such a conservative structural parameter (i.e. shoot 417	  

density) of a particularly slow growing species may not be visible in the short term 418	  

(four months). These results add to a growing body of evidence showing that P. 419	  

oceanica apparently has evolved several mechanisms to compensate for herbivore 420	  

pressure including compensatory growth, increased clonal growth and increased 421	  

nutrient translocation from senescent leaves (Vergés et al. 2008; Planes et al. 2011). 422	  

This high tolerance to herbivory is probably the result of the coevolution of the plant 423	  

with important and even more damaging herbivores in the past (Planes et al. 2011). It 424	  

is, in fact, well recognised that seagrasses, like their terrestrial counterparts, resist 425	  

high herbivory with a series of adaptations such as inaccessible basal meristems, 426	  



branching rhizomes that enhance resistance to grazing and investment in 427	  

belowground reserves (Valentine et al. 1997; Valentine & Heck Jr 1999). In practical 428	  

terms, the fact that P. oceanica, an important ecosystem engineer, responds to 429	  

fragmentation (specifically, to reduction in patch size) and herbivory with a smaller 430	  

change than expected in primary production, nutrient content and population 431	  

dynamics indicates that these combined drivers may be much less damaging at least 432	  

in terms of plant functional survival. This response may explain why very small 433	  

patches can continue to survive for several decades (unpublished personal 434	  

observations and Alcoverro et al. 2012).  435	  

The interaction of drivers can make ecosystems more vulnerable to change 436	  

(Folke et al. 2004). Our results point to the importance of understanding how 437	  

environmental stressors modify key internal ecosystem processes since they may 438	  

interact in potentially surprising ways, not entirely predictable by merely knowing how 439	  

the system responds to each individually (Crain, Kroeker & Halpern 2008). Unlike 440	  

internal processes, external stressors like anthropogenic fragmentation are not 441	  

ecosystem dependent. While external stressors may on their own modify just a few 442	  

key attributes of the system, their ability to modify internal ecosystem processes may 443	  

set in motion major functional changes to the system that the disturbance alone may 444	  

not directly cause. In the example of the seagrass meadows, the plant seems to cope 445	  

adequately with internal drivers like herbivore pressure thanks to their evolutionary 446	  

adaptations. However, the introduction of external stressors like fragmentation into 447	  

the system can have far larger effects than expected, particularly on the structure of 448	  

these systems. While fragmentation has already been recognised for its ability to 449	  

impact a suite of ecosystem parameters, the fact that it interacts with herbivory can 450	  

exacerbate these losses and seriously compromise the role of seagrasses as habitat-451	  

forming ecosystems. 452	  

 453	  

 454	  
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Source of variation   Herbivory pressure  

 

Source of variation   %Nitrogen    

           
  Df 

Sum of 
Square F P 

 

  Df 
Sum of 
Square F P 

           St 1 2.204 2.000 0.173 

 

St 1 5.162 25.783 <0.001 

 

    

  
    

F 1 0.491 0.445 0.512 

 

F 1 5.558 27.757 <0.001 

 

    

  
    

St × F 1 0.491 0.445 0.512 

 

H 1 0.011 0.056 0.814 

 

    

  
    

PLOT [St × F] 16 2.663 2.416 0.032 

 

St × F 1 0.367 1.832 0.185 

 

    

  
    

ERROR 20 22.041   

 

St × H 1 0.131 0.655 0.424 

 

    

  
    

 

    

 

F × H 1 0.028 0.138 0.713 

 

    

  
    

 

    

 

St × F × H 1 0.068 0.340 0.564 

 

    

  
    

 

    

 

ERROR 32 6.407 
  

 

    

                 

           Source of variation   Canopy    

 

Source of variation   % NSC    

           
  Df 

Sum of 
Square F P 

 

  Df 
Sum of 
Square F P 

           St 1 9926.273 225.030 <0.001 

 

St 1 19.853 1.926 0.175 

 
    

  
    

F 1 2303.290 52.216 <0.001 

 

F 1 21.025 2.040 0.163 

 
    

  
    

H 1 3485.934 79.027 <0.001 

 

H 1 3.181 0.309 0.582 

 
    

  
    

St × F 1 104.497 2.369 0.131 

 

St × F 1 45.156 4.382 0.044 

 
    

  
    

St × H 1 32.633 0.740 0.395 

 

St × H 1 4.422 0.429 0.517 

 
    

  
    

F × H 1 146.446 3.320 0.076 

 

F × H 1 70.756 6.866 0.013 

 
    

  
    

St × F × H 1 805.120 18.252 <0.001 

 

St × F × H 1 43.723 4.243 0.048 



 
    

  
  

 
 

PLOT [St × F × H] 32 413.724 9.379 <0.001 

 

ERROR 32 329.768 
  

 
  

 
 

      ERROR 40 1852.7 
  

      

           

           

           Source of variation   Production    

 

Source of variation   Shoot density    

           
  Df 

Sum of 
Square F P 

 

  Df 
Sum of 
Square F P 

           St 1 0.067 3.530 0.068 

 

St 1 43950 8.768 0.005 

 
 

     
    

F 1 0.792 41.554 <0.001 

 

F 1 6127 1.222 0.276 

 
 

     
    

H 1 0.409 21.458 <0.001 

 

H 1 64690 12.905 0.001 

 
    

  
    

St × F 1 0.043 2.269 0.140 

 

St × F 1 45716 9.120 0.004 

 
    

  
    

St × H 1 0.001 0.044 0.834 

 

St × H 1 9301 1.855 0.181 

 
    

  
    

F × H 1 0.024 1.249 0.270 

 

F × H 1 57117 11.394 0.002 

 
    

  
    

St × F × H 1 0.058 3.060 0.088 

 

St × F × H 1 5697 1.137 0.293 

       
    

PLOT [St × F × H] 32 0.051 2.663 0.002 

 

PLOT [St × F × H] 32 28710 5.727 <0.001 

         

 

 ERROR 40 0.762 
 

  

ERROR 40 200508 
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Table 1: Summary of the different ANOVA analyses performed. P-values correspond 703	  

to those provided by an F-test. For the physiological response variables (%N and 704	  

%NSC) the effects of site (St), patch size (F), herbivory (H) and their interactions 705	  

were tested. For the other response variables (herbivore pressure, canopy height, 706	  

primary production and shoot density) in addition to the aforesaid factors, plot was 707	  

considered a random factor nested within (St x F x H). Primary production was 708	  

square root transformed to meet ANOVA assumptions, but for herbivore pressure the 709	  



assumptions were not met after transformations and we set the significance level to 710	  

P<0.01 to minimise the risk of making a type I error. Df, degree of freedom	  711	  

	  712	  



Fig 1. Individual and combined effects of patch size (2 levels: large (L) and small (S)) and Herbivory (2 levels: Herbivores present [dotted line] 713	  

and No Herbivores [caged plots, continuous line]) for each of the response variables (mean±SE): herbivore pressure (a), canopy height (b), 714	  

primary production (c), % nitrogen (d), % total non-structural carbohydrates (NSC) (e) and shoot density (f). Values labelled with the same 715	  

lower case letter do not differ significantly according to Tukey’s HSD post hoc test. 716	  

 717	  

 718	  



Fig 2. Linear regression showing a significant relationship between patch size (log 719	  

transformed) and the nitrogen content (% N) of Posidonia oceanica rhizomes taken 720	  

at the end of the experiment (n=40). Full circles (●) indicate plots where herbivores 721	  

were present, while empty circles (◦) indicate caged plots without herbivores. 722	  

 723	  
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 725	  

 726	  

  727	  

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

patch area (m2)

%
 N

5ïVTXDUHG ����
P�����

��
�

��
�

��
�

��
�

��
�

���� ��� � 2 � �� �� �� ���



Fig 3. Linear regression showing a significant relationship between the nitrogen 728	  

content (% N) and the total Non-Structural Carbohydrates (% NSC) of Posidonia 729	  

oceanica rhizomes taken at the end of the experiment (n=40). Full circles (●) indicate 730	  

plots where herbivores were present, while empty circles (◦) indicate caged plots 731	  

without herbivores.	  732	  
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