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Abstract 1 

Knowledge of water flows through mussel rafts and their controlling factors is 2 

required for an ecosystem approach to the sustainable management of this culture 3 

in the Galician rías. With this aim, 4 acoustic 2D-ACM current meters were hung 4 

from the bow of 4 rafts located in the mussel cultivation areas of the Ría de Ares-5 

Betanzos (NW Spain) during autumn 2007. Simultaneously, an Aanderaa DCM12 6 

Doppler profiler was moored in an area free of rafts in the middle ría. There were 7 

differences in the subtidal and tidal dynamics of the middle channel and mussel 8 

farm areas. The tide explained 51.5% of the total variance of the surface current in 9 

the middle ría. The explained variance in the seed collection areas of Redes (inner 10 

ría) and Miranda (outer ría), where only 2–3 rafts are anchored, were 64.1% and 11 

16.8%, respectively. In the cultivation areas of Arnela (inner ría) and Lorbé 12 

(middle ría), where 101 and 40 rafts are anchored, 14.3% and 53.4% of the total 13 

variance was explained by the tide. These disparities in the contribution of the tide 14 

are likely due to a combination of topographic and bathymetric differences among 15 

sites and distortions of the natural flow by the rafts and their hanging ropes. 16 

Furthermore, there was a marked influence of winds on the subtidal currents 17 

within the rafts; contrasting correlation coefficients and lag times between wind 18 

speed and currents were observed for the outer and inner sides of the embayment. 19 

The filtration rate of the growing mussels and the number of mussels per raft 20 

allow an efficient clearing of the particles transported across the hanging ropes by 21 

the measured subtidal currents of 2–3 cm s–1 characteristic of the cultivation areas 22 

of Arnela and Lorbé. 23 

KEY WORDS: subtidal currents, tidal currents, coastal winds, mussel rafts, ría 24 
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1. Introduction 1 

Scientific knowledge of the meteorology, physical oceanography, and 2 

biogeochemistry of marine ecosystems is compulsory for an ecosystem-based 3 

sustainable management of marine living resources (Dempster and Sanchez-Jerez, 4 

2008; Cranford, et al., 2012). In the particular case of the cultivation of the blue 5 

mussel Mytilus galloprovincialis on hanging ropes in the coastal embayments of 6 

NW Spain, this information is crucial to manage larvae settlement and recruitment 7 

strategies (Peteiro et al., 2011), mussel growth rates and carrying capacities 8 

(Pérez-Camacho et al., 1995; Peteiro et al., 2006; Babarro et al., 2000; Duarte et al 9 

2008), mussel rafts closures due to the recurrent occurrence of harmful algal 10 

blooms (Alvarez-Salgado et al., 2008; 2011; Pérez et al., 2010) and the potential 11 

environmental risks of mussel raft culture (Tenore et al., 1982; Alonso-Pérez et 12 

al., 2010). 13 

The NW coast of Spain is at the northern boundary of the large marine ecosystem 14 

embraced by the Iberian-Canary eastern boundary upwelling system (Arístegui et 15 

al. 2009).  In this area, upwelling-favourable northerly winds prevail from March-16 

April to September-October in response to the seasonal migration of the Azores 17 

High. Downwelling-favourable southerly winds are dominant the rest of the year 18 

(Wooster et al., 1976; Bakun and Nelson, 1991; Arístegui et al., 2009). Upwelling 19 

events occur with a periodicity of 10–20 days during the upwelling season 20 

(Blanton et al., 1987; Álvarez-Salgado et al., 1993), hence modulating the entry 21 

and allowing the efficient consumption of new nutrients within the eighteen 22 

coastal embayments, collectively known as “rías”, which occupy this intricate 23 

coastline (Pérez et al., 2000; Villegas-Ríos et al., 2011). 24 
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 4

The rías are unique systems because of their morphology and orientation that, 1 

together with the freshwater inputs, strongly influence the fate of the upwelled 2 

nutrients and the resulting biogenic materials (Blanton et al., 1987; Arístegui et 3 

al., 2009; Álvarez-Salgado et al., 2010). The Rías Baixas, located to the south of 4 

Cape Fisterra (Figure 1), are oriented in the NE-SW direction, which favours the 5 

inflow of upwelled Eastern North Atlantic Central Water (ENACW) in response 6 

to northerly winds and are large enough (2.5–4.3 km3) to efficiently consume the 7 

upwelled nutrients leading to average daily primary production rates as high as 3 8 

g C m–2 d–1 during the upwelling season (Arístegui et al., 2009). Continental 9 

runoff gains importance during the downwelling season, contributing significantly 10 

to the dynamics and biogeochemistry of these embayments (Nogueira et al., 1997; 11 

Álvarez-Salgado et al., 2000; 2010). The Rías Altas, located to the north of Cape 12 

Fisterra, display a wide variety of sizes, from 0.01 to 0.75 km3, and coastline 13 

orientations, and they receive proportionally larger freshwater inputs than the Rías 14 

Baixas (Álvarez-Salgado et al., 2010; 2011; Villegas-Rios et al., 2011). The Rías 15 

Altas, specifically the Ría de Ares-Betanzos (Figure 1), also support a significant 16 

number of mussel rafts and local fisheries, although their total yield is lower than 17 

that of the Rías Baixas (Bode and Varela, 1998).  18 

The hydrodynamics of coastal waters, especially in semi-enclosed bays, together 19 

with the nutrient and plankton loads transported by the dominant currents, are the 20 

major factors determining the balance between suspended particles depletion and 21 

renewal in marine farms. In fact, the ingestion capacity is a function of 22 

phytoplankton concentration and current speed (Frechette et al., 1989). 23 

Furthermore, marine farm structures cause drag reducing water flows within 24 

farmed areas (Plew et al., 2005; Strohmeier et al., 2005; Fan et al., 2009). It has 25 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

 5

also been shown that shellfish farms induce changes in the estuarine circulation 1 

patterns, with important implications for local food depletion (Duarte et al., 2008; 2 

Plew et al., 2011). Consequently, it is important that the effects of farm structures 3 

are considered when estimating water flows within a cultivation area. In our 4 

particular case, by measuring the current velocity within a mussel raft, the drag 5 

effects of both the raft where the current meter is hung and the surrounding 6 

structures are implicitly included. Therefore, our measurements would reflect the 7 

currents as experienced by the mussels in the hanging ropes. This information will 8 

allow calculating the real fluxes experienced by mussels and are also suitable to 9 

validate numerical models that predict intra-rafts currents.  10 

There are only two studies of currents through rafts based on empirical data 11 

(Blanco et al., 1996; Boyd and Heasman, 1998) and another one based on a 12 

numerical model (Grant and Bacher, 2001). Other studies emphasize how the 13 

number of ropes per raft in a mussel farm together with the thousands of mussels 14 

on each rope can modify the local flow (Plew, 2011; Stevens et al., 2008; 15 

Strohmeier et al., 2005) and, consequently, the food availability. 16 

As a first step to monitor the matter and energy flow through the mussel raft 17 

cultivation areas of the Ría de Ares-Betanzos, current meters were simultaneously 18 

hung in four mussel rafts located in two areas where the mussels are cultured, 19 

Arnela and Lorbé, and two areas of mussel seed capture, Redes and Miranda 20 

(Figure 1). In addition, a Doppler profiler was moored in an area free of rafts in 21 

the middle channel of the ría (DCM12, Figure 1) over the same period. We 22 

measured the water flow through these singular cultivation platforms in order to 23 

study the spatial similarities and differences at tidal and subtidal scales between 24 

the currents measured at the four cultivation areas and the middle channel of the 25 
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ría in relation with: 1) natural spatial differences related with both steady 1 

(topography, bathymetry) and transient (continental runoff, remote and local 2 

winds) main forcing agents; and 2) man-made differences derived from the 3 

distortion of the natural flow due to the dense array of mussel rafts in the 4 

cultivation areas (see inset of Figure 1). However, freshwater discharges were so 5 

low and invariable (CV ~ 2%) during the study period (data not shown) that this 6 

forcing had to be excluded from the analysis. 7 

We should emphasize that our measurements are indicative of velocities within 8 

the rafts, which are more relevant to mussel culture than velocities measured 9 

nearby the rafts, because they are the velocities experienced by the hanging 10 

mussels. Soundly, water flows based on within-raft velocities can be coherently 11 

compared with the water flows filtered by the mussel hung on the rafts. In 12 

practice, it is not possible to measure currents unaffected by the rafts at the same 13 

sites where the mussel farms are located. Therefore, separation of the effect of the 14 

rafts from the effect of the location (topography and bathymetry) is not feasible. 15 

However, the results of this work will help to understand the differences in the 16 

productivity of the mussel cultivation and seed caption areas, providing 17 

scientifically-based advice to mussel farmers.  18 

2. Materials and methods 19 

2.1. Study site 20 

The Ría de Ares-Betanzos is a V-shaped coastal inlet located in the Galician coast 21 

(NW Spain) between Cape Fisterra and Cape Prior, freely connected with the 22 

adjacent shelf (Figure 1). It consists of two branches: Ares, the estuary of river 23 

Eume, and Betanzos, the estuary of river Mandeo, with long-term average flows 24 
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of 16.5 m3 s–1 and 14.1 m3 s–1, respectively (Prego et al. 1999, Sanchez-Mata et al. 1 

1999). The two branches converge into a confluence zone that opens to the 2 

adjacent shelf through a mouth that is 40 m deep and 4 km wide. From the 3 

hydrographic point of view, the two branches can be considered as partially mixed 4 

estuaries where fresh and marine waters mix gradually (Sánchez-Mata et al., 5 

1999; Gómez-Gesteira and Dauvin, 2005). By contrast, the confluence and outer 6 

zones can be considered as an extension of the adjacent shelf that it is affected by 7 

the intensity, persistence, and direction of coastal winds (Bode and Varela, 1998; 8 

Villegas-Ríos et al. 2011).   9 

The Ría de Ares-Betanzos supports 147 rafts that produce about 10,000 metric 10 

tons of the blue mussel Mytitlus galloprovinciallis per year (Labarta et al., 2004). 11 

Reproductive adults are concentrated in the southern shore of the ría, in Arnela 12 

(40 rafts) and Lorbé (101 rafts, Figure 1). Therefore, blue mussels of the Ría de 13 

Ares-Betanzos must be considered as a meta-population whose dynamics has been 14 

altered by extensive cultivation activities (Peteiro et al. 2011). Since the parental 15 

stock is maintained from year to year to guarantee a minimum commercial 16 

production, mussel abundance on the rafts does not depend on settlement success.  17 

Therefore, spatial differences in larval supply and settlement magnitude will be 18 

more affected by the local circulation patterns than by the adult population 19 

structure (Ladah et al., 2005; Peteiro et al., 2011).  20 

The mussel rafts are made from eucalyptus trusses that are attached to floats and 21 

anchored by one point to concrete blocks on the sea bed. Each raft has a 22 

maximum surface area 20 m x 25 m (= 500 m2) and contains up to 500 ropes with 23 

a range of length from 6 to 12 m (Labarta et al., 2004). The distance between 24 

neighbouring rafts within a cultivation polygon is around 100 m. 25 
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 2.2. Current measurements 1 

Four acoustic FSI 2D-ACM current meters were hung simultaneously at 1 m 2 

depth at the bow of four mussel rafts located in the northern (Miranda and Redes) 3 

and the southern (Lorbé and Arnela) side of the Ría de Ares-Betanzos (Figure 1).  4 

They were deployed from 15 October to 20 November 2007 recording data at 5 5 

minute intervals. 6 

An Aanderaa DCM12 acoustic Doppler current profiler (ADCP) was moored in 7 

the middle ría at 20 m depth (Figure 1). The DCM12 was installed in a gymbal 8 

system at the top of a pyramidal structure. This mooring also covered the period 9 

from 15 October to 20 November 2007. The DCM12 measures the current 10 

velocity at 5 depth intervals using the Doppler effect with a transmitted signal of 11 

606.7 kHz. From the surface to 4 m above the instrument, the DCM12 divides the 12 

water column into five partially overlapped layers and records the depth integrated 13 

velocity of each one. With the selected configuration, all layers were 4.5 m in 14 

size, and their respective centre depths were approximately at 2.7 (layer D1), 5.3 15 

(D2), 8.0 (D3), 10.7 (D4) and 13.3 m (D5) from the surface. The recording 16 

interval of the DCM12 was set to 10 min. Additionally, the DCM12 has a high 17 

precision quartz pressure sensor (Quartzonic Pressure Sensor model 960A) which 18 

measures the water level.  19 

  2.3. Remote and local winds  20 

Remote winds were obtained at 1 hour intervals from the Seawatch buoy of the 21 

Spanish Agency Puertos del Estado off Cape Vilano (http://www.puertos.es) and 22 

local winds were reconstructed at the three 4 km x 4 km cells shown in Figure 1 23 

by the WRF_ARW model run operationally by the Galician Meteorological 24 

Agency Meteogalicia (http://www.meteogalicia.es). The atmospheric modelling 25 
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system of Meteogalicia uses Global model GFS as initial and boundary conditions 1 

and includes 3 nested domains to forecast the evolution of the atmosphere up to 4 2 

days in advance. Nested domains consist of a 36 km domain that covers South 3 

Western Europe, a 12 km resolution domain covering Iberian Peninsula and a 4 4 

km resolution domain covering Galicia Region (used in this study). 5 

 2.4. Analysis of the tidal and subtidal components of the currents 6 

We used three techniques to compare the measured currents at each site (Miranda, 7 

Redes, Lorbé, Arnela and DCM 12) and wind data: 1) a Fast Fourier Transform 8 

(FFT) of the currents to test differences between sites; 2) a least-squares harmonic 9 

decomposition to calculate tidal constituents; and 3) a low pass filter applied to 10 

the current and wind time-series to remove variability at tidal and higher 11 

frequencies in order to study subtidal currents.  12 

The Fast Fourier Transform (FFT) was calculated considering the total vector 13 

currents measured at each site. Anti-clockwise and clockwise components of the 14 

Fourier transform of current velocities for the four rafts and the middle ría were 15 

calculated. 16 

We used T_tide, an open source MATLAB toolbox produced by Pawlowicz et al. 17 

(2002), to separate out the tidal from the non-tidal components of the currents by 18 

performing a harmonic tidal analysis on the 2D-ACM and DCM12 currents. A set 19 

of harmonic tidal analyses was performed on all total vector data points 20 

corresponding to the five positions (4 in the rafts and 1 in the middle channel) for 21 

35 days in October-November 2007. A smoothing filter A22A3 (three 22 

consecutively running averages: two of them with a window size of two samples, 23 

i.e. 1 h, and one with three samples, i.e. 1-1/2 h) was applied first to the velocity 24 

currents data to eliminate high frequency currents and noise (periods less than 1h). 25 
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A A242A25 filter with a cut-off period of 30 h was applied to the time series of 1 

currents and wind to remove the variability at tidal or higher frequencies (Godin, 2 

1972). The output of applying the A22A3 filter to the raw data (high pass filtered 3 

currents) was subtracted to the output of applying the A242A25 filter with a cut-4 

off period of 30 h to the raw data (low pass filtered currents), to obtain a band 5 

pass time series with energy between 1 and 30 h . The harmonic tidal analysis was 6 

applied to the later time series. 7 

2.5. Cross correlation between winds and subtidal currents 8 

The cross-correlation analysis is a statistical tool that allows calculation of the 9 

correlation between two time series, W(t) and V(t + t), that are out of phase with a 10 

lag time t. The shape of the cross-correlation coefficient curve R(t) versus t 11 

represents the variation of the correlation between the two time series depending 12 

on the lag time. This analysis was applied to the low frequency (subtidal) vector 13 

currents and the low frequency vector winds recorded off Cape Vilano and 14 

simulated by the WRF_ARW model within the ría during the study period. 15 

Although the recording interval of the 2D-ACM and DCM12 current meters were 16 

set to 5 minute and 10 minute intervals, respectively, ensemble time averaging of 17 

the current meters was 1 hour in order to correlate with winds which were 18 

obtained at 1 hour intervals. 19 

3. Results 20 

3.1 Tidal range and total currents 21 

The time-series of tidal height during the recording period included two spring 22 

tides (on 20 October and 3 November 2007) and two neap tides (on 27 October 23 

and 10 November 2007). Spring and neap tidal ranges were between 2.8 m and 24 
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3.9 m, and between 0.7 m and 1.7 m, respectively (Figure 2a). A harmonic 1 

analysis of the tidal height at the position of the DCM12 revealed that the main 2 

harmonics were the semidiurnal M2, S2 and N2, with amplitudes of 1.2 ± 0.1, 0.4 3 

± 0.1 and 0.3 ± 0.1 m, respectively, and the diurnal harmonics K1 (0.1 ± 0.1 m) 4 

and O1 (0.1 ± 0.1 m). Figure 2b-j shows the observed current time series at all the 5 

current meter locations. There were differences between the maximum current 6 

recorded at each location. Maximum celerities were lower at Arnela (12.3 cm s–1) 7 

and Lorbé (15.5 cm s–1), where most of the rafts are located, than at Redes (23.2 8 

cm s–1) and Miranda (27.2 cm s–1). Maximum celerity was the highest in the 9 

middle channel, decreasing from surface (37 cm s–1 at D1 and D2) to bottom 10 

layers (25 cm s–1 at D4 and D5). 11 

3.2. Spectral Analysis of the 2D-ACM and DCM12 total currents  12 

The rotary spectral analysis on the 35 days of current meter data showed 13 

significant energy differences at all frequencies, especially at semidiurnal and 14 

lower frequencies (T > 30 h) between currents measured in the raft polygons 15 

(Figure 3) and the middle ría (Figure 4). At the rafts, Arnela showed the lowest 16 

energy at all frequencies and Redes was characterized by the highest energy at 17 

semidiurnal frequency. The semidiurnal peaks in Lorbé and Miranda were not as 18 

well-defined as in Redes. The outer sites, Miranda and Lorbé, displayed higher 19 

energy at lower frequencies than the inner sites, Arnela and Redes. There were no 20 

significant differences between counter-clockwise (CCW) and clockwise (CW) 21 

energy at all rafts. Conversely, the rotary spectral analysis of the surface currents 22 

in the middle ría was comparable in magnitude only to the spectra from Redes, 23 

but it was significantly different at diurnal and lower frequencies. In fact, the 24 

diurnal peak was almost negligible at all rafts. The CCW and CW energy peaks 25 
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were very similar at the surface (D1) in the middle ría (Figure 4). Only in the 1 

second layer (D2) the CW semidiurnal energy peak is higher than CCW energy 2 

peak. The most energetic tidal harmonics were not found in the surface layer (0–3 

4.5 m), as could be expected, but in the second one. This was previously found by 4 

Míguez (2003) in the rías of Vigo and Pontevedra and by Piedracoba et al. (2005) 5 

in Ribadeo. As mentioned in Piedracoba et al. (2005), whether this is a natural 6 

physical process (wind/wave induced turbulence at the surface layer) or an 7 

instrumental artefact is not clear yet. Because the DCM12 was designed to reduce 8 

the side-lobe effect (Aanderaa et al. 1995, Aanderaa Instruments, 1999), this can 9 

cause artificial effects on surface measurements that lead to under estimate of 10 

surface velocities (van Haren, 2001). The energy peaks indicates that the energy 11 

in the surface layer of the middle ría at the lower (T > 30h) frequencies is higher 12 

than the energy at these frequencies at the rafts position. 13 

In the following sections the tidal and subtidal bands will be described focusing 14 

on the relationship between subtidal currents and wind forcing. As stated in the 15 

introduction, freshwater discharges from rivers Mandeo (1.4 ± 0.3 m3 s–1) and 16 

Eume (4.4 ± 0.1 m3 s–1) were so low and invariable (CV ∼ 2%) during the study 17 

period that this forcing was excluded from the analysis because its influence on 18 

the variability of the measured currents was negligible. 19 

3.3. Tidal currents 20 

Harmonic tidal analyses were performed on total vector data of the 5 study sites 21 

for the 35 days that the instruments were recording in October-November 2007 22 

(Table 1 and 2). Only constituents with significant amplitudes and signal to noise 23 

ratios > 2 are listed.  Percentages of total variance explained by the tide at the raft 24 

positions were 64.1%, 53.4%, 16.8% and 14.3% for Redes, Lorbé, Arnela and 25 
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Miranda, respectively. Major axis of the most important constituent, M2, was also 1 

very different at the four raft sites: 4.2 ± 0.5, 1.7 ± 0.2 and 1.0 ± 0.7 cm s–1 for 2 

Redes, Lorbé and Arnela and it was absent in Miranda. Therefore, there was a 3 

positive relationship between the percentage of total variance explained by the 4 

tide and the tidal velocity explained by the harmonic M2. Redes and Lorbé were 5 

the positions where the signal-to-noise ratios were higher for the most important 6 

harmonics (M2, N2 and S2) for this 35 days period. Tidal currents were rectilinear 7 

(no preferred sense of rotation) in Miranda and Lorbé (eccentricity close to 1) and 8 

tended to accommodate to the shape of the ría with a mean along-channel 9 

orientation for the most important harmonic constituents (M2 inclination was 108º 10 

± 77º and 139º ± 8º for Miranda and Lorbé, respectively). However, the 11 

inclination of the most relevant semidiurnal constituents in Redes was about 20º ± 12 

20º and, therefore, tidal currents in Redes did not follow the main axis of the ría as 13 

in the outer positions.  14 

In the middle ría, the major axis of the K1 constituent at layer D1 was especially 15 

high due to the breeze effect as found in other Galician Rías (Míguez, 2003). The 16 

maximum tidal speed and semi-major axis of the most important semidiurnal 17 

component (M2) was found at D2 (3.1–7.5 m) as also recorded in other Galician 18 

Rías (Míguez, 2003, Piedracoba et al. 2005). From D2 to D5, the M2 semimajor 19 

axis decreased from 10.7 ± 0.8 to 6.8 ± 0.4 cm s–1. In addition, the M4 and M6 20 

tidal components due to the non-linear momentum advection terms and quadratic 21 

bottom friction were amplified from D2 to D5. However, these later components 22 

with signal-to-noise ratio > 2 appeared only at the surface in Lorbé. The 23 

percentage of total variance explained by the tide increased noticeably from the 24 

surface (51.5%) to the subsurface layers (> 86%), although it reduced with depth 25 
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from 91.1% at D2 to 86% at D5.  1 

3.4. Subtidal wind forcing 2 

Remote winds at the Vilano buoy and local winds simulated by the WRF_ARW 3 

model were low-pass filtered to remove the variability impose by tidal and diurnal 4 

cycles and higher frequencies. After this filter, only the variability with periods 5 

longer than 30 hours was retained in the subtidal records presented in Figure 5a. 6 

  Average and standard deviations of the East and North low-pass filtered wind 7 

velocity components, 
xWx SDW ± and 

yWy SDW ± were –4.7 ± 4.2 and –1.5 ± 2.2 8 

m s–1, respectively. Local winds reconstructed at the three positions of Figure 1 by 9 

the WRF_ARW model run operationally were highly correlated with the winds 10 

recorded at the Vilano buoy. The correlations were 0.84, 0.80 and 0.72 for Met 1, 11 

Met 2 and Met 3, respectively (Figure 1). In fact, the difference between local and 12 

remote winds is just a reduction of wind intensity inside the ría. Therefore, it is 13 

not possible to discern the relative influence of remote and local winds on the 14 

dynamics of the ría. For this reason, although we have used the winds recorded at 15 

the Vilano buoy to run the cross correlation analysis with the surface currents, we 16 

will not specify whether it is remote or local from here on.  17 

3.5. Subtidal currents 18 

Current velocity data from Arnela, Lorbé, Miranda, Redes and the middle ría were 19 

also low-pass filtered to retain only the variability with periods longer than 30 20 

hours in the subtidal records presented in Figure 5 (b-j). 21 

 Average and standard deviations of the East and North subtidal current velocity 22 

components ( USDu ± , VSDv ± ) were calculated for the surface layers of Arnela 23 

(1.0 ± 1.7, –1.4 ± 0.7 cm s–1), Lorbé (–1.9 ± 0.8, 0.2 ± 1.2 cm s–1), Miranda (–5.1 24 
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± 0.9, 2.0 ± 1.1 cm s–1), Redes (0.0 ± 0.6, 0.5 ± 1.2 cm s–1) and DCM12 (–7 ± 1.3, 1 

3.2 ± 2.5 cm s–1) during the study period. Significant differences (p < 0.05) 2 

between all velocity pairs at 1 m depth were found except for the pair vRedes- 3 

vLorbé. 4 

The largest subtidal currents were recorded at Miranda and in the middle ría, 5 

while the lowest currents were recorded at Redes. The differences in the average 6 

current direction at each position were particularly interesting. In the outer and 7 

middle sites (Miranda, Lorbé and Central D1) subtidal currents were 8 

northwestwards most of the time, while in Arnela they were mainly 9 

southeastwards and Redes showed a northwards dominant direction.  10 

3.6. Subtidal currents and wind forcing relationship 11 

The most recurrent wind direction at the Vilano buoy during the study period was 12 

around 65º, which promoted a surface outflow in the middle (Lorbé and Central 13 

D1) and outer (Miranda) ría. A succession of wind stress-relaxation events were 14 

recorded with a periodicity of less than a week (Figure 5a). The study period 15 

started with 2 days (16–17 October) of southwesterly winds. Lorbé, Miranda and 16 

the middle ría did not respond to this wind, although an outgoing flow was 17 

recorded at the three sites, but of different magnitude (Figure 5c, d, f, Figure 6). 18 

Arnela responded with a southwestward current and in Redes the current was 19 

negligible. From 18 to 21 October there was a wind relaxation period which did 20 

not affect the previous circulation pattern at the five study sites. The period 21 

between 22 and 24 October was characterized by southwesterly winds. Surface 22 

current in Arnela continued being southwestwards and there was marked outgoing 23 

flow in the middle ría and Lorbé (Figure 5c, 5f, Figure 6). Surface current was 24 

also outgoing in Miranda, but very slow. From 24 October to 11 November there 25 
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was an alternation between northeasterly winds and relaxations with a periodicity 1 

of about 5 days. Under these conditions, surface currents at Miranda increased and 2 

were northwestwards most of the time. However, there was a marked decrease of 3 

the flow in Lorbé from 25 October onwards, which denotes that Lorbé and 4 

Miranda have not always the same behaviour. Currents in Redes did not seem to 5 

respond to changes in the wind regime. In fact, there was an increase in the 6 

current at this site from 8 to 16 November that did not correspond to any change 7 

in direction or intensity of the winds. From 14 to 19 November, winds relaxed 8 

(Figure 5a) and surface currents in Lorbé, Miranda and the middle ría responded 9 

with a dramatic reduction of celerity (Figure 5c, d and f). However, surface 10 

currents in Arnela increased slightly and continued being southeastwards or 11 

southwestwards and currents in Redes conserved a northeastward direction from 12 

16 November onwards (Figure 4e). 13 

A 2-layer circulation pattern, characteristic of partially mixed estuaries, was found 14 

from 15 October to 20 November in the middle ría (Figures 5 f-j).  The circulation 15 

was always positive, i.e. surface outgoing and subsurface incoming, 16 

independently of the wind direction but with different speed depending on the 17 

winds intensity. It is worth mentioning that on 21–22 October, when winds blew 18 

from the southwest (Figure 5a), the whole water column in the middle ría flowed 19 

outwards. It indicates that the subsurface layer of the middle ría reversed their 20 

flow in response to this change of winds, although the surface flow in the middle 21 

ría, Lorbé and Miranda continued to be outwards (Figure 5c, d, and f, Figure 6).  22 

Progressive vector diagrams (PVD) showing the virtual displacement of a water 23 

parcel forced by the low-pass filtered currents recorded by a moored current meter 24 

were devised for the surface layer of the five study sites from 15 October to 20 25 
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November 2007 (Figure 6). Note that PVDs in Figure 6 have been scaled x10 to 1 

facilitate the visualization of the trajectories. PVDs show that there were marked 2 

differences between the outer (Miranda, Lorbé, and middle ría) and inner (Arnela, 3 

Redes) sites and there are also differences in the trajectories between the northern 4 

(Miranda, Redes and middle ría) and southern (Lorbé, Arnela) sides of the ría. 5 

Surface currents in Lorbé, Miranda and the middle ría were outgoing throughout 6 

all the study period independently of the direction of the winds. Differences were 7 

found in current speed and, therefore, in total virtual displacements, especially 8 

between the northern (Miranda and middle ría) and southern (Lorbé) sides of the 9 

ría. 10 

3.6.1 Complex cross-correlation 11 

A complex cross-correlation analysis between the surface current in the middle ría 12 

and the four sites in the raft polygons was performed to study the correlation 13 

between these five pairs of vector time series as a function of the lag time between 14 

currents (Figure 7). Note that the correlation coefficients between pairs of series 15 

were always positive, indicating simultaneous increase or decrease of the current 16 

module at both sites. The maximum correlation was observed between the middle 17 

ría and Miranda with a lag time of less than 12 hour. Next, with Lorbé, with 18 

correlation coefficients between 0.8 and 0.9 for lag times of 0 and 96 hour, 19 

respectively.  The correlation coefficient with Arnela ranged from 0.73 to 0.83 for 20 

0 and 48 hour lag time, respectively. All these correlations were significant at p < 21 

0.05 level. Finally, the correlation between the record in the middle ría and Redes 22 

was not significant. Concerning the phase, it was positive between the middle ría 23 

and Arnela, Lorbé and Miranda indicating a positive (anticlockwise) angle of 152º 24 

(i.e., opposite directions) between the middle ría and Arnela, and positive angles 25 
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of 18º with Lorbé and 1.2º with Miranda (i.e., similar directions). These results 1 

show a similar behaviour of the middle ría with Miranda and Lorbé (high 2 

correlation and phase close to 0). The correlation between the middle ría and 3 

Arnela was also high, but the phase show opposite displacement and, therefore, 4 

the forcing responsible for the circulation in the outer and the inner parts of the ría 5 

acts differently. The correlation between the middle ría and Redes was so low (p > 6 

0.10) that the forcing responsible for circulation at both positions have to be 7 

different. 8 

A cross-correlation analysis between all possible pairs of currents at the four rafts 9 

was also performed (Figure 8). Only the correlations between Arnela and Lorbé, 10 

Arnela and Miranda and Lorbé and Miranda were significant at p < 0.05 level. 11 

The maximum correlation was found between the outer rafts (Lorbé and 12 

Miranda). On the other hand, the correlations between Arnela and Redes, Lorbé 13 

and Redes and Miranda and Redes are not significant at p < 0.05 level. Therefore, 14 

there was no relationship between the current pattern in Redes and the other sites. 15 

The outer sites (Lorbé and Miranda) were correlated by 0.70 at lag times less than 16 

12 hour and a phase of about 15º. Both Lorbé and Miranda correlated with Arnela 17 

with correlation coefficients of 0.90 and 0.65 at lag times of less than 12 hour and 18 

phases of 132 º and 155º between Lorbé and Arnela and Miranda and Arnela, 19 

respectively. 20 

The cross-correlation analyses between the low-pass filtered winds and the 21 

currents measured in the five layers of the middle ría are summarised in Table 3.  22 

The correlation coefficients were calculated for a discrete time. After this, we 23 

calculate the average correlation coefficient and phase over 12 hour intervals (0-24 

12, 13-24, 25-36, … 85-96 H). Although all correlations were significant at p < 25 
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0.05 level, the highest were found at the surface, D1 (0.78 at less than 12 hour lag 1 

time) and the two bottom layers (D4, 0.80 at less than 12 hour lag time; and D5 2 

0.86 at 12–24 hour lag time). The lowest correlation was found in D2, which 3 

coincided with the level of no motion (LNM) that separates layers that flow in 4 

opposite directions.  The phase was negative between the wind and D1 showing a 5 

clockwise (negative) angle (i.e. the flow was to the right of wind). On the 6 

contrary, the phase was positive between the wind and D2 to D5 showing an 7 

anticlockwise (positive) angle between winds and subsurface currents. The angle 8 

was about 150º between D1 and D5, i.e. both layers flow in opposite directions 9 

consistent with the 2-layer circulation pattern characteristic of partially mixed 10 

estuaries. 11 

We also studied the cross-correlation between the low-pass filtered winds and the 12 

currents measured at the four raft polygons (see Table 4). The maximum 13 

correlations were found with Lorbé (0.82 at 49–60 h lag time), Miranda (0.79 at 14 

lag times of less than 12 h) and Arnela (0.74 at 37–48 hour lag time). Therefore, 15 

Miranda, the most exposed site to coastal winds, responded faster than the other 16 

sites. Conversely, there was no relationship between the winds and the northern 17 

inner site of Redes at short lag times. Unlike Arnela, Lorbé and Miranda where 18 

the correlation decreased with the lag time, the relationship between Redes and 19 

the winds increased slightly with the lag time. Again, these results show that there 20 

was no relationship between Redes and the other rafts polygons. Interestingly, the 21 

phases between Vilano-Lorbé and Vilano-Miranda were negative, i.e. the surface 22 

currents at Lorbé and Miranda were rotated to the right of the wind, as occurred in 23 

the surface layer of the middle ría. However, the phase between Vilano-Arnela 24 

was positive and, therefore, similar to the angle between Vilano and the bottom 25 
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layer (D5) of the middle ría.  1 

4. Discussion 2 

Despite the economic importance of mussel cultivation on hanging ropes and the 3 

evidence that subtidal circulation patterns can be behind the spatial differences 4 

observed in mussel larvae settlement and recruitment (Peteiro et al. 2007, 2011) 5 

and mussel growth rates (Pérez-Camacho et al. 1995, Babarro et al. 2000, Peteiro 6 

et al. 2006, Duarte et al. 2008), studies of the water flow through mussel rafts are 7 

very scarce in the Galician rías (Pérez-Camacho et al. 1995, Blanco et al. 1996). 8 

In addition, none of the previous studies have dealt with the relationship between 9 

subtidal currents through mussel rafts and the corresponding external physical 10 

forcing agents. Knowledge of the spatial and temporal variability of the subtidal 11 

circulation in a coastal embayment or estuary is crucial for assessing (i) the 12 

potential success of a given location for mussel or other commercial species 13 

settlement and growth; and (ii) its carrying capacity. For these reasons, in the 14 

present study we have monitored the instantaneous and subtidal currents in 2 15 

locations of the Ría de Ares-Betanzos where mussels are grown (Lorbé and 16 

Arnela) and two other locations where mussel seeds are collected on hanging 17 

ropes (Miranda and Redes) for a two month period when coastal upwelling was 18 

the dominant process. The maximum total current velocity was 10–12 cm s–1 19 

higher at Miranda and Redes than at Lorbé and Arnela, where 95% of the rafts of 20 

the ría are placed. This difference can be partly due to the larger current drag 21 

effect on the sites were most of the rafts are anchored. Such a frictional effect of 22 

aquaculture structures was shown before by Grant and Bacher (2011). 23 

The subtidal circulation in the mussel cultivation and seed recruitment areas of the 24 

Ría de Ares-Betanzos is affected differently by the wind regime, bathymetry and 25 
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topography. Villegas-Ríos et al. (2011) obtained that 80% of the variability of the 1 

exchange flux between the confluence and outer zones of this ría (Figure 1) was 2 

controlled by coastal winds. Since Miranda and Lorbé are in the middle-outer ría, 3 

it is coherent that the variability of the surface subtidal current in the seed 4 

collection site of Miranda and the cultivation polygon of Lorbé also depended on 5 

coastal winds. Accordingly, Peteiro et al. (2011) have found that mussel 6 

recruitment at Miranda depended on the intensity and frequency of coastal winds. 7 

Winds from northeast and southwest were the most frequent in the area, causing 8 

respective surface currents to southwest and northeast over the shelf and the 9 

corresponding perpendicular water transports throughout the Ekman layer 10 

(Ekman, 1905). The Ría de Ares-Betanzos is oriented in the NW-SE direction and 11 

Miranda is located close to the mouth of its open end. Therefore, upwelling-12 

favourable north-easterly winds should have more influence on Miranda than in 13 

the other recruitment and cultivation sites. 14 

The subtidal circulation pattern in Arnela is also related with the wind regime 15 

(Table 4). Furthermore, Arnela is sheltered enough to prevent water displacement 16 

to the East or Northeast and the lost by advection of nutrients supplied from the 17 

adjacent shelf. Arnela follows the premises of several studies that postulate a 18 

higher capacity for plankton retention in areas with local topographic 19 

characteristics, coastal orientation, and reduced effect of wind on residual 20 

circulation that produce relatively larger residence times (Graham and Largier, 21 

1997; Wing et al., 1998; Narváez et al. 2004). Unlike the rest of positions, 22 

subtidal currents in Redes are not related with the wind regime (Table 4). 23 

However, Redes is the position where the influence of the tide was the highest 24 

(the percent of total variance explained by the tide was 64.1%).  25 
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Average subtidal current velocities in the mussel cultivation areas of Arnela and 1 

Lorbé were around 2–3 cm s–1. These values are much lower than in the main axis 2 

of the embayment, where average surface currents of 8 cm s–1 were recorded 3 

throughout October 2007. This difference is caused by (i) the bathymetry of the 4 

ría that enhances bottom friction in the margins compared with the middle of the 5 

embayment; (ii) the topography of the ría that protects better the margins than the 6 

middle ría from the wind drag; (iii) the friction caused by the hanging ropes of the 7 

array of surrounding mussel rafts characteristic of the cultivation polygons; and 8 

(iv) the friction caused by the own hanging ropes of a raft (Plew 2011) on which 9 

current meters were placed. Three-month average surface current speed recorded 10 

by Pérez-Camacho et al. (1995) in three mussel rafts of the nearby Ría de Arousa 11 

also ranged from 2 to 3 cm s–1. The magnitude of the average residual currents 12 

measured in the middle Ría de Ares-Betanzos and the seed collection area of 13 

Miranda, 5 cm s–1, are comparable with the average values recorded in the free 14 

water column of other northern and southern Galician rías (Gilcoto et al., 2001; 15 

Piedracoba et al., 2005a; 2005b).  16 

Are these relatively low subtidal flows of 2–3 cm s–1 compatible with the food 17 

demand of the mussels cultured on hanging ropes? Let us consider that (i) there 18 

are about 800 mussels per meter of rope; (ii) there are about 500 ropes per raft;  19 

(iii) the length of the bow of a mussel raft is 25 m (Labarta et al., 2004); and (iv) 20 

each mussel is able to filtrate about 5 litres of seawater per hour (Labarta et al. 21 

1997).  It would result that the hanging mussels are able to filter about 556 L s–1 22 

per meter depth of raft. Dividing this volume by the width of the bow (25 m) an 23 

equivalent filtration speed of 2.2 cm s–1 is obtained, which is comparable with the 24 

average subtidal velocity recorded in Arnela and Lorbé, where the cultured mussel 25 
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stock is located. Therefore, it seems that the filtration speed of the growing 1 

mussels coincides with the velocity of the current transporting their food in such a 2 

way that they can efficiently clear the water crossing the mussel raft. On this 3 

basis, the mussels cultured in Miranda, where the current velocity is about twice 4 

than in Arnela and Lorbé, would not be able to clear the water crossing a mussel 5 

raft with the same efficiency unless they double either their filtration rate, which 6 

is quite unlikely (Filgueira et al., 2008), or the number of ropes per raft increases.  7 

Considering the subtidal flows in relation to filtration rate of mussels it could be 8 

argued that if mussels are able to clear all the water moving though a raft this 9 

might be detrimental to "downstream" rafts. However, i) the separation between 10 

consecutive rafts in a mussel farm is 100 m; ii) the maximum size of a raft is 25 m 11 

x 20 m; and iii) the length of the chain did not allow a free displacement of more 12 

10 m in the surface. Therefore, the maximum depletion area of a raft would be 13 

about 1000 m2 (= 35 m x 30 m) whereas the space not available for depletion 14 

would be about 9000 m2 (= 100 m x 100 m – 35 m x 30 m). Consequently, 15 

complete depletion at each individual raft should not affect the productivity of the 16 

surrounding rafts. 17 

The orientation of the raft relative to the current may cause differences in the 18 

effect of the raft on water velocities measured by a current meter moored at the 19 

bow of the raft.  The spatial variation of the ellipse parameters and the percentage 20 

of total variability explained by the tide were different between the northern and 21 

southern sides of the ría. While in the northern side of the ría the magnitude of the 22 

major axis and the percentage of variance explained by the most important 23 

semidiurnal constituents decreased from the inner raft (Redes) to the outer raft 24 

(Miranda), in the southern side both parameters increased from the inner (Arnela) 25 
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to the outer raft (Lorbé). The percentages of variability explained by the tide 1 

cannot be related to the distortion introduced by these platforms because they are 2 

not aligned with the currents and, therefore, current meters are not always at the 3 

upstream end of the raft. The evidence that the rafts were not aligned with the 4 

currents was based on our experience observing the direction of the water flow 5 

during the weekly samplings of thermohaline variables on the study rafts in 6 

different stages of the tide and additional visits to install and maintain the current 7 

meters. A nearby reference with current meters not hung on the rafts would help 8 

to study such a distortion. In this sense, it would be very difficult to determine the 9 

distance between the current meter hung on the raft and the reference site to 10 

ensure that the natural flow were the same at both sites and the reference was far 11 

enough from the distortion effects of the array of surrounding rafts. We are 12 

conscious that the current meter moored in the middle channel cannot be a 13 

reference for the 4 sites where current meters were hung on a raft, because the 14 

natural flow without rafts would be different due to the marked bathymetric 15 

differences between these sites. 16 

It is likely that this spatial variation is not only related with environmental factors 17 

acting differently on these regions and the effect of the surrounding rafts, but also 18 

with the fact that the bow of the rafts, where the current meters were hung, is not 19 

necessarily oriented to the current. If the raft did not rotate joint with the current, 20 

then a decrease of current velocity measured at the bow should occur due to 21 

distortion of the flow by the ropes hung in the raft. In the surface layer of the 22 

middle ría, where there are not mussel rafts that distort the flow, the tide explained 23 

51.5% of the total variance of the current. This percentage was very similar to 24 

Lorbé (53.4%), but far different from Miranda (14.3%) and Arnela (16.8%). 25 
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Therefore large disparities in the variability explained by the tide between sites 1 

could be due to both changeable orientation, caused by the translation and rotation 2 

movements of the rafts, and topography, bathymetry or estuarine circulation. This 3 

study cannot separate the effects of the rafts from other effects on the flow.  4 

We propose that the rotation of each individual raft within a polygon could be 5 

affected by local winds acting on structures above the water in a different 6 

direction to the current, current patterns at the embayment–scale, distortion of the 7 

currents by the surrounding rafts at the polygon–scale or vertical variations in 8 

current direction and the raft swinging with change in tide. This complex 9 

combination of factors seems to provoke that currents do not always enter a raft 10 

through the bow. Although the inflow through the raft is probably tidally forced, it 11 

should be considered the friction caused by the hanging ropes of the array of 12 

surrounding mussel rafts and the friction caused by the own hanging ropes of a 13 

raft on which current meters were placed. Therefore, if only one current meter is 14 

installed on the raft, it is not possible to discern whether the current recorded is an 15 

inflow or an outflow since it is likely that the current do not always enter the rafts 16 

through the bow. It should also be considered that the flow is not totally aligned 17 

between the upstream and downstream sides of the raft, because the raft itself tend 18 

to diverge the flow upstream causing that the flow is not slowed down 19 

downstream (Boyd and Heasman, 1998). Blanco et al. (1996) also suggested that 20 

there is inflow along the sides of a raft because currents at the rear were higher 21 

than in the middle. 22 

Although the direction of the currents can be determined precisely because the 23 

2D-ACM current meters have an internal compass, no compass was installed 24 

simultaneously on these rotating platforms to know how the bow is oriented at 25 
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each time. For this reason it was not possible to know how the current enters in 1 

the raft. In future studies, hanging current meters, should be installed at the four 2 

sides and the centre of a raft continuously tracked with a GPS and a compass to 3 

record the direction of the water entering and leaving the structure at any side of 4 

the raft and any time. With this exhaustive sampling scheme current speed at the 5 

raft scale could be evaluated to study the success of the mussel growth from 6 

fluxes derived from these velocities. 7 

5. Conclusions 8 

The relatively low residual currents of 2–3 cm s–1 recorded in the mussel 9 

cultivation areas of the Ría de Ares-Betanzos are compatible with the food 10 

demand of the mussels cultured on hanging ropes. In most locations, growing 11 

mussels could efficiently clear the water crossing the rafts because filtration speed 12 

of the growing mussels is comparable with the velocity of the current transporting 13 

their food. However, in Miranda, where the current velocity is double the 14 

filtration speed, it would be necessary to increase the number of rafts and/or the 15 

number of ropes per raft, which would increase the filtration speed and decrease 16 

the current velocity because of the friction caused by the hanging ropes. 17 

During this anomalously dry period, winds played a major role in the subtidal 18 

circulation regime of the different cultivation areas of the ría.  The orientation of 19 

the two inner branches of this embayment, where the growing area of Arnela and 20 

the seed collection area of Redes are located, restricts the flushing out induced by 21 

the dominant north-easterly winds that blow into the ría and the adjacent shelf. 22 

Conversely, the hydrodynamics of the outer ría, where the seed collection area of 23 

Miranda and the growing area of Lorbé are located, are more influenced by the 24 
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stronger winds that blow over the shelf and the resulting coastal 1 

upwelling/downwelling regime.  2 

It is likely that the currents recorded by instruments installed at the bow of the 3 

mussel rafts are affected by both the surrounding rafts and the instrumented raft 4 

itself. Rafts do not always align with the currents and water may not always enter 5 

rafts at the bow. A consequence of this is that the influence of the raft on the 6 

current speed recorded at the bow may vary depending on the orientation of the 7 

raft to the current. To overcome this difficulty, hanging current meters should be 8 

installed at the four sides and the centre of a continuously tracked raft with a GPS 9 

and a compass to record the direction of the water flow entering and leaving the 10 

raft at each time. 11 
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Figure captions: 1 

Figure 1. Map of the Ría de Ares-Betanzos, showing the location where the 2 

acoustic 2D-ACM current meters were hung (black triangle) at Miranda, Lorbé, 3 

Redes and Arnela and the DCM12 mooring site in the middle ría (open triangle), 4 

the position where shelf winds were recorded by the buoy of Puertos del Estado at 5 

Cape Vilano (open dot), and the 4 km x 4 km cells where the Galician 6 

meteorological agency MeteoGalicia reconstructed the local winds (black circles). 7 

The inset shows the Lorbé and Arnela raft polygons. 8 

Figure 2. Tidal height derived from the high precision quartz pressure sensor of 9 

the DCM12 current meter (a), East (black) and North (grey) total current velocity 10 

components for the four 2D-ACM current meters hung at 1 m depth at the bow of 11 

the rafts of Arnela (b), Lorbé (c), Miranda(d) and Redes (e) and for the five layers 12 

(f, g, h, i, j) Central, D1-D5 of the DCM12 Doppler current meter. 13 

Figure 3. Counter-clockwise (blue) and clockwise components of the Fourier 14 

transform of current velocities for the four 2D-ACM current meters hung at 1m 15 

depth at the bow of the four rafts (A - Arnela, L- Lorbé, M - Miranda and R – 16 

Redes). Frequency is in day–1 (d–1). 17 

Figure 4. Counter-clockwise (blue) and clockwise components of the Fourier 18 

transform of current velocities for the five layers (up to down, D1-D5) of the 19 

DCM12 Doppler current meter moored mid-channel. Frequency is in day-1 (d-1). 20 

Notice the vertical maximum at semidiurnal tidal frequencies in all layers, 21 

especially layer 2. Incidentally, the maximum in layer 1 occurs at 1 d-1 not 2d-1. 22 

Figure 5. East (black) and North (grey) subtidal wind velocity components 23 

obtained from the Seawatch buoy of the Spanish Agency Puertos del Estado off 24 
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Cape Vilano (a), East (black) and North (grey) subtidal current velocity  1 

components for the four 2D-ACM current meters hung at 1m depth at the bow of 2 

the rafts of (b) Arnela, (c) Lorbé, (d) Miranda and (e) Redes and for the five layers 3 

(f, g, h, i, j) Central, D1-D5 of the DCM12 Doppler current meter. Note that 4 

Figure 5a shows the direction in which the wind is blowing to. 5 

Figure 6. Progressive vector diagram for the low-pass filtered currents derived 6 

from 2D-ACM current meters hung at 1 m depth at the bow of the four rafts (A, 7 

L, R and M) and for the low-pass filtered currents derived from the first layer of 8 

the DCM12 (D) for the period 15 October 2007 to 20 November 2007. The origin 9 

(15 October 2007) is denoted with an asterisk and A, L, R, M and D for each 10 

current meter. Each dot from the asterisk indicates a day from 16 October to 20 11 

November. The scale was multiplied by 10–1 km to facilitate the visualization of 12 

the trajectories. 13 

Figure 7. Cross correlation coefficients (r) and phases (pha) between the residual 14 

surface current in the middle Ría de Ares-Betanzos (D1) and the subtidal current 15 

measured at 1 m depth at the bow of the four rafts (A1, L1, R1 and M1) as a 16 

function of the lag time (in hours) between residual currents for the time period 15 17 

October-20 November 2007. 18 

Figure 8. Cross correlation coefficients (r) and phases (pha) between the residual 19 

currents measured at 1 m depth at the bow of the four rafts (A1, L1, R1 and M1) 20 

as a function of the lag time (hours) between residual currents for the time period 21 

15 October-20 November 2007. 22 

 23 
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Table 1. Parameters of the harmonic tidal analysis at the raft positions for the period from 15 
October to 20 November 2007. Only constituents with signal-to-noise ratio >2 are listed. 
Percents of total variance explained were 16.8%, 53.4%, 14.3% and 64.1% for Arnela 1 m, 
Lorbé 1 m, Miranda 1 m and Redes 1 m, respectively. 

constituent major emaj minor emin inc einc pha epha snr

(cm/s) (cm/s) (deg) (deg)

Arnela 1

*MSF 0.1 0.1 -0.1 0.1 11 60 82 50 2.0

*ALP1 0.2 0.1 -0.1 0.2 180 47 20 39 4.5

*2Q1 0.2 0.1 0.2 0.1 30 49 253 40 2.6

*NO1 0.2 0.1 0.2 0.1 9 122 172 117 3.4

*K1 0.3 0.2 -0.2 0.1 65 24 49 33 3.5

*OO1 0.1 0.2 0.1 0.1 11 67 339 52 2.1

*N2 0.3 0.2 0.2 0.2 54 92 121 95 2.9

*S2 0.4 0.3 -0.2 0.2 86 34 21 45 2.0

*ETA2 0.2 0.1 -0.2 0.1 94 69 188 83 2.8

Lorbé 1

*Q1 0.3 0.1 -0.2 0.2 69 33 23 31 5

*NO1 0.3 0.1 0.2 0.2 30 36 298 30 3

*K1 0.3 0.1 0.2 0.1 25 34 58 33 4

*UPS1 0.2 0.2 -0.1 0.2 64 39 161 35 4

*MU2 0.5 0.2 -0.1 0.3 89 27 66 28 4

*N2 0.6 0.2 0.2 0.2 113 24 76 26 7

*M2 1.7 0.2 0.1 0.3 139 8 150 8 57

*L2 0.3 0.2 0.2 0.2 77 52 44 51 3

*S2 0.7 0.2 -0.1 0.3 138 19 164 20 9

*MK3 0.2 0.1 0.2 0.1 41 52 209 50 3

*MN4 0.3 0.2 -0.2 0.2 27 48 35 37 4

*M4 0.5 0.2 -0.2 0.2 29 22 116 20 9

*MS4 0.4 0.2 -0.1 0.2 14 29 139 26 5

*S4 0.3 0.2 0.1 0.2 46 42 135 47 2

*M8 0.2 0.1 0.1 0.1 34 46 143 47 2

Miranda 1

*ALP1 0.6 0.4 0.2 0.4 148 48 292 52 2

*2Q1 0.6 0.4 0.1 0.4 135 44 28 52 3

*MU2 1.3 0.9 0.2 0.8 140 38 334 44 2

*M2 1.0 0.7 -0.1 0.9 108 77 189 41 2

Redes 1

*MSF 0.2 0.1 0.1 0.1 48 44 66 39 2

*2Q1 0.3 0.2 -0.1 0.3 1 67 182 47 3

*Q1 0.4 0.2 0.2 0.3 36 53 116 46 3

*K1 0.4 0.3 -0.1 0.4 164 57 206 41 2

*EPS2 1.0 0.5 0.2 0.5 21 33 26 28 4

*N2 2.7 0.6 -0.7 0.6 21 13 337 12 24

*M2 4.2 0.5 0.3 0.5 21 8 355 8 70

*L2 1.4 0.5 0.6 0.5 20 30 172 25 9

*S2 1.4 0.4 0.1 0.5 22 23 319 22 10

*ETA2 0.5 0.3 0.2 0.3 26 58 87 49 3

*MO3 0.3 0.2 -0.1 0.2 148 37 100 38 3

*M3 0.5 0.2 0.1 0.2 27 28 227 35 4

*SN4 0.7 0.5 -0.4 0.2 89 30 165 60 2

Table 1

http://ees.elsevier.com/csr/download.aspx?id=228395&guid=15775df3-eaea-4ea7-9e16-2a04a726f851&scheme=1


 

 

 

 

 

constituent major emaj minor emin inc einc pha epha snr

(cm/s) (cm/s) (deg) (deg)

LAYER 1

*2Q1 0.9 0.6 0.5 0.7 2 121 37 65 2

*O1 1.3 0.9 -0.1 0.7 121 29 17 47 2

*NO1 1.1 0.6 0.1 0.7 39 41 218 36 3

*K1 5.4 1.1 -0.8 0.5 91 6 248 14 24

*N2 1.0 0.6 -0.2 0.6 128 47 124 47 2

*M2 2.2 0.8 -0.4 0.7 132 21 68 17 8

*L2 1.2 0.7 -0.3 0.8 4 41 193 33 3

*S2 2.1 0.7 -0.8 0.6 143 25 104 23 10

LAYER 2

*K1 1.1 0.2 -0.2 0.2 143 14 16 14 18

*J1 0.4 0.2 -0.1 0.2 2 31 256 39 3

*OO1 0.2 0.1 0.1 0.1 81 61 189 55 2

*MU2 1.2 0.6 -0.2 0.7 134 28 64 34 4

*N2 3.1 0.6 -0.4 0.7 134 12 132 11 27

*M2 10.7 0.8 -2.4 0.7 143 4 78 4 190

*L2 0.9 0.6 -0.2 0.7 106 50 180 47 2

*S2 5.2 0.7 -0.9 0.6 144 7 100 8 57

*M4 0.7 0.3 0.2 0.4 115 33 196 31 4

*2MN6 0.4 0.2 -0.2 0.2 147 34 284 41 3

*M6 0.3 0.2 -0.2 0.2 147 78 261 84 2

*2MS6 0.4 0.2 0.1 0.2 158 31 249 31 4

LAYER 3

*2Q1 0.5 0.2 -0.2 0.2 141 23 15 24 5

*Q1 0.3 0.2 -0.1 0.2 44 35 320 40 3

*O1 0.2 0.2 -0.2 0.2 99 67 60 40 2

*NO1 0.3 0.2 -0.2 0.2 153 33 262 45 2

*K1 0.9 0.2 -0.7 0.2 152 44 313 49 19

*J1 0.4 0.2 -0.1 0.2 121 38 335 30 6

*MU2 1.1 0.5 -0.2 0.4 135 26 44 26 5

*N2 2.5 0.5 -0.2 0.5 138 10 134 10 28

*M2 10.2 0.5 -1.2 0.4 144 3 81 2 410

*S2 4.9 0.4 -0.7 0.5 143 5 98 5 130

*MN4 0.4 0.2 0.1 0.3 135 38 274 39 4

*M4 0.5 0.3 -0.2 0.2 150 30 247 48 2

*SN4 0.4 0.2 0.1 0.3 102 64 220 46 4

*MS4 0.5 0.3 -0.2 0.3 138 32 244 36 3

*M6 0.3 0.2 -0.1 0.2 141 31 273 36 3

*2MS6 0.4 0.2 -0.1 0.2 144 32 255 32 4

*M8 0.1 0.2 -0.1 0.2 160 39 322 38 2

Table 2

http://ees.elsevier.com/csr/download.aspx?id=228396&guid=ee6e6ad6-e81d-4c13-8beb-1ccb2b4b1820&scheme=1


 

 

Table 2. Parameters of the harmonic tidal analysis for the five layers of the middle mooring for 
the period from 15 October to 20 November 2007. Only constituents with signal-to-noise ratio 
>2 are listed. Percents of total explained variance were 51.5%, 91.1%, 91.2%, 87.9% and 86.0% 
for layers 1, 2, 3, 4 and 5, respectively. 

 

 

 

 

 

 

 

 

 

 

 

 

LAYER 4

*O1 0.3 0.1 -0.1 0.2 85 99 105 43 3

*NO1 0.5 0.3 -0.2 0.2 149 28 216 35 4

*K1 0.9 0.3 -0.6 0.2 30 41 63 49 9

*J1 0.4 0.2 -0.2 0.2 130 61 332 68 3

*MU2 1.2 0.4 0.1 0.5 136 25 38 22 9

*N2 2.0 0.5 0.1 0.5 138 14 132 13 14

*M2 8.6 0.5 -0.1 0.5 141 3 77 3 300

*S2 4.1 0.4 -0.2 0.5 137 7 95 6 93

*MN4 0.4 0.3 0.1 0.3 100 52 273 40 3

*M4 0.4 0.3 -0.1 0.3 126 54 235 57 2

*MS4 0.5 0.3 -0.1 0.3 136 42 238 39 2

*2MS6 0.3 0.2 -0.1 0.2 118 41 261 42 3

LAYER 5

*O1 0.4 0.2 -0.2 0.2 143 28 81 34 5

*NO1 0.5 0.2 -0.1 0.2 167 21 227 26 7

*K1 0.5 0.2 -0.3 0.2 53 32 40 29 9

*MU2 0.8 0.4 0.2 0.4 129 33 26 36 3

*N2 1.7 0.4 0.3 0.4 137 14 127 14 19

*M2 6.8 0.4 0.4 0.4 132 4 65 4 280

*S2 3.2 0.5 0.2 0.4 130 7 82 7 49

*M4 0.5 0.2 -0.1 0.3 126 38 222 40 5

*SN4 0.4 0.2 -0.2 0.3 96 52 189 38 4

*MS4 0.5 0.2 0.0 0.2 140 27 258 33 5

*2MS6 0.3 0.2 -0.1 0.2 111 36 213 47 3



	
  

 

Table 3. Average cross correlation coefficients (r) and phases (pha) between the residual current 
measured in the five layers in the middle Ría de Ares-Betanzos (D1-D5) and the residual shelf 
winds recorded at the Cape Vilano buoy (W), as a function of the lag time (hours) between 
residual currents and winds for the time period 15 October-20 November 2007. The correlation 
coefficients were calculated for a discrete time. After this, we calculate the average correlation 
coefficient and phase over 12 hour intervals (0–12, 13–24, 25–36, … 85–96 hours).  Two-tailed 
critical values of r for 23 degrees of freedom are 0.33, 0.40, 0.46 and 0.51 for p = 0.1, p = 0.05, 
p = 0.02 and  p = 0.01 respectively. 
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Table 4. Average cross correlation coefficients (r) and phases (pha) between the residual current 
measured at 1m depth at the bow of the four rafts (A, L, R and M) and the residual shelf winds 
recorded at the Cape Vilano buoy (W), as a function of the lag time (hours) between residual 
currents and winds for the time period 15 October-20 November 2007.	
   The correlation 
coefficients were calculated for a discrete time. After this, we calculate the average correlation 
coefficient and phase over 12 hour intervals (0–12, 13–24, 25–36, … 85–96 hours). Two-tailed 
critical values of r for 24 degrees of freedom are 0.32, 0.39, 0.45 and 0.50 for p = 0.1, p = 0.05, 
p = 0.02 and p = 0.01 respectively. 
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