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Abstract. We introduce a novel strategy for controlling the temporal evolution
of a quantum system at the nanoscale. Our method relies on the use of graphene
plasmons, which can be electrically tuned in frequency by external gates.
Quantum emitters (e.g. quantum dots) placed in the vicinity of a graphene
nanostructure are subject to a strong interaction with the plasmons of this
material, thus undergoing time variations in their mutual interaction and quantum
evolution that are dictated by the externally applied gating voltages. This scheme
opens a new path towards the realization of quantum-optics devices in the robust
solid-state environment of graphene.

Control of the temporal quantum evolution of a physical system by means of external
macroscopic stimuli will make versatile quantum-information devices viable [1]. Various
methods for quantum control have been proposed [1], and despite efforts and progress in
fields such as ion traps [2, 3], scalable systems remain an open challenge. In recent years
solid-state quantum devices have attracted growing interest, because they provide a robust
platform for implementing scalable temporal control [4, 5]. In this paper, we show that doped
graphene nanostructures combined with two-level atoms or quantum dots provide a robust
platform for achieving the desired goal of full temporal quantum control. The interaction
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between the quantum dots is strongly mediated by plasmons in the graphene, which can be
electrostatically tuned through engineered gates [6, 7]. The quantum evolution of the dots is
then manipulated by modulating the electric potential we apply to the gates over time. We
provide realistic simulations demonstrating excellent control over the decay of individual and
interacting dots. Any desired decay profile can be produced by resorting to the unprecedentedly
fast electro-optical modulation of graphene [8] and its strong interaction with neighboring
quantum emitters [9]. This constitutes a radically new path toward controlling quantum systems
in nanoscale solid-state environments by means of conventional electronics, with the capacity
for bringing quantum devices closer to reality.

Quantum mechanics rules the temporal evolution at small length and energy scales,
giving rise to non-intuitive properties such as quantum superposition and entanglement. These
phenomena provide an extra handle to process information [10, 11], to improve optical
metrology and break the imaging diffraction limit [12], and to substantially alter the statistics
of light [13–15], with a vast range of potential applications, including quantum computing and
cryptography [16] and sensing [12]. However, controlling the quantum evolution at such length
and energy scales remains a challenge that can only be partially addressed by using elaborate
setups, for example in the context of cavity quantum electrodynamics [1, 3, 17]. Recently,
surface plasmons have been identified as a potential candidate to mediate the interaction
between externally controlled signals (e.g. laser beams) and small quantum systems
(e.g. quantum dots), allowing one to explore exciting phenomena such as single photon
transistors [18], entanglement [19] and quantum blockade [20], among other feats. In the
following, we show that graphene can also be used to control the evolution of a quantum system
interacting with it through a classical electric-potential signal. Specifically, we show that direct
control over two-level emitters is possible, thus allowing one to convert the excited state into a
long-lived state and eliminating the need to involve additional excited or metastable states and
external control fields on which other methods rely [1, 10]. Our results can be used for a robust,
solid-state implementation of photon storage [21] and cascaded quantum systems in which one
system drives the evolution of another system [22, 23]. These are the basic elements needed for
distributed quantum networks and processors, and quantum state transfer.

The emergence of graphene as a tunable plasmonic material, in which plasmons can be
literally switched on and off by applying external potentials [8], opens a natural way to control
the quantum evolution of small systems through plasmon-mediated interactions, which are in
turn modulated by external fields. Charge carriers in graphene, the so-called massless Dirac
fermions, follow a linear dispersion relation that leads to several exciting properties. Among
them, low-energy plasmons exist in the atomically thin carbon film when it is electrically
charged, and their frequencies scale as n1/4 with the doping electron density [24] n. Therefore,
the plasmon frequencies can be controlled by changing n, which in turn is proportional to the
magnitude of the applied electric field. This field can be supplied by biasing the graphene with
respect to a nearby gate, and thus, the voltage applied through the gates directly modifies, in a
predictable way, the plasmon frequencies.

Here, we show that the interaction between one or more quantum emitters and graphene
plasmons strongly modifies the evolution of the system, which can be temporally controlled by
switching on and off the plasmons through electrostatic gating. We first illustrate this concept by
analyzing the interaction of a doped graphene nanodisc with a single quantum emitter (figure 1).
The size of the disc is an important parameter that directly affects the plasmon frequency and the
strength of the coupling to the emitter. Both these magnitudes decrease with increasing diameter.
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Figure 1. Temporal control over the quantum evolution of an optical emitter via
interaction with a doped graphene nanostructure. (a) We consider a two-level
optical emitter placed above a graphene nanodisc. The emitter is excited by a
laser pulse. Electrical doping of the graphene through a bias potential V allows
the nanodisc to support plasmons. The plasmon frequency is proportional to
√

|V |, and thus, it can be controlled over time by modulating V (t). The coupling
of the emitter to the plasmon and therefore the quantum evolution of the emitter
state are both controlled by V . (b) Different time scales are involved in the
evolution of the emitter–graphene system, represented here through the emitter
natural decay rate 00, the enhanced decay rate 011 produced by interaction
with the graphene plasmons and the plasmon decay rate and frequency typical
of doped graphene. It is important to stress that the plasmon lifetime is short
compared to the electric modulation rates of the doping potential, in the GHz
range, which is in turn fast compared to the lifetime of the excited emitter. (c) The
increase in emission rate 011/00 is shown as a function of emission frequency
for two different doping levels, quantified through the graphene Fermi energy
EF. The temporal profile of the emission rate R(t) can be controlled by suitably
modulating EF over time as shown in (d) and (e) for h̄ω0 = 0.22 eV.

Here, we choose a realistic nanodisc diameter of 100 nm, which is sufficiently large to ignore
edge effects that are otherwise important in smaller discs below 20 nm in diameter [25]. The
level of doping is characterized by the Fermi energy [26] EF = h̄vF

√
π |n|, where vF ≈ 106 m s−1

is the Fermi velocity. This determines the plasmon energy h̄ωp ∝
√

EF and the plasmon decay
rate [27] 0p ∝ 1/EF . The emitter is placed 60 nm above the center of the graphene nanodisc.
This is a realistic geometry, considering recent advances in the control of the position and
orientation of optical emitters [28–30]. One of the ways to facilitate such a control consists in
depositing a passive dielectric layer above the graphene sheet, the thickness of which determines
the separation from the emitters. Solid-state emitters based upon quantum dots or nitrogen
vacancies embedded in nanodiamond crystals offer the additional possibility of coating them
with silica [31], thus providing a controlled spacing distance depending on the thickness of
the coating layer. We model the emitter as a two-level system with a characteristic transition
energy h̄ω0 and a natural decay rate 00. The different time scales that characterize the evolution
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of the system are plotted in figure 1(b). We choose a value of 00 ∼ 103–104 s−1 typical of
slowly emitting atoms such as erbium. When the emitter is placed close to the nanodisc,
its decay rate is enhanced up to 011 ∼ 104 00 due to resonant interaction with the graphene
plasmons. These decay rates are well below the frequencies at which the doping level can be
modulated with currently available electronics (∼GHz), which in turn is much smaller than the
plasmon frequency ωp and the decay rate 0p. With this choice of parameters, we ensure that the
emitter–plasmon interaction remains in the weak-coupling regime, instantaneously following
any modulation of the doping level. Under such conditions, we can trace out the plasmonic
degrees of freedom and therefore the dynamics of the quantum emitter is completely described
by the reduced density matrix ρ, whose temporal evolution is given as [32]

dρ

dt
=

i

h̄
[ρ,H] +

011

2

[
2σρσ †

− σ †σρ− ρσ †σ
]
, (1)

where σ is the annihilation operator of the emitter excited state, and the Hamiltonian reduces to
H= h̄ω0σ

†σ . This is in contrast to the strong-coupling regime, which is, for instance, reached
by decreasing the emitter–graphene separation and requires a full description of the density
matrix including the emitter and the cavity modes, without tracing out the latter. This regime
has recently been studied for graphene nanodiscs [20].

Incidentally, the electrostatic doping of the graphene nanodisc can influence the emitter
spectrum by shifting the transition frequency through the Stark effect. This could be problematic
in asymmetric systems unless the shifts are small compared with the plasmon line width.
However, for symmetrical configurations such as the ones we consider here, all emitters
experience the same frequency shift, and thus, this effect simply needs to be taken into account
when considering the graphene plasmon frequency at which the emitters are on resonance.

Figure 1(c) shows the normalized decay rate 011/00 as a function of emission energy h̄ω0

for two different doping levels corresponding to Fermi energies of 0.3 and 0.4 eV, respectively.
Then, choosing an emitter of transition energy ≈ 0.22 eV (the highest peak of the black curve),
we can switch the normalized decay rate from 0on

11/00 > 104 down to 0off
11 /00 ∼ 10 just by

shifting the graphene doping level from 0.3 to 0.4 eV. This clearly shows the feasibility of
controlling the temporal evolution of the quantum emitter by modulating the doping level of
the graphene nanodisc between on- and off-resonance conditions. We explore this possibility
in more detail in figures 1(d) and (e) for three different doping modulation profiles: rectangular
(red curve), triangular (blue curve) and Gaussian (green curve). The emitter is initially prepared
in the excited state, and we study the plasmon generation rate R = 〈011σ

†σ 〉, normalized to 0on
11 .

This magnitude measures the number of plasmons generated per unit time, and it is calculated
here neglecting decay channels other than plasmon generation. This assumption is well justified
by the large values of 0on/off

11 /00. As shown in figure 1(e), each different doping profile results
in a totally different evolution of the quantum emitter, which reflects the complete temporal
control achievable with the system under study. Actually, it is not difficult to obtain the analytical
relation existing between R and the single-emitter decay rate. Assuming that the emitter is in its
excited state at time t = t0, this relation reduces to

011 (t)=
R (t)

1 −
∫ t

t0
dt ′ R (t ′)

.

With the only constraint that 011(t)6 0on
11 , the desired profile R (t) can be achieved with the

temporal evolution of 011 (t) prescribed by this equation, which in turn is obtained by directly
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Figure 2. Temporal control over the interaction between quantum dots mediated
by graphene. (a) Two emitters are excited and their decay and mutual interaction
is modulated electrically through the plasmons of a neighboring graphene disc.
(b) Interaction rate 012 as a function of the azimuthal angle between the positions
of the dots (see the inset) when plasmons of 0.108 eV energy (tuned to the energy
of the emitters) are switched on (EF = 0.3 eV) and off (EF = 0.4 eV), and the
emitter dipoles are along radial directions. The interaction rate is normalized to
the on-resonance single-emitter decay rate 0on

11 . The imposed temporal evolution
of the doping (c) is used to control the emission rate (d) with the two emitters
initially prepared in their excited states. When only one of the emitters is initially
excited, the degree of entanglement for the doping profile of (e) is quantified
through the Wootters concurrence (f).

modulating the doping voltage, and therefore EF, over time by using the Lorentzian dependence
of 011 on EF discussed in detail in appendix B.

When a second quantum emitter is placed close to the graphene, the interaction between the
two emitters can also be controlled over time. The interaction between two emitters in extended
graphene and in ribbons has recently been shown to be strongly enhanced or suppressed by the
plasmons [33]. We investigate this possibility by studying the system depicted in figure 2(a),
where two identical emitters are placed 100 nm above a graphene nanodisc of 500 nm diameter.
The emitters are separated by a distance of 100

√
2 nm and oriented along orthogonal radial

directions, so that they can be independently excited by light plane waves linearly polarized
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along orthogonal directions. Their temporal evolution is determined by the generalization of (1),

dρ

dt
=

i

h̄
[ρ,H] +

2∑
i, j=1

0i j

2

[
2σiρσ

†
j − σ

†
i σ jρ− ρσ

†
i σ j

]
, (2)

where H= h̄ω0
∑2

i=1 σ
†
i σi and 012 = 021 is the interaction rate. This magnitude is plotted

in figure 2(b) as a function of the azimuthal angle between the emitters, normalized to the
on-resonance single-emitter decay rate 0on

11 . When the doping level of the graphene nanodisc
matches the on-resonance value, 012 remains nearly equal to 0on

11 for all angles. In contrast,
the normalized interaction rate 012/0

on
11 drops below 0.01 when the doping is tuned to off-

resonance conditions. Therefore, it is possible to switch on and off the interaction between the
emitters. Figure 2(d) quantifies this possibility through the temporal evolution of the plasmon
generation rate R = 〈

∑2
i, j=1 0i jσ

†
i σ j〉 associated with the doping profile shown in figure 2(c).

The two emitters are assumed to be initially prepared in the excited state. Without interaction,
they decay rather slowly and independently, resulting in a negligible value of R. This situation
changes dramatically when the doping level is switched to the on-resonance condition, so that
the emitters interact strongly and decay faster, causing a sudden jump in the plasmon generation
rate.

The high degree of control displayed by this system can be exploited to temporally
modulate different properties of the quantum emitters, such as their degree of entanglement.
In figure 2(f) we plot the temporal evolution of the Wootters concurrence [34] (see appendix D)
associated with the doping profile of figure 2(e) when only one of the emitters is initially excited.
The concurrence directly measures the degree of entanglement (1 for a maximally entangled
state). Our system is capable of reaching a value of C close to 0.5, which is understandable
because a single excited emitter can be rewritten as a mixture of a symmetric (superradiant)
state and an anti-symmetric (subradiant) state, but the subradiant state lives for a very long
time, such that there is a 50% chance of creating a long-lived entangled state. A larger degree
of entanglement can be achieved by various means, such as utilizing quantum emitters with
more than two levels, heralded schemes based on photon detection or coherent dipole–dipole
interactions between the emitters.

A similar scheme allows the on-demand modulation of the emission in systems
consisting of many emitters, in which superradiance [35, 36] can be produced and controlled
electrostatically. Such a possibility is discussed in more detail in appendix C.

In summary, we demonstrate here that electrical modulation of the plasmon frequency
in graphene provides an ingenious solution to achieve temporal control of the evolution of
quantum emitters placed in the vicinity of a graphene nanostructure. This leads to a new
paradigm in quantum information processing technologies and serves as a platform on which
to test quantum phenomena controlled by means of externally applied, classical electrostatic
potentials.
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Appendix A. Simulation of the optical response of graphene

We calculate the emission rates 011 and 012 by following methods reported elsewhere [27,
37, 38]. The optical response of graphene is obtained by solving Maxwell’s equations in the
presence of an emitter dipole [37]. The graphene is represented by a thin film of dielectric
function ε = 1 + 4π iσ/ωt , where ω is the frequency, t → 0 is the film thickness and σ(ω)
is the optical conductivity of the carbon layer, described within the local random-phase
approximation model for finite temperature T = 300 K and mobility 10 000 cm2 V−1 s−1. The
rate 011 is then obtained from the imaginary part of the electric field Eind induced on itself by
a dipole d placed at the position of the emitter [37]: 011/00 = 1 + (2/h̄)Im{d∗

· Eind
}, where

00 = 4ω3
|d|

2/3h̄c3 is the natural emission rate far from the graphene. Likewise, 012 is obtained
using the expression [38]

012 =
2

h̄
Im

{
d∗

1 · E12
}
, (A.1)

where d1 is the dipole of emitter 1, and E12 is the field created by the dipole of emitter 2 at the
position of emitter 1, including both the direct dipolar field and the field due to the excitation of
the graphene plasmon.

Appendix B. Dependence of 011 on the Fermi energy

In order to design an appropriate doping profile and obtain an on-demand temporal evolution
of the quantum state of the emitter, it is important to analyze the dependence of the single-
emitter decay rate 011 on the Fermi energy of the graphene nanodisc. Figure B.1 shows this
dependence. More precisely, we plot 011/00 as a function of EF for the case of a nanodisc of
100 nm diameter with the emitter placed 60 nm above its center. This corresponds to the system
depicted in figure 1(a) of the main text, with the same photon energy h̄ω0 = 0.22 eV. The black
points in figure B.1 correspond to rigorous numerical simulations [27], while the red curve
represents the following Lorentzian fitting:

011

00
(EF)=

(
011

00

)
0

+
(011/00)max τ

2/4

(EF − EF0)+ τ 2/4
, (B.1)

with (011/00)0 = 1.96, (011/00)max = 18 635.6, EF0 = 0.3 eV and τ = 5.21 × 10−3 eV.

Appendix C. Controlled superradiance of N emitters

A scheme similar to the one discussed in figure 2 can be used to control the evolution
of an ensemble of emitters coupled to a graphene nanodisc. In particular, these emitters
can be brought in a controlled manner to a superradiance regime [35, 36, 39–41] in which
they are collectively coupled. We illustrate this possibility by studying the system depicted
in figure C.1(a). We consider a nanodisc of 500 nm diameter, with N emitters periodically
arranged along a co-axial circumference of 200 nm diameter, placed 100 nm above the disc.
The emitters are polarized perpendicularly to the graphene nanodisc and we assume a transition
frequency h̄ω0 = 0.108 eV, compatible with an on-resonance (off-resonance) Fermi energy of
Eon

F = 0.3 eV (Eoff
F = 0.4 eV). The interaction rate between pairs of emitters 012 is plotted in

figure C.1(b) as a function of their relative azimuthal angle along the noted circumference,
normalized to the on-resonance single-emitter decay rate 0on

11 .
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the Lorentzian fitting of (B.1).

The temporal dynamics of the system is given by a generalized version of (2), with the
sums extended over the N emitters. This is a straightforward task for small N , but it becomes
unaffordable above N ∼ 10 because the resulting Hilbert space grows exponentially with N .
However, under perfectly symmetric coupling conditions (012 = 011 for all pairs of emitters),
as is the case in our system when EF = Eon

F , the temporal evolution is simplified because
only symmetrical combinations of the single-emitter states are involved in the dynamics of the
system [36]. These symmetrical states are characterized by a single quantum number M , which
can take values in the interval −N/2, . . . , N/2, where M + N/2 is the number of emitters that
are in the excited state. Using this notation, it has been proved [36] that the generalization of (2)
reduces to

1

011

dρM

dt
= −

(
N

2
+ M

) (
N

2
− M + 1

)
ρM +

(
N

2
+ M + 1

) (
N

2
− M

)
ρM+1,

which can be quickly solved for a large number of emitters. Furthermore, the small values of
0off

12 allow us to safely assume a system of independent emitters under off-resonance doping
conditions. At this point, it is important to remark that we have not explicitly considered the
coherent coupling existing between the emitters. In principle, this coupling produces a shift of
the transition energies that can destroy the superradiance regime. However, for systems like ours
in which all emitters are placed in symmetrically equivalent positions, the shift is the same for
all, so we absorb it into the final transition energy h̄ω0.

As a particular example to illustrate the concepts discussed here, we study the dynamics
of N = 10 emitters controlled using the temporal doping profile shown in figure C.1(c). We
assume that all emitters are initially prepared in the excited state, and we normalize all rates and
the time using 0on

11 . Figure C.1(d) shows the plasmon generation rate R. Initially, the emitters
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are periodically arranged along a circumference of 200 nm diameter placed
100 nm above a doped graphene nanodisc of 500 nm diameter. The combined
system possesses N -fold rotation symmetry with the emitter dipoles oriented
perpendicular to the disc. The system is pumped with an external laser that brings
all emitters to the excited state at time t = 0. (b) Interaction rate 012 as a function
of the azimuthal angle between the positions of the emitters (see the inset) when
plasmons of 0.108 eV energy (tuned to the energy of the emitters) are switched
on (Eon

F = 0.3 eV) and off (Eoff
F = 0.4 eV). The interaction rate is normalized to

the on-resonance single-emitter decay rate 0on
11 . (c) Illustrative doping level of the

graphene nanostructure as a function of time (normalized to 1/0on
11). (d) Plasmon

generation rate as a function of time for N = 10 emitters subject to the time-
dependent doping of (c). The black curve stands for the case of independent
emitters (i.e. imposing 012 = 0), while the blue one corresponds to the fully
interacting system. The plasmon generation rate is strongly enhanced by the
collective superradiance effect produced by the coupling between the emitters.
(e) The amount of energy released by the emitters as a function of time under the
conditions of (d). Superradiance produces a considerably faster energy release.

decay very slowly and independently, resulting in a negligible value of R. The situation changes
dramatically when the doping is switched to the on-resonance level, at which the emitters decay
faster, producing a sudden jump in the plasmon generation rate. In the independent emitters
limit (black curve), the maximum rate is R/0on

i i = N . In contrast, under resonant coupling
(blue curves), R/0on

i i goes beyond N for N > 2 (superradiance regime). A high emission rate
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is repeatedly recovered when the doping is switched off and on at later times, thus revealing a
high degree of control over the system dynamics.

Figure C.1(e) shows the amount of energy stored in the emitters as a function of time. As
expected, this magnitude remains close to Nh̄ω0 until a resonant doping is switched on. When
this happens, the emitters release their excitation energy during the time in which EF = Eon

F .

Appendix D. Calculation of the Wootters concurrence

The degree of entanglement existing in a two-qubit system can be quantified using the definition
of the concurrence C proposed by Wootters [34]

C = max
{

0,
√
λ1 −

√
λ2 −

√
λ3 −

√
λ4

}
, (D.1)

where λi are the eigenvalues of the matrix ρ(σy ⊗ σy)ρ
∗(σy ⊗ σy), ordered from large to small

values. Here, ρ is the density matrix, σy is the Pauli matrix and the asterisk stands for the
complex conjugate. In the particular case considered in figure 2(c), we assume that one of the
emitters is excited while the other is in the ground state (e.g. |ψ〉 = |eg〉). In such a situation,
the concurrence reduces to

C =

√[
ρ++ − ρ−−

]2
+ 4

[
= {ρ+−}

]2
, (D.2)

where ρss′ = 〈s|ρ|s ′
〉 with s, s ′

∈ {+,−}, and |±〉 = (1/
√

2) [|eg〉 ± |ge〉].
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