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Abstract 14 

New evidence in the NW region of the Iberian Peninsula (~42
o
N 6

o
W) of a glacial advance 15 

coeval with the global Last Glacial Maximum (LGM) of the Marine Isotope Stage 2  has 16 

been identified through a dataset of exposure ages based on 23 
10

Be concentration 17 

measurements carried out on boulder samples taken from a set of latero-frontal moraines. 18 

Results span the interval 19.2–15.4 
10

Be ka, matching the last deglaciation period when 19 

Iberia experienced the coldest and driest conditions of the last 25 ka, and are consistent 20 

with Lateglacial chronologies established in other mountain regions from SW Europe. The 21 

extent of the LGM stade identified in this work is similar to the local maximum ice extent 22 

stade recorded and dated as prior to 33 ka using radiocarbon and optically stimulated 23 

luminescence. This work showcases how multiple-dating approaches and detailed 24 

geomorphological mapping are required to reconstruct realistic palaeoglacier evolution 25 

models. 26 

Key words 27 

Cosmogenic dating, glacial geomorphology, ice cap, Last Glacial Maximum, Lateglacial, 28 

Sanabria, Iberian Peninsula. 29 

1. Introduction 30 

Evidence for asynchronism between the maximum advances of mountain glaciers and 31 

continental ice sheets is reported worldwide, suggesting that the dynamics of both ice 32 

systems responded differently to rapid changes in temperature and/or moisture supply (e.g. 33 

Gillespie and Molnar, 1995; Florineth and Schlüchter, 2000; Zreda et al., 2011). Ice sheets 34 

grew to their maximum position between 33 and 26.5 ka in response to climatic forcing 35 

from decreases in summer insolation, tropical Pacific sea surface temperatures and 36 

atmospheric CO2 levels, and nearly all were at their Last Glacial Maximum (LGM) 37 
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positions from 26.5 to 19-20 ka corresponding to minima in these forcings (Clark et al., 38 

2009). The latter implies a longer time interval for the LGM episode than previous 39 

estimations based on the marine isotope and global sea level records (18 
14

C ka BP or 21 ka 40 

cal BP; Ehlers and Gibbard, 2007). Regional differences in maximum ice extent (Würmian 41 

MIE) and timing between mountain regions and the asynchrony with the global LGM hold 42 

significant information on cryosphere dynamics and palaeoclimatic evolution during the 43 

last glacial cycle. In the mountain regions of southern Europe, two chronological scenarios 44 

were proposed (Hughes and Woodward, 2008): (1) a local glacial maximum several 45 

thousands of years earlier than the LGM of Marine Isotope Stage 2 (MIS 2) based on 46 

evidence from northern Iberian Peninsula, Italian Apennines and Greece dated with 47 

radiocarbon, Uranium series, and optically stimulated luminescence (OSL) techniques, and 48 

(2) a local glacial maximum close or coeval with the global LGM based on evidence from 49 

central Iberian Peninsula, Pyrenees, Maritime Alps and Turkey dated through terrestrial 50 

cosmogenic nuclides (TCN). Such contrasting scenarios could be related to regional climate 51 

variability, but also to limitations or biases of the applied dating methods, as TCN methods 52 

consistently provided the youngest ages and radiocarbon and OSL the oldest ones (Hughes 53 

and Woodward, 2008). 54 

In the Iberian Peninsula mountains (Figure 1), the current knowledge about the extent, 55 

timing and number of glacial stades during the last glacial cycle (ca. last 120 ka) has been 56 

recently reviewed (Calvet et al., 2011; Jiménez-Sánchez et al., 2013) and is summarized as 57 

follows: (1) in the Pyrenees the Würmian MIE occurred between 97 and 36 ka depending 58 

on the valleys considered (García-Ruiz et al., 2013; Lewis et al., 2009; Pallàs et al., 2010), 59 

in the Cantabrian Mountains it was prior to 38 ka (Jalut et al., 2010; Jiménez-Sánchez and 60 

Farias, 2002; Moreno et al., 2010; Serrano et al., 2012, 2013), and in the Sistema Central 61 
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occurred between 33-26 ka (Carrasco et al., 2013; Palacios et al., 2010, 2012; Vieira, 62 

2008); (2) a new glacial advance took place during the LGM recording a glacial advance 63 

similar in extent to previous local MIE in the eastern end of the southern Pyrenees (23-21 64 

ka) (Delmas et al., 2008; Pallàs et al., 2006, 2010) and in the Sistema Central (22-19 ka) 65 

(Carrasco et al., 2013; Palacios et al., 2010, 2012) while shorter glacial advances were 66 

recorded in the northern Pyrenees (20-18 ka) (Delmas et al., 2011), the western end of the 67 

southern Pyrenees (García Ruiz et al., 2003; Lewis et al., 2009), and the Cantabrian 68 

Mountains (almost ice-free conditions in some valleys by 20 ka) (Jiménez-Sánchez and 69 

Farias, 2002); (3) frontal moraines coeval with the Oldest Dryas have been dated in the 70 

eastern Pyrenees and in the Sistema Central (Delmas et al., 2009; 2011; Pallàs et al., 2006, 71 

2010; Palacios et al., 2010, 2012). In spite of all these new datasets, it remains unclear to 72 

what extent the differences in magnitude between local Würmian MIE and LGM stades 73 

might result from biases introduced by regional climate patterns, the dating methods, or 74 

even from uncertainties in the interpretation of the feature being dated. The later can be 75 

particularly significant for glacial sequences composed of till deposits arranged as sets of 76 

frontal moraines, since depending on their preservation they can be interpreted as resulting 77 

from: (i) a single glaciation or episode of glacial advance and retreat with deposition of 78 

recessional moraines close in age, or (ii) more than one glaciation with superimposed 79 

glacial records. In the last case the moraines forming the frontal moraine complex would be 80 

very different in age.  81 

The Sanabria Lake moraine complex provides a unique glacier setting in the Iberian 82 

Peninsula to test these hypotheses. The occurrence of a well-preserved glacial sequence that 83 

includes a set of recessional moraines with related glaciolacustrine successions, allowed the 84 

combination of geomorphological techniques with several dating methods to establish the 85 
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significance of the whole moraine complex. The aims of this paper are 1) to constrain the 86 

timing and extent of glaciers during the last glacial cycle by combining new moraine 
10

Be 87 

surface exposure ages with the pre-existing 
14

C and OSL datasets, 2) to discuss the 88 

relevance of the new local chronology, by comparing it with other palaeoclimate records of 89 

Iberia and SW Europe. 90 

2. Regional Setting 91 

The Sanabria Lake area in NW Iberian Peninsula is located in the east side of the Trevinca 92 

Massif, a mid-latitude mountain range which is free of ice at present (Figure 1). The massif 93 

highlands are characterized by a smooth topographic plateau reaching an altitude of 2128 94 

m. The northern rim of the plateau is cut by north-facing glacial cirques, which connect 95 

with Alpine glacial valleys up to 7 km-long. To the south the plateau decreases in height 96 

and slope progressively to c. 1600 m, where two main troughs, the Bibei and Tera valleys 97 

are incised. These glacial valleys are 26 km and 23.5 km-long, and drain W and E 98 

respectively. Additionally, the plateau area is drained by minor glacial valleys arranged in a 99 

radial pattern (Figure 1). 100 

An ice cap covered the plateau during the local MIE, lowering the equilibrium line altitude 101 

to 1687 m in the Tera outlet (Cowton et al., 2009). Moraine deposits can be divided into 102 

two groups according to their distribution: (i) moraine complexes below 1600 m marking 103 

the terminal zones of the glacial valleys, and (ii) cirque moraines at altitudes above 1700 m. 104 

We focus on an area of 45 km
2
 in the terminal zone of the former Tera glacial outlet, where 105 

a moraine complex and ice-related deposits are particularly well-preserved around the 106 

Sanabria Lake (Figures 1 and 2). It includes: (i) a system of lateral moraines longer than 6 107 

km that connects to the front with undifferentiated tills delineating the local MIE and (ii) 108 

remains of at least nine frontal moraines spreading over a distance of 2 km. Directly up-109 



 

6 

 

valley from this moraine complex, a 9 m-long sediment core retrieved from the deepest part 110 

of the Sanabria Lake shows a 1.8 m-thick basal unit with massive sands to banded silts and 111 

clays dated by 
14

C AMS between 25.6 ± 0.4 and 14.5 ± 0.3 cal yr BP (Rodríguez-Rodríguez 112 

et al., 2011). Considering a proglacial origin for these facies, the frontal recessional 113 

moraine enclosing the lake must be older than the basal age of the lake and consequently, 114 

some of the moraines could represent different positions of the glacier front during the post-115 

MIE glacial retreat prior to 25.6 ka. A > 12 m-long core from the San Martín ice-dammed 116 

deposit located out with the outermost left lateral moraine and interpreted as synchronous 117 

or subsequent to the local MIE, gives a minimum age of 21.8 ± 0.4 cal yr BP (Rodríguez-118 

Rodríguez et al., 2011). Published radiocarbon ages obtained from other cores from small 119 

ponds in the eastern side of the Trevinca Massif also constrain minimum ages for local 120 

glacier retreat (Figure 2): (i) 15.7 ± 0.4 cal yr BP at Laguna de La Roya (Allen et al., 1996; 121 

Muñoz-Sobrino et al., 2013); (ii) 18.1 ± 0.4 cal yr BP at Laguna de las Sanguijuelas 122 

(Muñoz-Sobrino et al., 2004) and (iii) 14.2 ± 0.3 cal yr BP at Lleguna (Allen et al., 1996). 123 

Additional time constraints is provided by Pias site, in the western side of the Trevinca 124 

Massif, where a sedimentary sequence composed of fine-grained lacustrine deposits lying 125 

on poorly sorted sandy gravels interstratified with massive diamicton layers is well-126 

preserved at the junction between the Bibei and Barxacoba glacial valleys. Three quartz 127 

samples retrieved from glacio-fluvial and glacio-lacustrine sand units less than 1-m thick 128 

were analyzed with OSL and yielded minimum ages of 27 ± 2 ka, 31 ± 3 ka, and 33 ± 3 ka 129 

for the regional MIE (Pérez-Alberti et al., 2011). Based on this information, we identify 130 

two groups of chronological data post-dating the local MIE in the Trevinca Massif: (i) 131 

previous to the LGM (OSL dates) and (ii) synchronous or younger than the LGM 132 

(radiocarbon dates, Table 1). 133 
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3. Methodology 134 

A geomorphological map (at a 1:50.000 scale) was produced through photointerpretation 135 

and was used to reconstruct the MIE of local glaciers in the whole massif by using an 136 

ArcGIS database (v. 9.2) and the spreadsheet Profiler v.2 (Benn and Hulton, 2010). Ice 137 

profiles were numerically modeled along 31 profiles disposed radially from the ice cap 138 

margin to its source area along its outlet glaciers.  139 

The TCN analysis was conducted in the Sanabria Lake moraine complex, where the 140 

outermost lateral moraines were presumably formed during the local Würmian MIE stade, 141 

while the inset ones recorded subsequent post-MIE ice front locations (Figures 1 and 2). 142 

We selected 23 samples to investigate the minimum surface exposure age for the end of the 143 

Würmian MIE stade and for three other subsequent glacial fronts. The sampling selection 144 

was designed considering the relative chronology of the moraine complex to cover as 145 

complete as possible the history of the Pleistocene glaciations in the Tera Valley (eastern 146 

side of the Trevinca Massif). A total number of five moraines were sampled, two of them 147 

(TER and MAR) corresponding to the left lateral moraine which marks the local MIE (a 148 

total of eight boulders) and the others (SAN, TET and SAU) corresponding to three 149 

subsequent glacial fronts (five boulders each one). The shielding effect of till or snow 150 

cover, the underexposure of moraine boulders and the tilting of boulder surfaces was 151 

minimized by choosing only those boulders lying at the top of the crest and showing the 152 

largest size (volume greater than a cubic meter or > 1 m
3
), a well anchored base (but 153 

protruding at least 1 m from the moraine surface), and a flat surface (table-type). The 154 

crystalline character of the bedrock in the Tera catchment, which is mainly composed of 155 

augen gneiss with quartz-rich streaks and granodiorites with quartz-rich veins up to 6 cm-156 

thick, allowed getting samples very riched in quartz directly in the field. Shallow samples 157 
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were taken manually with hammer and chisel. Angular elevation of the horizon was 158 

measured at each sampling site with a clinometer and the topographic shielding factors was 159 

calculated using the CRONUS-Earth calculator (version 1.1.) following Balco et al. (2008). 160 

The sample treatment was performed in the Laboratori de Cosmonúclids Terrestres de la 161 

Universitat de Barcelona (Spain). Samples were crushed and sieved to obtain the 0.25-1 162 

mm grain fraction. Other mineral phases except quartz were removed from the samples by 163 

magnetic separation (dark minerals), froth floatation (mainly feldspars), and repeated 164 

leaching (Kohl and Nishiizumi, 1992). Aluminum content was analyzed through ICP-OES 165 

on sample aliquots at the Centre Científic i Tecnològic de la Universitat de Barcelona 166 

(CCiTUB). The aluminum content in all samples is < 250 ppm to ensure an efficient 167 

separation of Be and Al during column chromatography. Muscovite grains were removed 168 

through sample shaking with clean paper sheets and 3 extra acid-batches in order to reduce 169 

the Al-content in samples SAU01, MAR03 and SAN05. For each sample between 14-23 g 170 

of clean quartz grains were spiked with 200 mg of 
9
Be carrier and completely digested in 171 

48% HF. The carrier used was a commercial standard solution 1000 mg/l of beryllium 172 

oxide in hydrochloric acid 2% from the Scharlau Company (1.02g/cm
3
). Beryllium fraction 173 

of each sample was extracted through column chromatography (Ditchburn and Whitehead, 174 

1994). 175 

All the 
10

Be concentration measurements were performed at the ASTER AMS facility in 176 

Aix-en-Provence, France. The measured 
10

Be/
9
Be ratios were corrected for lab procedural 177 

blanks and calibrated with the NIST_27900 beryllium standard (Reference Material 4325, 178 

assigned value of 2.79 ± 0.03 x 10
-11

) and using a 
10

Be half-life of 1.36 ± 0.07 x 10
6
 years 179 

(Nishiizumi et al., 2007). Analytical uncertainties are reported as 1σ and include 180 

uncertainties associated with AMS counting statistics, standard uncertainty (certification), 181 
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and chemical blank measurements. 
10

Be concentration in quartz samples (Tables 2 to 4) 182 

was calculated following Balco (2006), while the surface exposure ages were calculated 183 

with the Cronus online calculator v. 2.2.1 assuming no erosion (Balco et al., 2008; Balco, 184 

2010). Maximum erosion rates were estimated by calculating the ratio between the height 185 

of protruding minerals from boulder surfaces and the corresponding exposure ages deduced 186 

for no erosion. Correcting exposure ages using the maximum erosion rate of 6.66 x10
-5

 cm 187 

yr
-1

 yielded exposure ages older by only ~ 200 years. Boulder ages discussed in this work 188 

were not corrected for erosion nor snow/vegetation cover to ensure that the reported ages 189 

are treated as minimum exposure ages. Moraine ages were obtained as the error-weighted 190 

mean of the exposure ages calculated for its boulders in the constant production rate model. 191 

Only the oldest boulders of each moraine, whose exposure ages are overlapping at 1σ, were 192 

used to derive the error-weighted mean moraine ages (Figure 3): (i) TER-02, TER-05, 193 

MAR-03 for the TER-MAR moraine; (ii) SAN-02, SAN-04, SAN-05 for the SAN moraine; 194 

(iii) TET-01, TET-02, TET-03 for the TET moraine; and (iv) SAU-01, SAU-02 SAU- 04 195 

for the SAU moraine. This TCN chronology is compared with pre-existing OSL and 
14

C 196 

datasets in the discussion. 197 

4. Results 198 

The geomorphological map (Figure 1) summarizes the main glacial evidence on the 199 

Trevinca Massif and its relative chronology, allowing the reconstruction of the ice cap 200 

dimensions. Ice fronts reached altitudes between 1580 – 950 m, 1510 – 1110 m, 1290 – 980 201 

m, and 1170 – 1060 m in the East, North, West and South sides of the massif, respectively. 202 

The lowest altitudes correspond to the Tera and Bibei valleys, where the glacial front 203 

fluctuations left remarkable sets of moraines. According to the ice surface model, glaciers 204 

extended 475 km
2
 over the massif during the local MIE, reaching up to 200 m of ice 205 
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thickness on the plateau and up to 450 m in the glacial valleys. The Sanabria Lake moraine 206 

complex indicates that the glacier outlet that flowed along the Tera valley was 23.5 km long 207 

during the local MIE and recorded a total length reduction of 3 km by the time of the SAU 208 

moraine deposition. The width of this glacier tongue, measured at the eastern part of the 209 

Sanabria Lake basin, changed from 3.7 km to 1.7 km between the local MIE and the SAU 210 

stade, while the ice thickness reduced ca. 130 m according to ice surface estimations made 211 

in the Tera Valley using the spreadsheet Profiler v.2 (Benn and Hulton, 2010). 212 

A minimum age of 19.2 ± 1.8 
10

Be ka (n = 3) can be established for the gently sloped left 213 

lateral moraine (TER-MAR) (Figures 2 to 4; Tables 3 and 4). The SAN frontal moraine 214 

marks a subsequent glacial still stand or minor readvance no later than 17.7 ± 1.7 
10

Be ka (n 215 

= 3). The minimum age for the TET moraine, located in a small tributary of the main Tera 216 

Valley, suggests the lack of connection between glacier streams of both valleys by 17.2 ± 217 

1.6 
10

Be ka ago (n = 3). Meanwhile, the overall retreating Tera ice front located downwards 218 

from the Sanabria over-deepened depression (today occupied by the Sanabria Lake) 219 

deposited another five frontal moraines. We report a minimum age of 15.7 ± 1.5 
10

Be ka (n 220 

= 3) for the SAU moraine, which dams modern day Sanabria Lake. 221 

The lack of geomorphological features indicating the location of the ice margins at higher 222 

elevations than the TET moraine does not allow establishing a detailed paleogeographic 223 

model for each subsequent deglaciation stade.  224 

5. Discussion 225 

The minimum 
10

Be ages cover the time interval 19.2 ± 1.8 to 15.7 ± 1.5 
10

Be ka 226 

(uncertainties include those associated with the analytical procedures and the production 227 

rate) and are consistent with the relative chronology derived from the geomorphological 228 

sequence (Figure 2). Combining the new 
10

Be dataset with published 
14

C AMS and OSL 229 
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results from the whole massif, we have identified two glacial advances very close in extent. 230 

The oldest one is recorded by glacio-fluvial sediments at Pias site (western Trevinca 231 

Massif) which yielded OSL ages ~ 27-33 ka (Pérez-Alberti et al., 2011), suggesting the 232 

occurrence of a local MIE earlier than MIS 2. The youngest one is supported by our TCN 233 

results. According to the new set of minimum 
10

Be ages, the whole moraine sequence was 234 

developed between 19.2–15.7 ka (Figure 2). The outermost TER-MAR lateral moraine 235 

yields a minimum age of 19.2 ± 1.8 
10

Be ka for the glacier retreat; the minimum age for the 236 

sedimentation onset in the San Martín valley (as a consequence of the moraine runoff 237 

blockage) was radiocarbon-dated as 21.8 ± 0.4 cal ka BP (Rodríguez-Rodríguez et al., 238 

2011). Both minimum ages are consistent with a second glacial advance during the LGM of 239 

MIS 2 very close in extent to the previous MIE. The SAN moraine, located in a retreated 240 

position compared with the TER-MAR moraine, was dated at 17.7 ± 1.7 
10

Be ka, which is 241 

consistent with the minimum 
14

C AMS age of 18.1 ± 0.4 cal ka BP obtained from Laguna 242 

de las Sanguijuelas located between both moraines (Muñoz-Sobrino et al., 2004) (Figure 2). 243 

The TET moraine was deposited shortly after, at a minimum age of 17.2 ± 1.6 
10

Be ka, 244 

marking the separation between the main Tera glacier and its eastern tributary. Between 245 

17.7 and 15.7 
10

Be ka, the retreating ice front built up five frontal moraines. The SAU 246 

moraine damming the Sanabria Lake represents the youngest frontal moraine of this 247 

sequence and yields a minimum exposure age of 15.7 ± 1.5 
10

Be ka. The consistence 248 

between ages obtained from the boulders in each moraine and published radiocarbon data 249 

suggests that the 
10

Be results are not significantly affected by moraine post-depositional 250 

erosion in this area. 251 

The 
14

C AMS age of 15.7 ± 0.4 cal yr BP obtained at the base of the lacustrine deposit 252 

known as Laguna La Roya, located at 1608 m altitude next to the eastern plateau edge, 253 
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suggests that at least the southern part of the plateau could have been partly ice–free by the 254 

time of the SAU moraine deposition (Allen et al., 1996; Muñoz-Sobrino et al., 2013; Figure 255 

2). This hypothesis is coherent with an ELA rising of about 100-150 m compared to the 256 

local MIE, which would have caused a drastic reduction (by more than 80 %) in the extent 257 

of the accumulation zone in the southern part of the plateau. Therefore, the ice flow inputs 258 

from the Segundera-Cárdena valley would have been reduced and the ice source area would 259 

have been located in the northern part of the Tera catchment where the plateau records its 260 

highest elevation (Figure 1). The basal 
14

C AMS ages obtained at the Lleguna core (14.2 ± 261 

0.3 cal yr BP; Allen et al., 1996) and at the top of the basal detrital unit of the Sanabria 262 

Lake core (14.5 ± 0.3 cal yr BP; Rodríguez-Rodríguez et al., 2011) would represent the 263 

timing of glacial front retreat from the eastern part of the Sanabria Lake. 264 

We note that the new 
10

Be ages and the published 
14

C AMS dataset are generally consistent, 265 

but one question remains concerning the disparity between the minimum ages obtained for 266 

the base of the Sanabria Lake sequence (25.6 ka cal BP), the San Martín ice dammed 267 

deposit (21.8 ka cal BP) (Rodríguez-Rodríguez et al., 2011) and the TER-MAR lateral 268 

moraine (19.2 
10

Be ka) reported in this work. The Sanabria Lake sequence is considerably 269 

older than the TER-MAR moraine and its associated ice dammed deposit. A possible 270 

explanation is a local LGM stade (prior to 21.8 ka) advancing over the Sanabria Lake basin 271 

and eroding the upper part of the sedimentary sequence related to the previous Würmian 272 

MIE retreat (~33 ka). Although ice-push structures (folding, faults) were not found in the 273 

basal unit of the Sanabria core, the occurrence of iron oxide-rich intervals could suggest a 274 

sedimentary unconformity, otherwise difficult to identify in the massive sandy levels. 275 

Alternatively, basal ages of the Sanabria Lake and San Martin sequences (derived from 276 

bulk sediment samples) could be older than the enclosing sediments if any reworking had 277 
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happened or if considerable reservoir effects had taken place. However, the consistence 278 

between the 
14

C AMS data obtained from these sequences and the OSL ages obtained in the 279 

Pias site at the western side of the massif suggests that this is not likely to be the case. 280 

There is a strong coherence between the Sanabria dataset and other mountain regions in the 281 

Iberian Peninsula. The Würmian MIE stade observed in the Sanabria area (prior to 33 ka) 282 

correlates with a similar stade documented in the Sistema Central ~ 200 km southwards 283 

(33-26 ka) (Carrasco et al., 2013; Domínguez-Villar et al., in press; Palacios et al., 2010, 284 

2012; Vieira, 2008), but is younger than the one recorded in the Cantabrian Mountains ~ 285 

100 km northwards (prior to 38 ka) (Jalut et al., 2010; Jiménez-Sánchez and Farias, 2002; 286 

Moreno et al., 2010; Serrano et al., 2012, 2013) and in the Pyrenees ~ 450 km 287 

northeastwards (97-36 ka) (García-Ruiz et al., 2013; Lewis et al., 2009; Pallàs et al., 2010; 288 

Peña et al., 2004). According to multi-proxy reconstructions based on Iberian lacustrine and 289 

marine records, cold and relatively wet conditions during the MIS 5 to MIS 4 transition 290 

were responsible for the MIE of glaciers, at least, in northern Iberia; a shift towards greater 291 

aridity during MIS 4 and MIS 3 would have been responsible for subsequent deglaciation 292 

(Moreno et al., 2012). The mountain glacial advance during the global LGM has also been 293 

recorded differently across Iberia, reaching quasi-MIE positions not only in Sanabria, but 294 

also in the eastern part of the southern Pyrenees (Pallàs et al., 2006, 2010; Delmas et al., 295 

2008) or the Sistema Central (Carrasco et al., 2013; Palacios et al., 2010, 2012). In other 296 

areas, like the Cantabrian Mountains or the northern and southwestern Pyrenees, the glacial 297 

advance was clearly less extensive (e.g. Jiménez-Sánchez et al., 2013; Delmas et al., 2011). 298 

Subsequent glacial retreat in Sanabria started no later than 19.2 
10

Be ka and recorded 299 

several glacial front stabilizations until 15.7 
10

Be ka. This glacier evolution is consistent 300 

with palaeoclimate reconstructions based on speleothem and lacustrine sequences from the 301 
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Iberian Peninsula which indicate that the coldest and driest interval of the last 25 ka took 302 

place between 18.2 and 15.4 ka (Moreno et al., 2012) during the Lateglacial, coinciding 303 

with the Mystery Interval, a stadial that occurred during the earliest phase of the last 304 

deglaciation (17.5 to 14.5 cal ka BP) coevally with low boreal summer and high austral 305 

summer insolation and with low temperatures in Greenland (HE1) (Denton et al., 2005, 306 

2006). 307 

The Sanabria dataset is also coherent with glacial evidence from other mid-latitude 308 

mountains across SW Europe. In the Alps, the Late Würmian glaciation reached the Alpine 309 

lowlands between 30 ka and 21 ka and was followed by a series of glacial front 310 

stabilizations between 18 – 17 ka to 14.7 ka and 11.3 to 9.7 ka (Darnault et al., 2012; Ivy-311 

Ochs et al., 2008 and references therein). In the Tatra Mountains (western Carpathians), 312 

three trimlines have been identified and constrained with cosmogenic isotope 
36

Cl revealing 313 

that a post-LGM glacial retreat started no later than 21.5 ka and subsequent glacial 314 

advances occurred at ~ 17 and 12 ka (Makos et al., 2013). Minimum moraine ages based on 315 

U-Th analysis, carried out in secondary calcite cements, and thermo luminescence (TL) 316 

analysis obtained from glacio-fluvial sediments in the Pindus Mountains supported a LGM 317 

advance of glaciers considerably less extensive than other glacial advances associated to 318 

previous cold stages (MIS 6 and MIS 12) in northwestern Greece (Hughes et al., 2006; 319 

Woodward et al., 1995, 2008). Similar U-Th studies in the Montenegro Mountains (Dinaric 320 

Alps) also revealed a local LGM advance considerably less extensive than previous 321 

glaciations, followed by several glacial front stabilizations at 17, 13 and 12 ka (Hughes et 322 

al., 2010). Finally, cosmogenic isotope datasets based on 
36

Cl from different mountain areas 323 

across Turkey support a LGM stade between 26 and 20.3 ka, followed by several glacial 324 



 

15 

 

advances during the Lateglacial (Akçar et al., 2007; Sarikaya et al., 2009; Zahno et al., 325 

2010). 326 

In summary the available dates from the Sanabria Lake glacier record support: (i) at least 327 

two glacial advances close in extent (a double local MIE) during the last glacial cycle, the 328 

first one prior to 33 ka and the second one during the LGM of MIS 2; and (ii) a sequence of 329 

glacial front stabilizations between 19.2 and 15.4 
10

Be ka that is synchronous with the 330 

Lateglacial evolution of other mountain glaciers in southern Europe. Glacier evolution in 331 

southern latitudes is closely controlled by moisture availability and, at orbital time scales, 332 

to the latitudinal shifts of climate patterns. The North Atlantic Polar Front shift towards the 333 

South was more pronounced during MIS 2 than during MIS 4, pushing the prevailing 334 

westerly storms more to the south and reducing the precipitation in central and northern 335 

Europe accordingly (Florineth and Schlüter, 2000). The latter would explain a shorter 336 

extent of glacial advances in northern Iberian mountain areas, particularly the Cantabrian 337 

Mountains and the northwestern Pyrenees. Nevertheless, additional chronological data are 338 

needed to test this hypothesis, especially in the Cantabrian Mountains where available 339 

chronologies for the last glacial cycle are currently based on 
14

C AMS and OSL.  340 

6. Conclusions 341 

New chronological data based on the cosmogenic nuclide 
10

Be in the Sanabria area 342 

supports a sequence of moraines formed between 19.2 and 15.4 
10

Be ka, interpreted as the 343 

result of successive stabilizations during general retreat during the Lateglacial. This record 344 

constitutes additional evidence for a glacial episode coeval with the global LGM of MIS 2 345 

in SW Europe. The combination of the geomorphological observations, published 
14

C and 346 

OSL dates, and the new TCN results, suggests a double local MIE, since the local LGM 347 

advance might be close in extent compared to the previous Würmian MIE stade (33 ka). 348 
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Our chronology correlates well with: (i) published TCN chronologies established in other 349 

mountain areas of southern Europe; and (ii) palaeoclimatic reconstructions for Iberia, which 350 

indicate that the coldest and driest conditions for the last 25 ka took place during the 351 

Lateglacial, matching the Mystery Interval. This study demonstrates that the combination 352 

of geomorphological surveys and several dating techniques can help to constrain 353 

chronologies and develop more accurate palaeoglacial models, particularly in areas with 354 

complex moraine systems. 355 
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Figure 1. (a) Setting (1- Pyrenees, 2- Cantabrian Mts., 3- Sistema Central, 4- Trevinca 534 

Massif). (b) Geomorphological map of the Trevinca Massif, including published ages: 535 

radiocarbon data (1-5) (see also Table 1) and optically stimulated luminescence data (OSL) 536 

from Pias site (6-8; Pérez-Alberti et al., 2011). The rectangle indicates Figure 2 location. (c) 537 

Ice cap reconstruction for the local maximum ice extent (MIE). 538 

 539 
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 541 
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Figure 2. Geomorphological map of the Sanabria Lake area showing the location of the 543 

sampled boulders and the minimum exposure ages (
10

Be) reported in this work, expressed 544 

in ka with the analytical (1σ) and external uncertainty for age comparisons with other 545 

datasets. Dates used to calculate the minimum ages for each moraine are represented in 546 

bold. 547 
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Figure 3. 
10

Be exposure ages calculated with online CRONUS calculator (Balco et al., 556 

2008; v. 2.2.1 updated in Balco, 2010). Samples are arranged from left to right according to 557 

distance from cirque headwall or ice dome (case of TET moraine). Black dots indicate 558 

which samples were used to derive moraine minimum exposure ages, while error bars 559 

indicate the analytical uncertainty (1σ) for each sample. Boulder ages are tightly grouped 560 

within each moraine. 561 
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Figure 4. Examples of moraines sampled for the TCN analysis: (a) panorama of the TER 567 

moraine looking northwards, with TER01 in the foreground and the Tera valley in the 568 

background; (b) panorama of the MAR sample sites including one of the ice-dammed 569 

deposits formed behind the Sanabria Lake north lateral moraine; and (c) TET moraine 570 

panorama looking northeastward; including in the foreground the boulder where sample 571 

TET04 was collected. Boulder age uncertainties include only the analytical uncertainty. 572 
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