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Discharge coefficient analysis for triangular sharp-crested  1	

weirs using a low-speed photographic technique 2	

by 3	

 4	
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Abstract 6	

Triangular weirs are commonly used for the measurement of discharge in open channel 7	

flow, representing an inexpensive, reliable methodology for the monitoring of water 8	

allocation. In this work, a low-speed photographic technique was used to characterize 9	

the upper and lower nappe profiles of flow over fully aerated triangular weirs. A total of 10	

112 experiments were performed covering a range of weir vertex angles (from 30º to 11	

90º), crest elevations (8 or 10 cm) and discharges (0.01 – 7.82 l s-1). The experimental 12	

nappe profiles were mathematically modeled and combined with elements of free-13	

vortex theory to derive a predictive equation for the weir discharge coefficient. 14	

Comparisons were established between measured Cd, the proposed discharge 15	

coefficient equation and discharge coefficient equations identified in the literature. The 16	

proposed equation can predict Cd with a Mean Estimation Error (MEE) of 0.001, a Root 17	
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Mean Square Error (RMSE) of 0.004, and an Index of Agreement (IA) of 0.984. In the 18	

experimental conditions of this study, this performance slightly improves that of the 19	

equation proposed by Greve in 1932, showing the same absolute value of MEE, but 20	

lower values of RMSE and IA. 21	

Keywords: weir vertex angle, flow measurement, hydrometry, free-vortex theory 22	
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Introduction 23	

Weirs are elevated barriers located perpendicular to the main direction of water 24	

movement to cause the fluid to rise above the obstruction in order to flow through an 25	

opening of regular shape. For a properly designed and operated weir of a given 26	

geometry there is a unique discharge corresponding to each measurement of flow depth 27	

(El-Hady 2011). The geometrical parameters involved in the hydraulic operation of 28	

weirs are the length of the weir crest and the shape of the flow control section (Emiroglu 29	

et al. 2010; USBR 2001). In sharp-crested or thin-plate weirs the upstream head (h) to 30	

length of crest in the direction of flow (L) ratio is greater than 15 (Fig. 1). Specific 31	

assumptions are adopted to estimate the relation between discharge and upstream head 32	

(Bagheri and Heidarpour 2010; Sotelo 2009; El-Alfy 2005; Bos 1989). These structures 33	

have been extensively studied using classical physics and experimental analyses to 34	

understand the characteristics of flow as well as to determine the coefficient of discharge 35	

(Cd). This coefficient represents the effects not taken into consideration in the derivation 36	

of the equations used to estimate discharge from flow depth. Such effects include 37	

viscosity, capillarity, surface tension, velocity distribution in the approach section and 38	

streamline curvature due to weir contraction (Aydin et al. 2011; El-Hady 2011). 39	

In the particular case of triangular sharp-crested weirs, Shen (1981) described 40	

experimental procedures used by different authors to determine Cd. El-Alfy (2005) 41	

experimentally evaluated the effect of vertical flow curvature on the discharge 42	

coefficient, and reported that Cd is inversely proportional to the V-notch angle (θ) and 43	

directly proportional to the relative head (h/P). Recently, Bagheri and Heidarpour 44	
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(2010) obtained a discharge coefficient equation for rectangular sharp-crested weirs 45	

based on the upper and lower nappe profiles and free-vortex theory. 46	

Photography has been used for the characterization of flow over hydraulic structures, 47	

particularly weirs. For instance, Del Giudice et al., (1999) used photographs to illustrate 48	

complex flow patters near a sewer sideweir. Novak et al. (2013) photographed the 49	

planes displayed by a laser on the flow near a side weir, and used these images to 50	

determine flow depth profiles and flow velocity (from the movement of hydrogen 51	

bubles). Photography was recently applied to a different hydraulic problem: the 52	

characterization of sprinkler irrigation drops moving in the air. Salvador et al. (2009) 53	

and Bautista et al. (2009) performed out-door and in-door experiments to evaluate drop 54	

geometrical and kinematic characteristics using a low-speed photographic technique. 55	

The objective of this study was to determine a discharge coefficient equation for 56	

triangular sharp-crested weirs based on: 1) the free vortex theory as described by 57	

Bagheri and Heidarpour (2010); and 2) measurements of the upper and lower nappe 58	

profiles using an adaptation of the low-speed photographic technique proposed by 59	

Salvador et al. (2009).  60	
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Materials and methods 61	

Governing equations 62	

For a sharp-crested weir of any geometrical section with the crest elevation (P) being 63	

high enough to neglect the velocity head (Figure 1), discharge equations are usually 64	

obtained from the mathematical integration of an elemental flow strip over the nappe 65	

(Singh et al. 2010). The total discharge flowing between elevations 0 and h can be 66	

obtained solving the following expression: 67	

  
h

0

2
1

d dyyhxC2g2Q  [1] 

where Q is the discharge over the weir (m3 s-1); g is the gravitational acceleration (m s-2); 68	

Cd is the discharge coefficient (dimensionless); h is the water head (m); x is the flow 69	

width, with x= f(y) depending of the weir geometry; and dy is the vertical thickness of 70	

elemental flow strip. A sharp-crested weir with symmetrical triangular section and 71	

vertex angle (θ) entails that 







2
θ

tanyx , as shown in Figure 1b. The resulting discharge 72	

equation is: 73	
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Considering free-vortex motion theory, Bagheri and Heidarpour (2010) proposed an 74	

expression to derive the discharge coefficient of flow passing over a rectangular sharp-75	

crested weir. Following the reasoning of these authors, a similar expression could be 76	

obtained for a triangular sharp-crested weir (Equation 3): 77	
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where Vb is the lower nappe velocity, obtained at the section of maximum elevation of 78	

the lower nappe (m s-1); Rb is the radius of streamline curvature at lower nappe of the 79	

profile in segment OB (m); k is the non-concentricity coefficient; and Y is the flow depth 80	

at the section of maximum elevation of lower nappe (m) (Figure 1). 81	

Experimental setup and measuring techniques 82	

Experiments were performed in a horizontal rectangular recirculating plexiglass 83	

laboratory channel 7.2 m long, 0.3 m wide, and 0.3 m high. Canal cross section was 84	

designed for a maximum discharge of 10 l s-1, having in mind a common application of 85	

this type of weirs: the analysis of furrow irrigation inflow and outflow. Mild steel plates 86	

(galvanized sheet metal) with a thickness of 1.5 mm were used to manufacture weirs. 87	

Vertex angles were 30º, 45º, 60º and 90º, each of them with 8 and 10 cm of crest height. 88	

Water was supplied to the channel through an overhead tank provided with an 89	

overflow arrangement to maintain constant head. A grid wall was installed into the 90	

channel to dissipate flow velocity. To avoid the area of water surface draw-down, head 91	

over the weir was measured 1.0 m upstream of the vertical weir plane using a point 92	

gage with accuracy of ± 0.1 mm. Discharge over the weirs was volumetrically measured, 93	

using a prismatic steel measuring tank with base dimensions of 0.75 m x 0.75 m. Weirs 94	

were installed at the end of the channel to provide an unrestricted supply of air under 95	

the nappe. Consequently, all data for this study correspond to the conditions of fully 96	

aerated flow. Equations of flow nappe profiles and discharge coefficients for triangular 97	
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sharp-crested weirs were obtained for four different models. Table 1 presents a 98	

summary of the weir characteristics and test conditions. Weir models were tested using 99	

14 flow rates. A total of 112 experiments were conducted (4 vertex angles x 2 values of P 100	

x 14 flow rates). Additionally, each discharge was measured five times. The average of 101	

these replications was used to obtain the discharge coefficient. 102	

An adaptation of the low-speed photographic technique proposed by Salvador et al. 103	

(2009) was implemented in order to identify a set of points (z, y) along the upper and 104	

lower nappes to characterize the profiles. Coordinate z corresponds to the horizontal 105	

distance downstream from the weir. All coordinate values were initially registered in 106	

pixels and then transformed to millimeters using the pixel per millimeter ratio obtained 107	

from image analysis (all images included a reference ruler). In order to assess the 108	

differences between measured-estimated values and different estimation equations 109	

proposed by other authors, the following statistic parameters were used: mean 110	

estimation error (MEE), root mean square error (RMSE), and index of agreement (IA) 111	

(Willmott, 1982).  112	
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Results 113	

The points obtained from the photographs were plotted as shown in Figure 2, where y is 114	

the vertical depth of flow at z distance downstream from the weir. Plotted information 115	

corresponds to all measured upper and lower flow nappe profiles for the different 116	

values of vertex angle. Figure 2 shows pairs (z, y) relative to head (h) as well as the 117	

polynomials that best fit each case. The upper and lower nappe profiles could be 118	

successfully adjusted to quadratic equations. Polynomials were used to determine 119	

distances OA, OB, AC, and AE (Figure 1) for each weir model using the general 120	

regression equations in Figure 2. The same procedure was used to determine the mean 121	

radius of curvature of the streamline along the distance of OB at lower nappe profiles 122	

(Rb), the flow depth at the section of maximum elevation of the lower nappe (Y), and the 123	

correction coefficient of non-concentricity streamline (k) (Bagheri and Heidarpour, 124	

2010). The analysis of ratios Rb/h and Y/h against weir vertex angle expressed as 125	

tan (θ/2) shows potential relations in both cases. Regarding the non-concentricity 126	

coefficient, the best relation between k and h tan (θ/2) is represented by a potential 127	

equation. Substituting Rb/h, Y/h, and k expressions into Equation 3 results in Equation 128	

4: 129	
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Combining Equations 2 and 4, the discharge coefficient can be expressed as Equation 7: 132	
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Estimated discharge coefficients (for head over the weir ranging from 1.5 cm to 15 cm) 133	

ranged between 0.669-0.607, 0.674-0.614, 0.677-0.618, and 0.680-0.624 for weir angles of 134	

30º, 45º, 60º, and 90º respectively. Measured discharge coefficients (for heads over the 135	

weir of 1.5-15 cm for weir angles of 30º, 45º, and 60º; and for heads over the weir of 1.5-136	

12 cm for a weir angle of 90º) ranged between 0.665-0.614, 0.668-0.616, 0.672-0.620, and 137	

0.677-0.624 for the same weir vertex angles. Figure 3 presents a comparison of the 138	

experimental data, the proposed discharge coefficient (Equation 7) and the estimates 139	

obtained using some references discussed by Shen (1981). The proposed equation can 140	

predict Cd for the range or 30º-90º weir vertex angles with MME = 0.001, RMSE = 0.004, 141	

and IA = 0.984. In the experimental conditions of this study, this performance can only 142	

be compared to that of the equation proposed by Greve (1932), which showed the same 143	

absolute value of MEE but lower values of RMSE and IA.   144	
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Conclusions 145	

An experimental analysis was performed to estimate the discharge coefficient for four 146	

triangular sharp-crested weir models. Regression equations of the upper and lower 147	

nappe profiles developed from experimental data and free-vortex theory were used to 148	

derive a discharge coefficient equation as a function of head over the weir (h) and weir 149	

vertex angle expressed as tan (θ/2). Experimental data showed that both nappe profiles 150	

can be successfully represented by second-degree polynomials. Results also indicated 151	

that the non-dimensional mean radius of curvature of the streamline along the distance 152	

OB at lower nappe profiles (Rb/h) and the non-dimensional flow depth at the section of 153	

maximum elevation of the lower nappe (Y/h) show potential relations with the weir 154	

vertex angle expressed as tan (θ/2). To take into account the non-concentricity of the 155	

streamlines, a correction coefficient was proposed as a function of h and θ. Comparisons 156	

between measured Cd, the proposed discharge coefficient equation and discharge 157	

coefficient equations proposed by a number of authors were established. In the 158	

experimental conditions, the proposed equation represents an improvement in the 159	

estimation of discharge from triangular weirs, and confirms the validity of a predictive 160	

equation proposed by Greve in 1932.   161	
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Table 1. Triangular sharp-crested weir characteristics and test conditions. 

Weir 
model 

Vertex 
angle (θ, °) 

P (cm) Q (l s-1) h (cm) 

1 30 8, 10 0.01-3.56 1.5-15.0 
2 45 8, 10 0.02-5.52 1.5-15.0 
3 60 8, 10 0.03-7.74 1.5-15.0 
4 90 8, 10 0.04-7.82 1.5-12.0 



Figure 1. Experimental parameters: a) direction of flow view, b) frontal view. 
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Figure 2. Upper and lower nappe profiles. Weir vertex angles: a) 30°, b) 45°, c) 60°, and d) 90°.
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Figure 3. Discharge coefficient (Cd) vs. head over triangular sharp-crested weir. Weir vertex
angles: a) 30°, b) 45°, c) 60°, and d) 90°.
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