
1 

 

 

 

 

 

Peer reviewed paper 

Title: Hydromechanical characterization of CO2 injection sites 

Authors: Víctor Vilarrasa, Jesús Carrera and Sebastià Olivella
 

Journal published: International Journal of Greenhouse Gas Control 

Volume and pages: doi:10.1016/j.ijggc.2012.11.014 

Publication year: 2013  

 

 

 

 

 

 

 

 

 

 

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Digital.CSIC

https://core.ac.uk/display/36149233?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2 

 

HYDROMECHANICAL CHARACTERIZATION OF CO2 INJECTION SITES 

Víctor Vilarrasa
1,2

, Jesús Carrera
1
 and Sebastià Olivella

2
 

1 
GHS, Institute of Environmental Assessment and Water Research (IDAEA), CSIC, 

Jordi Girona 18-26, 08034 Barcelona, Spain 

2 
Dept Geotechnical Engineering and Geosciences, Technical University of Catalonia 

(UPC-BarcelonaTech), Jordi Girona 1-3, 08034 Barcelona, Spain 

 

 

 

 

 

 

 

 

 

 

 

 

 



3 

 

ABSTRACT 

Clear understanding of coupled hydromechanical effects, such as ground deformation, 

induced microseismicity and fault reactivation, will be crucial to convince the public 

that geologic carbon storage is secure. These effects depend on hydromechanical 

properties, which are usually determined at metric scale. However, their value at the 

field scale may differ in orders of magnitude. To address this shortcoming, we propose 

a hydromechanical characterization test to estimate the hydromechanical properties of 

the aquifer and caprock at the field scale. We propose injecting water at high pressure 

and, possibly, low temperature while monitoring fluid pressure and rock deformation. 

Here, we analyze the problem and perform numerical simulations and a dimensional 

analysis of the hydromechanical equations to obtain curves for overpressure and vertical 

displacement as a function of the volumetric strain term. We find that these curves do 

not depend much on the Poisson ratio, except for the dimensionless vertical 

displacement at the top of the caprock, which does. We can then estimate the values of 

the Young’s modulus and the Poisson ratio of the aquifer and the caprock by 

introducing field measurements in these plots. Hydraulic parameters can be determined 

from the interpretation of fluid pressure evolution in the aquifer. Reverse-water level 

fluctuations are observed, i.e. fluid pressure drops in the caprock as a result of the 

induced deformation that undergoes the aquifer-caprock system when injecting in the 

aquifer. We find that induced microseismicity is more likely to occur in the aquifer than 

in the caprock and depends little on their stiffness. Monitoring microseismicity is a 

useful tool to track the opening of fractures. The propagation pattern depends on the 

stress regime, i.e. normal, strike slip or reverse faulting. The onset of microseismicity in 

the caprock can be used to define the maximum sustainable injection pressure to ensure 

a permanent CO2 storage. 
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1. INTRODUCTION 

Coupled hydromechanical effects, such as ground deformation, induced microseismicity 

and fault reactivation, should be understood and quantified to demonstrate to the public 

that geologic carbon storage is safe. The most representative examples of coupled 

hydromechanical effects may be ground heave and microseismic activity. A ground 

heave of 5 mm/yr has been measured on top of the carbon dioxide (CO2) injection wells 

at the In Salah storage project in Algeria (Rutqvist et al., 2010; Vasco et al., 2010). 

Induced microseismic events were detected at Otsego County, Michigan Basin, US, due 

to CO2 leakage around wells (Bohnhoff et al., 2010) and at the beginning of injection in 

the Weyburn field, Saskatchewan, Canada (Verdon et al., 2011). Numerically, Mazzoldi 

et al. (2012) calculated that the maximum magnitude of induced seismicity triggered in 

faults smaller than 1 km in length ranges from 2 to 3.9, which could be felt by the local 

population. This magnitude depends on the initial rock stress tensor, the length of the 

rupture zone and the hydromechanical properties of the fault. For instance, Cappa and 

Rutqvist (2012) estimated through numerical simulations that CO2 injection in a deep 

aquifer bounded by a low-permeability fault can trigger earthquakes with magnitude 3, 

but Cappa and Rutqvist (2011b) estimated that for a similar geological setting, but in a 

deeper aquifer, the magnitude can be enhanced up to 4.5. Additionally, a natural high 

pressure CO2 source is believed to have driven, after the occurrence of two earthquakes, 

thousands of aftershocks in the Northern Apennines, Italy, during more than 30 days, 

including four events with magnitudes ranging from 5 to 6 (Miller et al., 2004). Thus, 
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hydromechanical processes need to be well understood to define the conditions that 

ensure stable permanent CO2 storage in deep geological formations.  

Hydromechanical studies have focused on several aspects, including the estimation of 

maximum sustainable injection pressure (Streit and Hillis, 2004; Rutqvist et al., 2007), 

evaluating fault reactivation due to production of gas/oil fields (Ferronato et al., 2008; 

Soltanzadeh and Hawkes, 2009) and to CO2 injection (Ferronato et al., 2010; Cappa and 

Rutqvist, 2011a). Fault reactivation occurs once the fault yields, which triggers 

microsesimicity. This microseismicity is usually due to shear-slip and produces changes 

in the fault aperture in the order of microns (Guglielmi et al. 2008). Thus, fracture 

permeability is enhanced, especially in the direction perpendicular to shear (Barton et 

al., 1985; Yeo et al., 1998; Mallikamas and Rajaram, 2005). Phillips et al. (2002) 

present three examples of induced microseismicity in sedimentary basins in which the 

events concentrate on the contact between layers of different mechanical properties or 

stress states. The evolution of the yielding region depends on the stress tensor and may 

propagate upwards when vertical stress is greater than horizontal stresses (Rutqvist et 

al., 2008; Vilarrasa et al., 2011b). To quantify these coupled hydromechanical effects, 

the mechanical properties of the rocks should be measured. 

Mechanical properties of rocks are usually inferred from core samples at the laboratory. 

However, these values might not be representative at the field scale because of the 

existence of joints or fractures. This is illustrated by the difference between the values 

of the Young’s modulus obtained from laboratory tests and from back-analysis of 

convergence measurements in underground excavations. Its value from laboratory tests 

is always higher than that resulting from back-analysis because fractures are more 

deformable than the rock matrix (e.g. Ledesma et al, 1996; Zhang et al., 2006; Cai et 
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al., 2007; Vardakos et al., 2007). The large-scale geomechanical properties are difficult 

to quantify. They can be derived from model calibration of field measurements of strain 

or displacements, but this requires extensive modeling work (Rutquist, 2012). 

Moreover, sizeable measurements usually become available a few months after the 

beginning of injection. A defined methodology to obtain these properties prior to 

injection does not exist. Therefore, it is necessary to develop a field test to characterize 

the macroscopic mechanical properties of the rock layers involved in CO2 storage in 

deep geological formations, i.e. the reservoir and the caprock.  

Pilot projects are an excellent opportunity to design and perform new tests that will be 

useful for CO2 injection at the industrial scale. However, little hydromechanical field 

data is available in pilot projects (Kikuta et al., 2005; Michael et al., 2010) and the 

related studies are mainly conceptual (Chiaramonte et al., 2008; Smith et al., 2009; 

Vidal-Gilbert et al., 2010). In this context, new injection and characterization 

technologies are planned at the pilot site of Hontomín (Carrera et al., 2011), Spain. 

Hontomín is the injection site of the CO2 storage Technology Demonstration Plant 

(TDP) of the Compostilla OXYCFB300 project, operated by Energy City Foundation 

(CIUDEN). Among the experiments planned for site characterization and  injection 

technology development, a hydromechanical characterization test will be performed 

there. The objective of this paper is to propose a hydromechanical characterization test 

to obtain the macroscopic hydraulic and mechanical properties of the reservoir and the 

caprock and to evaluate the maximum sustainable injection pressure. 
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2. MECHANICAL PROPERTIES OF ROCKS 

Sedimentary rocks (sandstone, limestone and dolomite) are potential host rocks for CO2 

storage. Low-permeability, high-entry pressure formations, such as shale, marl and 

claystone, can form the caprock. Mechanical properties of these rock types can take a 

wide range of values (Figures 1 and 2).  

The variability of rock properties depends on the rock type. For example, reported 

Young’s moduli of sandstones and limestones range only from 1 to 20 GPa (Goodman, 

1989; Abousleiman et al., 2010; Heap et al., 2010; Hu et al., 2010; Rimmele et al., 

2010). Instead, reported Young’s moduli of shales range over two orders of magnitude. 

Soft shales, like the Boom Clay, display Young’s moduli in the order of 0.1-0.4 GPa 

(Giraud and Rousset, 1996; Mertens et al., 2004; Dehandschutter et al., 2005; François 

et al., 2009). Stiff clays, like one from Puerto Rico, have got Young’s moduli in the 

order of 20-40 GPa (Shalabi et al., 2007). Other shales (Ortega et al., 2010), such as oil 

shales (Eseme et al., 2007), Opalinus Clay (Thury, 2002; Gens et al., 2007) and 

Callovo-Oxfordian argillite (Zhang and Rothfuchs, 2004; Saurot et al., 2007; Wileveau 

and Bernier, 2008), have intermediate Young’s modulus values, ranging from 1 to 20 

GPa. The actual value of the Young’s modulus increases with the mean effective stress 

(Dodds et al., 2007; Shalabi et al., 2007; Hu et al., 2010). 

Poisson ratios range from 0.15 to 0.25 for the vast majority of rock samples (Figure 1). 

Some values close to 0.5 (incompressible) are reported in low-permeability rocks. 

However, these values reflect undrained conditions and are not representative of the real 

Poisson ratio of the rock.  
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The friction angle of existing fractures is important because it controls the occurrence of 

microseismic events. Sedimentary formations, which are formed after depositional 

sequences, present a high anisotropy in the directions parallel and perpendicular to 

bedding (Thury, 2002; Gens et al., 2007; Saurot et al., 2007). Friction angles as low as 

5° (Figure 2) have been found in the direction parallel to bedding in clay-rich materials 

(Gens et al., 2007) or when the rock has been weakened due to demineralization 

(Abousleiman et al., 2010). Related to this, the percentage of carbonate in the clay-size 

material of marls affects the residual friction angle. Low carbonate content (<11%) 

yields residual friction angles around 12°. High carbonate content (>30%) yields 

residual friction angles around 30° (Frydman et al., 2007). 

Mechanical properties of sedimentary rocks are not only highly variable, but also 

difficult to estimate at the field scale of interest for CO2 sequestration. Hydromechanical 

numerical studies usually take the values obtained from samples tested at the laboratory 

as the values of the formation. However, typical laboratory tests are representative of 

the rock matrix, possibly damaged during coring, but not of the formation as a whole, 

which is always fractured. Since fractures facilitate strain, the effective formation scale 

value of the Young’s modulus can be more than one order of magnitude smaller than 

that of the matrix. For example, Verdon et al. (2011) had to reduce the Young’s 

modulus of the aquifer from 14.5 (value obtained from laboratory tests) to 0.5 GPa in 

order to adjust their model to the observed microseismicity in the Weyburn field, 

Saskatchewan, Canada. Though they argue that this reduction in the Young’s modulus 

may be excessive, it is evident that laboratory tests overestimate the stiffness of the 

rock.  
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3. HYDROMECHANICAL CHARACTERIZATION TEST 

3.1. TEST DESCRIPTION 

We propose a test to characterize the hydromechanical parameters of the aquifer and 

caprock at the field scale. The test consists in injecting water at high pressure and flow 

rate, while monitoring fluid pressure, rock deformation and induced microseismicity 

(Figure 3). The injected water may also be colder than the formation, which contributes 

to stressing the formation. The effect of temperature is not analyzed here, but has been 

analyzed by Vilarrasa et al. (2012). The overpressure (several MPa) is proportional to 

the flow rate, which can become high if the aquifer transmissivity is high. The injected 

water can be obtained from surface sources, e.g. rivers or lakes. However, aquifer brine 

must be used if geochemical alteration is not desired. In this case, brine is pumped and 

stored at the surface prior to the injection test. Therefore, the duration of the injection 

will be conditioned by storage capacity. 

The overpressure should be progressively increased until the elastic limit is reached and 

microseismicity occurs. Microseismic events can take place both in the reservoir and the 

caprock. Since microseismic eventss open up fractures (Guglielmi et al., 2008), 

enhancing their transmissivity, microseismicity will be beneficial while it occurs within 

the aquifer. However, if microseismic events occur in the caprock, they may open 

migration paths for CO2. Therefore, the corresponding injection pressure must not be 

exceeded during the operational stage of CO2 injection.  

Instrumentation for the test consists of sensors to measure fluid pressure, vertical 

displacement and microseismicity. Fluid pressure and vertical displacement 

measurements are taken in the injection and observation wells, both in the reservoir and 
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the caprock (Figure 3). In the case that vertical displacement measurements are not 

available, strain should be measured. An array of geophones or hydrophones  should be 

placed in the observation well at depth to detect and locate accurately microseismic 

events of magnitudes as low as -3. Additionally, a network of geophones in surface can 

complement the microseismicity measurements and help to localize the events. 

Microseismicity measurements are essential to guarantee the caprock integrity and 

avoid leakage of future CO2 injection tests in the same site. 

 

3.2. PROBLEM FORMULATION 

3.2.1. ELASTICITY IN POROUS MEDIA 

Fluid injection induces strain in the aquifer-caprock system, which is generally assumed 

to be elastic while failure conditions are not reached. Hooke’s law gives the relationship 

between elastic strain and effective stress,  

 IσIε m

m

GK








2

1

3
, (1) 

where ε  is the elastic strain tensor, σ  is the effective stress tensor, 

  3zyxm    is the mean effective stress, I  is the identity matrix, 

  213  EK  is the bulk modulus,    12EG  is the shear modulus, E is the 

Young’s modulus and   the Poisson ratio. 

The coupled hydromechanical equation can be obtained from combining the flow 

equation (Bear, 1972) with the momentum balance, neglecting the inertial terms, 

considering the compatibility equations between strains and displacements and that the 
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volumetric strain can be expressed as the divergence of the displacement vector (Jaeger 

et al., 2007) 
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, (2) 

where t  is time, u  is the displacement vector,   is porosity,   is water 

compressibility,   is hydraulic conductivity and h  is hydraulic head. 

We generalize the problem by performing a dimensional analysis. The dimensionless 

variables of the problem are 
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where r  is the radial coordinate, L is a characteristic distance and the subscripts D and c 

denote dimensionless and characteristic variables, respectively. The characteristic 

variables can be taken as the values of each variable in the aquifer. Thus, the value of 

the variables in the caprock will be expressed as the ratio with respect to the value of the 

variable in the aquifer. The characteristic length, which is usually difficult to choose 

(Kopp et al., 2009), can be chosen as the aquifer thickness.  

According to the hydraulic boundary condition, i.e. a constant flow rate, the 

characteristic head can be defined as 

caq

c
b

Q
h

2
 , (4) 

where Q  is the flow rate and aqb  is the aquifer thickness. 
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The mechanical boundary conditions of this problem are no displacement perpendicular 

to the bottom and outer boundary. The characteristic displacement 
c

u  can be chosen as 

the vertical displacement in the aquifer induced by injection. Assuming no horizontal 

strain in the aquifer, it can be written as 

aqscc bShu  , (5) 

where 
s

S  is the specific storage coefficient.  

The characteristic time can be defined from the flow equation, yielding the 

characteristic time of a diffusion equation 

c

s
c

SL
t



2

 . (6) 

Using the dimensionless variables of Eq. (3) and the characteristic variables of Eqs. (4), 

(5) and (6), after some algebra, Eq. (2) can be written as  

     0uu 




















DDDDD

aq

DDD

D

DD

D

h
b

L

tLe

G

t
G 

1

3

2
 , (7) 

where the two dimensionless groups that govern the hydromechanical problem are 

GG   (8a) 

and 






Le  (8b) 

where K/1  is rock compressibility. Note that the third term of Eq. (7) simplifies by 

choosing the characteristic length as the aquifer thickness. The dimensionless number 
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appearing in Eq. (8b) is the loading efficiency, which represents the ratio of change of 

fluid pressure to change of mean stress (van der Kamp and Gale, 1983; Hsieh et al., 

1988).  

 

3.2.2. ELASTICITY IN POROUS MEDIA WITH DILATANCY 

Frictional materials often display a positive volumetric strain (increase in volume) in 

response to increases in deviatoric stress (Verruijt, 1969; van der Kamp and Gale, 

1983). This behavior, which is not consistent with Eq. (1) is termed dilatancy 

(Reynolds, 1885; Houlsby, 1991). Later, we perform numerical simulations with plastic 

deformation including dilatancy. Still, for the sake of completeness and simplicity, here 

we account for dilatancy as a first approximation by adding to the volumetric strain a 

term that accounts for volumetric strain due to changes in deviatoric stress 

Dq
K

m
v 





 , (9) 

where D  is a dilatancy coefficient. Therefore, Hooke’s law adopts the following form 
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where the dilatancy parameter D  can be related to the parameters tan3  DGD  

and   is the dilatancy angle. 
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Then, we proceed in the same manner as in the previous section. But, the dimensionless 

equation that is obtained for the hydromechanical problem has an additional term for the 

dilatancy in comparison with Eq. (7)  

     0uu 
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where the dimensionless number in the dilatancy term is  

 LeK
Q

kb
N c

aqaq

D  1tan
2





, (12) 

where c  is a characteristic deviatoric strain. 

The main difference between this dimensionless number and the other two is that the 

hydraulic variables, i.e. permeability and flow rate, appear in the dimensionless number 

of the dilatancy term. 

 

3.2.3. ONSET OF MICROSEISMICITY 

Induced microseismicity occurs if the stress state reaches yield conditions. To determine 

this, a failure criterion has to be defined. We adopt the Mohr-Coulomb failure criterion 

(Figure 4) 

  tannc , (13) 

where   is the shear stress, n   is the normal effective stress, c  is cohesion and   is 

the friction angle. Fluid pressure increases due to fluid injection, which displaces the 
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Mohr circle to the left. Shear failure, leading to slip along the planes of a fracture, 

occurs when the Mohr circle becomes tangent to the failure envelope. This can occur in 

a favorably oriented cohesionless preexisting fracture (Mohr circle with center C’ in 

Figure 4) or in intact rock if the deviatoric stress (difference between the maximum and 

the minimum principal stresses) is sufficiently large to make the Mohr circle tangent to 

the failure envelope. Alternatively, if the least principal stress equals the rock tensile 

strength, 
t  , a hydrofracture will be created perpendicular to the least principal stress 

(Mohr circle with center C’’ in Figure 4). If the least principal stress is horizontal, 

hydrofractures will be vertical, and vice versa (Klee et al., 2011). Generally, shear 

failure in preexisting fractures occur before failure of intact rock, even when they are 

not favorably oriented (Rutledge and Phillips, 2003). 

The style of faulting is a consequence of the preexisting stress tensor. Depending on the 

relative magnitude of the vertical stress with respect to the two horizontal principal 

stresses, three cases can be distinguished: normal, strike slip and reverse faulting. 

Normal faulting occurs when the vertical stress is the maximum principal stress; strike 

slip faulting occurs when the vertical stress is the intermediate principal stress and 

reverse faulting occurs when the vertical stress is the minimum principal stress. The 

latter may take place in compressional regimes where lateral deformation is constrained 

in the direction perpendicular to compression. A compilation of the present-day stress 

field was carried out by the World Stress Map Project (Zoback, 1992). However, local 

variations must be expected in response to local stiffness heterogeneity. Therefore an 

assessment of the local initial stress tensor must be made in every case. 
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3.3. NUMERICAL SOLUTION 

The hydromechanical characterization test is simulated using the fully coupled finite 

element code CODE_BRIGHT, which can handle multiphase flow, heat transfer, mass 

transport and deformation (Olivella et al., 1994, 1996). An ideal homogeneous 

horizontal aquifer-caprock system with the geometrical distribution of the Hontomín 

pilot test is considered (Figure 3). We assume that preexisting fractures are included in 

this equivalent continuum model. The aquifer has a thickness of 100 m, which we 

define as the characteristic length of the problem. The top of the aquifer is located at a 

depth of 1500 m. The aquifer is overlaid by a low-permeability caprock. Several 

thicknesses of the caprock have been considered: from 50 to 1500 m. The caprock is 

covered by a low shear stiffness medium, which do not need to be included in the 

model. For elastic hydromechanical simulations, we take advantage of radial symmetry 

and model an axisymmetric domain that extends laterally up to 20 km. The hydraulic 

boundary condition in the outer boundary is constant pressure, but the pressure buildup 

cone does not reach this boundary for the time scale of the test, so the model behaves as 

an infinitely acting aquifer. An injection well with a radius of 0.15 m is placed at the 

centre of the domain and the observation well is placed 50 m away. The injection flow 

rate is set to 120 kg/s. We have performed a sensitivity analysis of the elastic parameters 

in which the Young’s modulus ranges from 0.1 to 50 GPa for the aquifer and from 1 to 

50 GPa for the caprock, and the Poisson ratio ranges from 0.2 to 0.4 for both the aquifer 

and the caprock. The values of the parameters used in the simulations are summarized 

in Table 1. A structured mesh of quadrilateral elements has been used. The element size 

grows progressively from the injection well to the outer boundary. As a first step, a 

steady-state calculation is carried out to ensure equilibrium for the pressure and stress 

fields prior to injection. 
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Microseismicity propagation patterns are investigated by making an analogy between 

plastic strain and microseismic events. Since plastic strain occurs when a seism takes 

place, the region where seismic events would occur can be assessed by tracking the 

evolution of plastic strain. Thus, we simulate fluid injection using a viscoplasticity 

constitutive law in 3D models that represent the three possible stress regimes, i.e. 

normal, strike slip and reverse faulting. The details of the viscoplastic constitutive law 

can be found in Vilarrasa et al. (2010b). The geometry of these models is analogous to 

the axisymmetric models, but in 3D. We only model one fourth of the domain because 

of symmetry. The stress ratio hHv   :: , where v   is the vertical effective stress, H   

is the maximum horizontal principal effective stress and h   is the minimum horizontal 

principal effective stress, is 1:0.65:0.4 for normal faulting, 1:1.1:0.45 for strike slip 

faulting and 1:1.95:1.1 for reverse faulting. The friction angle has been set to 30º for the 

aquifer and to 22º for the caprock. 

 

4. RESULTS 

4.1. HYDROMECHANICAL BEHAVIOUR 

Fluid injection in an aquifer causes an increase in fluid pressure that reduces effective 

stresses, thus expanding the aquifer. As a result, the caprock is also deformed (Figure 

5a). But the hydraulic pressure buildup from the aquifer into the caprock is orders of 

magnitude slower than in the aquifer due to the permeability contrast between the two 

formations. This means that the hydraulic driven overpressure only affects a few meters 

into the caprock. Still, significant fluid pressure changes occur throughout the caprock 

driven by mechanical deformation, which causes volumetric strains (i.e., changes in 
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porosity) (Figure 5). In fact, fluid pressure decreases in the upper part of the caprock, 

where the porosity increases (extension occurs). In contrast, fluid pressure increases in 

the parts of the caprock where the porosity decreases (compression occurs). This is 

because the pore space becomes smaller for a constant mass of fluid and thus fluid 

pressure increases. 

Figure 5a displays the original and deformed form of the aquifer and caprock as a 

consequence of fluid injection in the aquifer. Vertical displacement displays a shape 

similar to that of fluid overpressure at the top of the aquifer, which decreases 

logarithmically with distance. However, vertical displacement becomes smoother at the 

top of the caprock. The uplift at the top of the aquifer generates compression in the 

lower part of the caprock close to the injection well, so fluid pressure increases. 

However, extensions appear at the top of the caprock close to the well, which increases 

the pore volume and thus fluid pressure decreases (Figure 5b). This leads to a reverse-

water level fluctuation, which is well-documented in confined aquifers. When fluid is 

pumped, hydraulic heads in adjacent aquitards rise after pumping starts (Rodrigues, 

1983; Hsieh, 1996; Kim and Parizek, 1997). This phenomenon is known as “reverse-

water level fluctuation” or “Noordbergum effect”, because it was observed for the first 

time in the village of Noordbergum, the Netherlands (Verruijt, 1969). The opposite 

occurs far from the injection well, i.e. extensions at the lower part of the caprock and 

compressions at its top. However, these are small compared to those close to the well. 

Fluid injection produces both a vertical and a horizontal displacement of the aquifer. 

The aquifer is horizontally displaced away from the injection well (Figure 6a) and 

pushed upwards (Figure 6b). The horizontal strain can even become negative at a 

certain distance from the well. The deformation of the aquifer produces deformation of 
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the caprock, with the condition that displacements are continuous at the aquifer-caprock 

interface. The caprock acts as a spring, dissipating the deformation of the aquifer. 

Hence, horizontal strain decreases rapidly at the lower part of the caprock (Figure 6a) 

and vertical strain is negative in the caprock (Figure 6b), which means that its thickness 

becomes smaller. The high gradient of horizontal strain at the aquifer-caprock contact 

suggests that relative displacements between the two formations might occur in the 

presence of a clay-rich layer with a low friction angle (see Figure 2). If this occurred, 

microseismic events would be triggered. Here we focus on the interaction between the 

aquifer and the caprock. At the bottom of the aquifer, we have assumed, for simplicity, 

a boundary with no displacement perpendicular to it. In reality, this boundary would 

present some resistance to shear and compression, so the curves would be more 

symmetrical with respect to the middle of the aquifer.   

 

4.2. SENSITIVITY ANALYSIS 

4.2.1. AQUIFER 

The mechanical properties of the rocks that form the reservoir and the caprock in 

potential CO2 storage sites are highly uncertain (recall Section 2). We analyze the 

sensitivity of pressures and displacements to the mechanical properties within each 

geological formation separately. We start by varying the mechanical properties of the 

aquifer while maintaining those of the caprock constant. The ratio of caprock to aquifer 

thickness is set to 2. 

Figure 7 displays the dimensionless overpressure and vertical displacement as a 

function of the dimensionless group of the volumetric strain term aqaqaq LeG /13/   
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(second term in the left hand side of Eq. (7)) at the top of the aquifer and the top of the 

caprock. The results correspond to a dimensionless time equal to 1 and a dimensionless 

distance from the injection well of 0.5. The most relevant variables in this analysis are 

listed in Table 2. The dimensionless group of the volumetric strain term aq  is a 

measure of the stiffness of the rock. High values of aq  indicate a stiff rock and low 

values of aq  indicate a soft rock. Dimensionless fluid overpressure in the aquifer is 

approximately equal to 1 and the effect of the Poisson ratio has little effect, showing 

that the variability is captured by the dimensional analysis (Figure 7a). The reverse-

water level fluctuation is more pronounced for soft aquifers, which can lead to a fluid 

pressure drop at the top of the caprock almost as high as the overpressure in the aquifer. 

However, fluid pressure variations at the top of the caprock are almost negligible when 

injecting in very stiff aquifers. Note that the curves of pressure drop at the top of the 

caprock coincide regardless of the Poisson ratio. This means that the Poisson ratio of the 

aquifer has no effect on the overpressure at the top of the caprock when plotting the 

results as a function of the dimensionless group of the volumetric strain term aq .   

Similarly, the dimensionless vertical displacement at the top of the aquifer is 

independent of the aquifer Poisson ratio when plotted as a function of the dimensionless 

group of the volumetric strain term aq  (Figure 7b). However, it has some effect at the 

top of the caprock, which can help to characterize the aquifer’s Poisson ratio. The 

dimensionless vertical displacement is small for very soft aquifers. It increases both at 

the top of the aquifer and the caprock as the aquifer becomes stiffer, until it reaches a 

maximum and then decreases (Figure 7b). This behavior can be explained by the fact 

that as the aquifer becomes stiffer, its loading efficiency (Eq. (8b)) decreases. The 

loading efficiency measures the part of a load that is taken by the pore-water with 
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respect to the solid skeleton of a soil or rock. While water takes almost all the load in 

soft soils, stiff rocks have a compressibility comparable to that of water multiplied by 

porosity, so the load distributes between the solid skeleton and the water. Thus, the 

dimensionless vertical displacement presents its maximum when a non-negligible part 

of the load is taken by the solid skeleton of the porous media. The difference between 

the vertical displacement at the top of the caprock and at the top of the aquifer is the 

amount of displacement absorbed by the caprock. 

Field measurements of fluid pressure and vertical displacement can be used to 

characterize the mechanical properties of the aquifer and caprock. Figure 8 shows 

possible combinations of fluid overpressure and vertical displacement at the top of the 

aquifer as a function of the aquifer mechanical properties at a dimensionless distance of 

0.5 from the injection well. Thus, the mechanical properties of the aquifer can be 

determined by introducing field measurements (fluid overpressure and vertical 

displacement) in Figure 8.    

The proposed test can also be used as a conventional hydraulic test to characterize the 

hydraulic properties of the aquifer. The interpretation of fluid pressure evolution of the 

injection test gives the aquifer transmissivity and storage coefficient (Cooper and Jacob, 

1946). The mechanical properties of the aquifer have little effect on fluid overpressure 

evolution in the aquifer when plotted versus dimensionless time (Figure 9a). In actual 

dimensions, pressure buildup is delayed in soft aquifers and for small Poisson ratios 

because of their higher storativity. On the other hand, pressure drop at the top of the 

caprock becomes bigger for softer aquifers (Figure 9b). Note the difference between 

hydromechanical simulations and a purely hydraulic simulation (denoted by H in Figure 

9). Although the difference is small in the aquifer, the reverse-water level fluctuation 
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does not occur in the caprock. It is clear that hydromechanical simulations are essential 

for understanding pressure evolution in the caprock during fluid injection. Moreover, 

these results suggest that pressure evolution in the caprock can be used to derive its 

mechanical properties. 

 

4.2.2. CAPROCK 

We now analyze the sensitivity of the solution to caprock mechanical properties while 

maintaining constant those of the aquifer to test whether they can be derived from the 

measured response. The effect of the caprock thickness is also examined.  

Figure 10 displays the dimensionless overpressure at the top of the aquifer as a function 

of the dimensionless group of the volumetric strain term cap  for a dimensionless time 

equal to 1 and a dimensionless distance from the injection well of 0.5. The overpressure 

increases slightly with the caprock stiffness. This was also observed by Yin et al. 

(2009), but considering that the reservoir is closed, i.e. surrounded by a low-

permeability formation. The thickness of the caprock has a greater effect in stiff 

caprocks than in soft ones. The thicker the caprock, the higher the overpressure at the 

top of the aquifer. This is because stiff thick caprocks may control the rigidity of the 

aquifer-caprock system, increasing the stiffness of the aquifer. This affects the storage 

coefficient, reducing it and therefore the pressure buildup occurs faster than with a thin 

soft caprock.  

The variation of the mechanical properties and thickness of the caprock has a greater 

effect on the vertical displacement (Figure 11) than on the overpressure (Figure 10). 

Although the caprock Poisson ratio has a negligible effect both on fluid overpressure 
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and vertical displacement (results not shown), the stiffness of the caprock does have an 

effect. Vertical displacement at the top of the aquifer decreases as the caprock becomes 

stiffer and thicker because they increase the bending moment of the caprock, which 

opposes to vertical displacement. In contrast, vertical displacement at the top of the 

caprock increases with the caprock stiffness, because the stiffer the caprock, the lesser 

deformation it absorbs. However, the deformation absorbed by the caprock increases 

with its thickness, thus decreasing vertical displacement. This leads to the extreme case 

of thick soft caprocks that can yield subsidence at the top of the caprock (Figure 11). 

The dashed lines reproduce the vertical displacement of a caprock that reaches the 

surface at the depths of the top of all the considered caprocks. The vertical displacement 

is similar at all depths when the caprocks are soft. However, the deformation within the 

caprock is significantly different for stiff caprocks, in part because the vertical 

displacement at the top of the aquifer is controlled by the caprock thickness. 

 

4.3.  INDUCED MICROSEISMICITY ANALYSIS 

4.3.1. ELASTIC MODELS 

Figure 12 displays the mobilized friction angle at the top of both the aquifer and the 

caprock as a function of the dip angle of a preexisting cohesionless fracture for a 

dimensionless time equal to 1 and an axisymmetric stress tensor with a vertical 

maximum principal stress. Stiffness of either aquifer or caprock has little effect on the 

mobilized friction angle. However, soft aquifers yield a somewhat higher mobilized 

friction angles than stiff aquifers, reflecting that the increased expansion implies a 

somewhat larger reduction in horizontal effective stresses. The effect of the stiffness of 
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the caprock is even smaller. The maximum mobilized friction angles at the top of the 

aquifer are in the order of 25-30° for steep fractures with dip angles around 60°; but 

only in the order of 15-17° for fractures with dip angles around 55° at the top of the 

caprock. 

Figure 13 shows the mobilized friction angle at the top of the aquifer as a function of 

time. Soft aquifers yield a higher mobilized friction angle than stiff aquifers for early 

times. However, the situation is reverted for late times of injection. The mobilized 

friction angles increases linearly with the logarithm of time in stiff aquifers, which may 

lead to failure conditions in long injection periods, as pressure grows also linearly with 

the logarithm of time. Notice that this is not the situation for supercritical CO2, with a 

viscosity much smaller than that of water, which causes pressure to drop as the CO2 

plume grows (Vilarrasa et al., 2010b). The effect of the Poisson ratio is small but non-

negligible because the changes in horizontal stresses induced by fluid injection depend 

on the Poisson ratio (e.g. Rutqvist, 2012). The vertical expansion associated to fluid 

injection also causes a reduction in horizontal effective stresses that is proportional to 

the Poisson ratio, which leads to an increase in the mobilized friction angle with the 

Poisson ratio. 

The fact that the dip angle corresponding to the maximum mobilized friction angle 

varies from the aquifer to the caprock (Figure 12) is not a coincidence. In fact, the dip 

angle corresponding to the maximum mobilized friction angle can be obtained 

geometrically, as shown in Figure 14, and is equal to  

24

mob



 ,  (14) 



25 

 

where   is the dip (angle with respect to the horizontal) of the critically oriented 

fracture and mob  is the mobilized friction angle. The mobilized friction angle is such 

that the Mohr-Coulomb envelope is tangent to the Mohr circle. The pole (denoted by P 

in Figure 14) of the Mohr circle coincides with the minimum principal stress when the 

maximum principal stress is vertical. Though fluid injection produces a slight rotation 

of the stress tensor, it can be neglected because pressure variations are relatively small. 

By definition, the stress state at any plane is obtained by intersecting the Mohr circle 

with the straight line drawn from the pole with the same orientation as the plane. Thus, 

a simple geometric derivation leads to Eq. (14) for the dip of the critically oriented 

fracture. Therefore, the higher the mobilized friction angle, the steeper the critically 

oriented fracture. Replacing the maximum mobilized friction angles in the aquifer and 

caprock in Eq. (14) gives the dip angles of the critically oriented fractures for triggering 

induced microseismicity shown in Figure 12.  

 

4.3.2. PLASTIC MODELS 

The type of faulting is determined by the stress tensor. In a normal faulting stress 

regime, rock fails along steep shear planes (Figure 15b, c). The numerical model 

reproduces very well the plastic propagation, which follows an angle equal to 

2/4/    (Figure 15c). Note that this is the same stress regime as the one analyzed in 

the previous section. The fact that the rock has some cohesion does not affect the angle 

in which shear occurs because the proportions between the triangles in the Mohr-

Coulomb failure analysis are maintained (Figure 15a).  
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In a strike slip stress regime, shear planes are vertical (Figure 16b). The situation of the 

pole is somewhat arbitrary in this stress regime. The pole coincides with the maximum 

horizontal principal effective stress in Figure 16a. However, if the pole had coincided 

with the minimum horizontal principal effective stress, the angle with respect to this 

direction in which shear occurs would have been the complementary of the one shown 

in Figure 16a, i.e., 2/4/   , leading to the same orientation of the shear plane shown 

in Figure 16b. Numerical results show that plastic deformation is indeed vertical and 

perpendicular to the maximum horizontal stress (Fig. 16c). The region with plastic 

deformations is relatively wide because viscoplasticity regularizes and does not localize 

the failure mechanism.  

In a reverse faulting stress regime, the rock fails along shallowly dipping shear planes 

(Figure 17b, c). In this case, the pole coincides with the maximum horizontal principal 

effective stress and thus the failure plane (line P-A) presents a dip angle equal to 

2/4/   , which is lower than 45º (Figure 17a). Figure 17c shows that indeed plastic 

deformations occur subhorizontally. Microseismicity monitoring can thus help in 

confirming the initial stress tensor at the site by identifying the propagation pattern with 

one of these types of faulting. 

Figure 18 displays the stress trajectories (deviatoric versus mean effective stresses) for 

the three stress regimes at a point of the caprock placed 25 m away from the top of the 

injection well in all directions. All the trajectories start inside the failure envelope 

(elastic behavior). However, the trajectories shift to the left because of fluid pressure 

increase once fluid injection starts. Finally, all trajectories touch the failure envelope, 

meaning that the caprock yields and microseismic events occur. 
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5. DISCUSSION 

We propose a hydromechanical characterization test that will permit estimating 

representative values of the hydromechanical properties at the field scale. These values 

can be used as input data in numerical models, to facilitate numerical interpretation of 

measured data. 

Not only does this injection test give information on the hydraulic properties of the 

aquifer, but also on the hydraulic properties of the caprock and boundaries. A first 

estimate of the caprock permeability can be obtained from Earth tide analysis by 

monitoring fluid pressure fluctuations and Earth tide dilation prior to injection (Hsieh et 

al., 1987). Furthermore, the injection will last several hours and up to a few days, so the 

drawdown evolution curve will suffer several changes in its slope in a semilog plot. 

These changes in slope yield further information on the permeability of the caprock 

(Hantush, 1956; Neuzil, 1986) or the existence of faults that may act either as a flow 

barrier or constant head boundaries (Hsieh and Bredehoeft, 1981). The actual nature 

(barrier or conduits) of these faults can be determined if the pressure buildup cone 

(Vilarrasa et al., 2010a) reaches them. If faults are detected, more realistic models of the 

site need to be performed and calibrated including heterogeneities that have not been 

included here. Apart from this, permeability can be enhanced if the aquifer fractures 

open up (triggering microseismic events) as a response to high pressure injection 

(Vilarrasa et al., 2011a), which would reduce the slope of the drawdown evolution 

curve in the semilog plot. This can be accommodated in numerical models by using 

stress dependent permeability models. 

Additionally, this field test can be used as a means of measuring the caprock stability to 

fluid injection at high pressure. We suggest injecting water, but CO2 can be used as 
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well, because it has been observed that water and CO2 have a similar effect on fracture 

stimulation (Verdon et al., 2010). However, the risk of inducing microseismic events 

increases with time when injecting water (recall Figure 13), but is highest at the 

beginning of injection when injecting CO2 (Vilarrasa et al., 2010b). Microseismicity 

monitoring should allow to locate the induced microseismic events (Xuan and Sava, 

2010). The minimum detectable magnitude depends on the depth at which an array of 

geophones can be placed. Small events, of magnitude ranging from -3 to -2, can be 

detected only if the geophones are placed in a nearby borehole at a similar depth than 

the aquifer-caprock system (Moeck et al., 2009; Bohnhoff et al., 2010). The fracture 

slip likelihood as a function of fracture orientation can be determined from a slip 

tendency analysis (Segall and Fitzgerald, 1998; Moeck and Backers, 2011). The 

mobilized friction angle is higher in the aquifer than in the caprock (Figure 12) because 

the overpressure induced by injection translates the Mohr circle to the left (see Figure 

4). However, the likelihood of microseismic events occurrence depends on the actual 

friction angle of each formation. In fact, as shown in Figure 2, caprock materials often 

display low-friction angles, so that shear failure can occur in critically oriented 

fractures.  

The onset of microseismicity in the caprock can be used to define the maximum 

sustainable injection pressure. The value of this sustainable pressure will be a measure 

of the suitability of a specific site for permanent CO2 storage. Low values of the 

maximum sustainable injection pressure are indicative that the site can undergo large 

plastic deformations (Vilarrasa et al., 2011b) and may reactivate faults (Rutqvist et al., 

2008) which might facilitate CO2 migration towards shallow depths. 
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The initial stress tensor plays an important role in assessing the suitability of a specific 

site for permanent CO2 storage. Shear planes are subhorizontal in reverse faulting stress 

regime, but they are subvertical in normal faulting stress regime, as shown theoretically 

and numerically (Figures 15 and 17). Thus, it is more likely that the CO2 finds a 

migration path that crosses the whole caprock in a normal faulting than in a reverse 

faulting stress regime. But, strike slip stress regime seems even more unfavorable, 

because shear planes are vertical (Figures 16). The intensity of earthquakes also 

depends on the stress regime. Schorlemmer et al. (2005) found that the largest 

earthquakes occur in reverse faulting stress regime; normal faulting stress regime 

presents a larger proportion of small earthquakes and strike slip faulting stress regime 

has an intermediate behavior. Hence, the propensity for large earthquakes in a reverse 

faulting stress regime counterbalances the less unfavorable orientation of shear planes. 

However, the stress regime should not be a limiting factor if a careful monitoring of the 

hydromechanical response is performed, as evidenced in In Salah (Rutqvist, 2012), 

where a strike slip stress regime exists. In the Hontomín site, according to the World 

Stress Map, the geological indicators suggest a normal faulting stress regime. However, 

there is an inactive strike slip fault nearby. Once the drilling operations start, the actual 

stress regime will be determined and the site could be assessed. 

The initial stress tensor can be determined from observation of breakouts, tensile 

fractures and induced hydrofractures in wells (Zoback et al., 2003). Alternatively, the 

observation of similar patterns in microseismic events (e.g. doublets, multiplets, 

wavelength, slip direction) can give clues to determine the stress tensor (Rubin et al., 

1999; Tezuka and Niitsuma, 2000; Pytharouli et al., 2011). The stress tensor 

determination is not easy and may change with depth (Plenefisch and Bonjer, 1997; 

Klee et al., 2011). Nevertheless, the magnitude and orientation of the principal stresses 
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should be, at least, delimited in order to have some confidence on the existing stress 

tensor and how far or close it is from failure. The latter can be assessed by the 

interpretation of the proposed hydromechanical characterization test. 

The dimensional analysis of the hydromechanical equations shows that the problem is 

governed by two parameters: the loading efficiency and another that can be expressed as 

a function of the loading efficiency and the Poisson ratio as 
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Note that the ratio where the Poisson ratio appears is the shear to bulk modulus ratio, 

i.e. KG / . The dimensionless curves of fluid pressure and vertical displacement as a 

function of these parameters permit the estimation of the mechanical properties of the 

aquifer and caprock. The dimensional analysis considers the possibility that the rock 

presents dilatancy. Its effect should be considered as a possible contributing term when 

analyzing hydromechanical measurements. Though real potential storage sites will 

present a complex geometry, each site may be idealized as one similar to the ones 

studied here. Thus, the results presented here will permit to gain insights on the relevant 

hydromechanical processes occurring in each site. 

One of the most surprising hydromechanical processes occurring during fluid injection 

in an aquifer overlaid by a caprock is the reverse-water level fluctuation. 

Hydromechanical coupling is required to simulate this effect (see Figure 9). We use this 

effect, which is more pronounced in soft aquifers, to determine the geomechanical 

properties of the rocks. This effect can be difficult to measure in situ if the aquifer is 

stiff because it will lead to small fluid pressure changes, which will only be detected by 

very precise measuring equipment. 
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Vertical displacement is not easy to measure in deep boreholes. Strain measurements 

with fiber optic may be an option. However, the actual nature of the measurement is 

often unclear: Is it measuring the strain of the rock? Or is it measuring that of the 

casing? The measuring equipment will be embedded in the cement between the casing 

and the rock, which are of different stiffness, and thus deform differently. If the cement-

rock contact becomes a sliding surface, then the measuring equipment will measure the 

casing strain. This would give the impression that the rock is much stiffer than it 

actually is. However, the combined interpretation of fluid pressure and vertical 

displacement measurements will help in deciding whether some measurements are or 

not representative of the aquifer or caprock. Overall, the hydromechanical parameters of 

the aquifer and caprock at the field scale can be estimated from the interpretation of the 

proposed hydromechanical characterization field test. 

 

6. CONCLUSION 

We propose a hydromechanical characterization test for determining the aquifer and 

caprock hydromechanical properties at the field scale. Additionally, the maximum 

sustainable CO2 injection pressure can be determined by monitoring induced 

microseismicity. This will help to assess the suitability of specific sites for permanent 

CO2 storage in deep saline formations. 

We obtain the parameters that govern the problem through a dimensional analysis. We 

present the dimensionless overpressure and vertical displacement as a function of these 

parameters, which yields a family of curves for several Poisson ratios. Except for the 

vertical displacement at the top of the caprock, which depends on the Poisson ratio, all 
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the curves collapse in one single curve when plotting the results as a function of the 

dimensionless group of the volumetric strain term aq . Not only do these curves show 

the behavior of the aquifer-caprock system when injecting a fluid, but also can they be 

used for parameter estimation from field measurements.  

The coupled hydromechanical simulations of fluid injection show a reverse-water level 

fluctuation in the caprock, i.e. fluid pressure drops in the caprock when injecting in the 

subjacent aquifer. This phenomenon cannot be simulated with purely hydraulic 

simulations. Thus, coupled hydromechanical simulations should be performed when 

seeking understanding of caprock processes during fluid injection. 

Induced microseismicity in the caprock is a source of concern. The mobilized friction 

angle is much lower in the caprock than in the aquifer. However, clay-rich materials, 

typical of caprocks, usually display low-friction angles, especially in the direction 

parallel to bedding. Thus, microseismicity monitoring is required to control and gain 

confidence on the caprock integrity. 
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TABLES 

Table 1. Material properties of the aquifer and the caprock 

Property Aquifer Caprock 

Young’s modulus, E  (GPa) 0.1 – 50 1 - 50 

Poisson ratio,   (-) 0.2 – 0.4 0.2 – 0.4 

Friction angle,   (º) 30 22 

Intrinsic permeability, k  (m
2
)  10

-13 
10

-18
 

Porosity,   (-) 0.1 0.01 

 

Table 2. Variable definition 

Variable Definition 

Le

G 1

3



  

Dimensionless group of the volumetric strain term of the 

hydromechanical equation. Summation of the pore rigidity ratio and 

the inverse of the loading efficiency.  

GG   
Pore rigidity ratio. Product of rock shear modulus, rock porosity and 

water compressibility. 

 




Le  

Loading efficiency. Ratio of rock compressibility to rock 

compressibility plus water compressibility multiplied by porosity.  

aqbL   
The characteristic length has been chosen as the thickness of the 

aquifer. 
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s

aq

D
SL

t
t

2


  

Dimensionless time. Ratio of the product of aquifer hydraulic 

conductivity and time to the product of the square of the 

characteristic length and the specific storage coefficient. 

   gSs

 

Specific storage coefficient. Product of fluid density, gravity and the 

sum of rock compressibility and water compressibility multiplied by 

porosity. 

aq

D
b

r

L

r
r   

Dimensionless radial distance. Ratio of the radial distance to the 

characteristic length. 

gh

P
P

c

D





 

Dimensionless overpressure. Ratio of the overpressure to the product 

of the characteristic head, fluid density and gravity. 

aqsc

z
z

bSh

u
u

D
  

Dimensionless vertical displacement. Ratio of the vertical 

displacement to the product of characteristic head, specific storage 

coefficient and aquifer thickness. 

aqaq

c
b

Q
h

2
  

Characteristic head. Ratio of the flow rate to the product of 2 , 

aquifer thickness and aquifer hydraulic conductivity. 
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FIGURE CAPTIONS 

Figure 1. Literature review of matrix Young’s modulus and Poisson ratio for several 

sandstones, limestones, dolomitic marble and shales. 

Figure 2. Literature review of cohesion and friction angle for several sandstones, 

limestones, marls, dolomite and shales. 

Figure 3. Schematic representation of the hydromechanical characterization test. A 

sufficiently high water flow rate so as to reach the maximum sustainable injection 

pressure is injected for several hours. Fluid pressure and displacements or strains 

are monitored in the aquifer and caprock in as many places as possible (preferably 

in both the injection and the observation well, but at least in one well). 

Figure 4. Mohr-Coulomb failure criterion. Fluid pressure increases due to fluid 

injection, displacing the Mohr circle to the left. In a favourably oriented 

cohesionless preexisting fracture, slip occurs when the Mohr circle becomes 

tangent to the failure envelope (Mohr circle with center C’). In intact rock, if the 

least principal stress equals the rock tensile strength, a hydrofracture will be created 

perpendicular to its direction (Mohr circle with center C’’). Alternatively, if 

deviatoric stress increases and the Mohr circle becomes tangent to the failure 

envelope, the intact rock will fail along a shear plane. Note that the friction angle of 

the intact rock may be different from that of a preexisting fracture. 

Figure 5. (a) Original (dashed lines) and deformed form of the aquifer and caprock 

when injecting a fluid in the aquifer. The uplift at the top of the aquifer generates 

compression in the lower part of the caprock close to the injection well and 

extension far from it. However, extensions appear in the upper part of the caprock 
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close to the well and compressions far from it. The mechanical and hydraulic 

boundary conditions of the problem are also indicated.  (b) Volumetric strain and 

dimensionless fluid pressure change versus dimensionless distance from the 

injection well at several dimensionless depths. Fluid pressure increases in the 

contact between the aquifer and the caprock as a result of water injection, leading to 

an expansion of the aquifer. The pore volume decreases close to the well in the 

lower part of the caprock because the aquifer uplift compresses it. The pore volume 

increases close to the well at the top of the caprock due to extension. Fluid pressure 

in the caprock is inversely proportional to the volumetric strain change. Thus, fluid 

pressure increases where the pore volume decreases and decreases where the pore 

volume increases. 

Figure 6. (a) Horizontal strain as a function of dimensionless depth at several 

dimensionless radial distances from the injection well. The injected water displaces 

the aquifer laterally. The horizontal strain mainly concentrates in the aquifer. 

Relative displacements between the aquifer and the caprock may occur in the 

presence of a clay-rich layer with a low friction angle. (b) Vertical strain as a 

function of dimensionless depth at several dimensionless radial distances from the 

injection well. The vertical strain is high in the aquifer, where the injected water 

expands the pore volume, lifting the formation. The caprock, which is pushed 

upwards, acts as a spring, mitigating the uplift. The grey arrows in the inlets 

indicate the direction of the strain.   

Figure 7. (a) Dimensionless overpressure and (b) dimensionless vertical displacement as 

a function of the dimensionless group of the volumetric strain term aq  at a 

dimensionless time equal to 1 at the top of the aquifer. Measurements are taken at 
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an observation well placed at a dimensionless distance of 0.5 from the injection 

well. 

Figure 8. Aquifer Poisson ratio aq  versus aquifer pore rigidity ratio aqG  for several 

dimensionless overpressure and dimensionless vertical displacement at the top of 

the aquifer. Results for a dimensionless time equal to 1 and a dimensionless 

distance of 0.5 from the injection well. The intersections are possible combinations 

of the aquifer mechanical properties. 

Figure 9. Dimensionless overpressure as a function of the logarithm of dimensionless 

time at a dimensionless distance of 0.5 from the injection well for several 

mechanical dimensionless numbers and purely hydraulic simulation (H) (a) at the 

top of the aquifer and (b) at the top of the caprock. As a reference, a dimensionless 

time equal to 1.0 is achieved in the order of minutes for a stiff rock (big aqG ) and 

around a day for a soft aquifer (small aqG ). 

Figure 10. Dimensionless overpressure at the top of the aquifer as a function of the 

dimensionless group of the volumetric strain term cap  at a dimensionless time 

equal to 1 at a dimensionless distance of 0.5 from the injection well for several 

ratios of the caprock to aquifer thickness. The properties of the aquifer are constant. 

The stiffness and thickness of the caprock alter the aquifer storage coefficient. Stiff 

thick caprocks lead to a lower aquifer storage coefficient than soft thin caprocks, 

which advances the pressure buildup response to fluid injection. 

Figure 11. Dimensionless vertical displacement at the top of the aquifer and the caprock 

as a function of the dimensionless group of the volumetric strain term cap  at a 

dimensionless time equal to 1 at a dimensionless distance of 0.5 from the injection 
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well for several ratios of the caprock to aquifer thickness. The properties of the 

aquifer are constant. Thick caprocks with low-rigidity can yield subsidence. 

Figure 12. Mobilized friction angle at the injection well in the aquifer-caprock contact 

and at the top of the caprock as a function of the dip angle for soft and stiff aquifers 

and caprocks for a dimensionless time equal to 1. 

Figure 13. Mobilized friction angle at the injection well at the top of the aquifer as a 

function of time. 

Figure 14. Mohr circle representing the stress state of a point. The mobilized friction 

angle is related to the dip angle of critically oriented fracture,  , through geometric 

properties of triangles. 

Figure 15. Normal faulting stress regime. (a) Mohr circle at failure, (b) schematic 

representation of the failure mechanism and (c) plastic deformation obtained from a 

numerical simulation. 

Figure 16. Strike slip faulting stress regime. (a) Mohr circle at failure, (b) schematic 

representation of the failure mechanism and (c) plastic deformation obtained from a 

numerical simulation. 

Figure 17. Reverse faulting stress regime. (a) Mohr circle at failure, (b) schematic 

representation of the failure mechanism and (c) plastic deformation obtained from a 

numerical simulation.  

Figure 18. Deviatoric versus mean effective stresses trajectories of a point of the 

caprock placed 25 m away from the top of the injection well in all directions for a 

normal, a strike slip and a reverse faulting stress regime. 
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