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Abstract Software was developed to spatially assess key crop characteristics from

remotely sensed imagery. Sectioning and Assessment of Remote Images (SARI�), written

in IDL� works as an add-on to ENVI�, has been developed to implement precision

agriculture strategies. SARI� splits field plot images into grids of rectangular ‘‘micro-

images’’ or ‘‘micro-plots’’. The micro-plot length and width were defined as multiples of

the image spatial resolution. SARI� calculates different indicators for each micro-plot,

including the integrated pixel digital values. Studies on weed patches were done with

SARI� using ground-truth data and remote images of two wheat plots infested with Avena
sterilis at LaFloridaII and Navajas (Southern Spain). Patches of A. sterilis represented 47.5

and 19.2% of the field areas at the two locations, respectively; the infested areas were a

combination of a few large and several small patches. At LaFloridaII, 2.1% of all patches

were [500 m2 and 55.0% of all patches were smaller than 10 m2. Based on ground-truth

weed abundance data, SARI� output includes geo-referenced and visual herbicide pre-

scription maps, which could be used with variable-rate application equipment.
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Introduction

Site-specific agriculture takes into account the spatial variability of biotic factors, such as

weeds and pathogens, and of abiotic factors, such as nutrients or water content. Addi-

tionally, it uses diverse technologies to apply fertilizers, pesticides or other inputs at

variable rates, fitting the needs of each defined area (Blackmore 1996; Kropff et al. 1997).

The patchy distribution of weeds in fields has been observed and is well documented (e.g.

Jurado-Expósito et al. 2003; Krohmann et al. 2006). However, herbicides are usually

applied at a single rate over an entire field. To reduce the total amount of herbicide

sprayed, site-specific weed management (SSWM) techniques are being developed,

allowing pesticide application only where weed densities exceed the economic threshold

and reducing application rates in patches where weed densities are low (Christensen et al.

2003; Barroso et al. 2004, 2005). Potential economic and environmental benefits of SSWM

include reduced spray volume, decreased application time and lower non-target spraying

(Thompson et al. 1991; Medlin et al. 2000). The economic benefits of SSWM have proved

to be potentially high for various crops in experimental studies (Timmermann et al. 2003).

Although proximal ‘‘on-the-go’’ sensors in cereal crops are used commercially to maximise

farmer’s profit, the use of remote sensing in precision agriculture is still in a developmental

phase. Several technological constraints, such as accurate and automatic image georefer-

encing, calibration and splitting larger images into micro-images, and assessment strate-

gies, need to be overcome (Garcı́a-Torres et al. 2010).

Spectral reflectance differences can be enhanced by using ratios or linear combinations

of bands or selected wavelengths when multi-spectral (visible and near infrared spectral

bands) and hyperspectral (over 6–8 spectral bands) data are used, respectively. The ratios

take advantage of vegetation reflectance contrast between different wavelengths. Usually,

vegetation indices give an indication of the presence or absence of vegetation but not of

weed species. The most widely used indices in multi-spectral remote sensing are: the

Normalized Difference Vegetation Index (NDVI: NIR - R/NIR ? R; Rouse et al. 1973),

and the Ratio Vegetation Index (RVI: NIR/R; Jordan 1969). NDVI and RVI are commonly

used to differentiate vegetation because it usually shows high reflectance in NIR and low in

R, and both indices enhance these differences (Koger et al. 2003). In some reports, multi-

spectral information and NDVI were used to discriminate Panicum effesum R. Br. in

oilseed rape (Brassica napus L.) stubble (Lamb and Weedon 1998), wild oat in wheat

triticale (Lamb et al. 1999), yellow hawkweed (Hieracium pratense Tausch) and oxeye

daisy (Chrisanthemum leucanthemum L.) in pastures and meadows (Lass and Callihan

1997), yellow starthistle (Centaurea solstitialis L.) (Lass et al. 2000), and weed-free and

weed-infested areas in soybean (Chang et al. 2004). Similarly, in previous works, our

group has described the mapping of late-season infestations of Avena sterilis in wheat

(López-Granados et al. 2006), of Ridolfia segetum Moris in sunflower (Helianthus annuus
L.) (Peña-Barragán et al. 2007), and of cruciferous weeds in wheat and legumes (deCastro

et al. 2009) using remote sensing. Detection of late-season weed infestations with remote

sensing is feasible when plants are mature, the soil surface is completely covered and the

influence of background soil and crop residue reflectance is minimum (Koger et al. 2003).

Thus, taking into account that weed infestations can be relatively stable from year to year

(Wilson and Brain 1991), late-season weed detection maps can be used to design site-

specific control methods in the following years. Other works support the idea that weed

management systems do not require differentiation between weed species, but rather

between crop and other vegetation for using non-selective herbicides or combination of

grass and broadleaf herbicides (Vrindts et al. 2002), or among crop and monocotyledonous
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and dicotyledonous weeds for reducing non-target spraying (Gibson et al. 2004; Thorp and

Tian 2004).

Wild oat (Avena sterilis sp. sterilis L. AVEST) is the most common grass weed in

winter cereal crops and is found in 65% of the arable fields in Southern Spain (Saavedra

et al. 1989). Wheat (Triticum durum L., T. aestivum L.) is a very important crop in many

countries and over 5 M ha are grown annually in Spain (MARM 2011). Barroso et al.

(2004) studied the patchy distribution and spatial stability of A. sterilis in long-term field

experiments and concluded that the location of the infestation was quite stable throughout a

5-year period. The abundance and distribution of A. sterilis in dry land barley fields was

studied in several Spanish provinces and it was concluded that most infestations were

concentrated in a few large but unevenly-shaped patches, with a larger number of smaller

and more even patches accounting for a small proportion of the infestation (Ruiz et al.

2006). Taking into account that Alopecurus myosuroides and A. sterilis weed infestations

can be relatively stable from year to year (Wilson and Brain 1991; Barroso et al. 2004),

late-season weed detection maps can be used to design SSWM for the subsequent years.

A further aim of weed patch mapping is to design a prescription herbicide application map

and, for this purpose, the spatial resolutions of patch mapping and subsequent spraying

have turned out to be critical parameters for SSWM implementation. For practical reasons,

these spatial resolutions need to be matched (Ruiz et al. 2006).

Cost–effective large-scale mapping of biotic/abiotic parameters needs to be developed

to take full advantage of SSWM. Software to manage remotely sensed images can play an

important role in the fulfilment of this objective. The aim of this work was to develop

software to manage remotely sensed images for site-specific agricultural applications,

so-called Sectioning and Assessment of Remote Images (SARI�), and to show the usefulness

of the software for winter wheat infested with A. sterilis patches. The specific objectives of

this study were as follows: (1) to describe the development of SARI� software, (2) to show

quantitative information provided by SARI� and herbicide prescription map, and (3) to use

the software to assess weed patches, grouping them according to infestation level.

Materials and methods

Image processing requirements: ENVI, IDL and SARI�

ENVI� 4.6 (Visual Information Solution Inc., Boulder, Colorado, USA) was the computer

program used for visualizing and processing images; this is written in IDL�, a systema-

tized computer language that permits integrated image processing (Visual Information

Solution Inc., Boulder, Colorado, USA). To achieve the objective of this paper, our

research group has developed the software named SARI�, which is also written in IDL and

works as an add-on to ENVI.

SARI� software

This has been developed to implement precision agriculture strategies (Garcı́a-Torres et al.

2008a, 2009). SARI� splits field plot images into grids of rectangular ‘‘micro-images’’ or

‘‘micro-plots’’, whose length and width are arbitrarily defined as multiples of the spatial

resolution of the image. SARI� calculates various indicators for each micro-plot, such as

the integrated pixel digital values (IDV) and the percentage of pixels (%PI) with digital
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value (DV) = 0, and then classifies the micro-plots into arbitrarily defined classes based

on these indicators.

Land uses classification

Any waveband or vegetation index image in which land uses can be discriminated was

suitable for processing by SARI�. First, a supervised classification of the main land uses

in the image is needed to define the boundary digital values (BDV), which characterize

each identified land use and the accuracy statistics of the classification. The BDV of the

selected land uses, among other parameters, will be subsequently implemented in the

SARI� software. In the classification process, the statistics commonly used are the overall

accuracy (OA) and Kappa coefficient (KC); OA and KC of over 85–90% and 0.80–0.85,

respectively, are generally recommended (Landis and Kock 1977; Thomlinson et al. 1999).

SARI definition parameters

Once a remotely sensed image has been selected, a set of parameters need to be obtained

and introduced into SARI�’s main interface:

(a) Clustering parameters are needed to characterize the patches and are defined as

follows:

a.1 Boundary digital values (BDV): define the selected land use Maximum BDV

(BDVMAX) and Minimum BDV (BDVMIN) and should be obtained by applying

a main land use classification process as previously described.

a.2 Cluster merging distance (CMD): maximum distance in between patches or

clusters required to merge neighbouring patches or clusters, which are defined in

pixels. In clustering studies, CMD was considered a variable to be analysed.

a.3 Minimum Clustering Size (CSMIN): any patches or clusters smaller than the

defined size (in number of pixels) were discarded and not taken into account for

further calculations.

a.4 Clustering Size (CSMAX): defines a maximum number of columns (Width,

WCMAX) and rows (Length, LCMAX) to keep in a cluster; patches with higher

values than these maxima are split into smaller clusters.

(b) Region of Interest (ROI) was the grid size or micro-plot parameters of the sectioned

image defined as follows:

b.1 The maximum number of columns (Width, WRMAX) and

b.2 The maximum number of rows (Length, LRMAX) in the regions of interest

(ROI).

Each micro-plot is created in the geometric centre of each cluster.

Clustering pixels by SARI�

To cluster pixels into patches, SARI� operates by integrating the DVs of neighbouring

pixels into a defined range of DV and the clustering dimension, which is given by a

maximum number of columns (Width, WCMAX) and a maximum number of rows (Length,

LCMAX). SARI� applies a mask over the processed image, using the range of BDV
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(BDVMIN, BDVMAX) for each land use obtained in the overall land use classification

procedure. The DV of every pixel of the image not belonging to the BDV range defined for

the selected land use are fixed at 0, and the DV are retained for the pixels belonging within

the BDV range. The next step is the determination of the clusters over the selected image.

For SARI�, clusters are defined as groups of adjacent pixels in the size range defined.

SARI� operates pixel by pixel, starting row by row from top to bottom and then column by

column from left to right. A new identification number or name (label) is assigned to each

pixel not connected to previously found clusters; otherwise, if it is connected, the assigned

label will be the same. The distance allowed between clusters is defined by the CMD,

where adjacent clusters located less than the CMD are merged. The cluster size range and

the minimum (CSMin) and maximum (CSMax) clustering size are implemented, in order to

discard clusters with a very large or small size in relation to the ROI.

Image splitting and micro-plot classification

The original image is divided into small images (‘‘micro-images’’ or ‘‘micro-plots’’), each

of a size equal to the ROI defined by inputting clustering and ROI size parameters

(WCMAX = WRMAX, HCMAX = HRMAX) into SARI�. Each ROI defined by SARI�

exhibits all the quantitative information provided by the ROI menu of ENVI through the

Statistics Sub-menu, for example, the number of pixels, mean and range of DVs. Similarly,

the micro-images created by SARI� can be visually assessed in the original image and/or

independently separated through other ENVI menus (Subset Data via ROI).

Each micro-plot MPi defined by SARI� is characterized with different parameters, as

follows:

– Xi, Yi, Geographic co-ordinates of micro-plot centre i.
– MPxi, Number of pixels of micro-plot i,

– IDVi, Accumulated digital value calculated as the arithmetical sum of all DVs;

IDVi =
P

iDVi
– ADVi: Average digital value of the micro-plot i, ADVi = IDVi/MPxi

– IPN: Number of pixels of all micro-plots; IPN ¼
PC

1 MPxi, c being the number of

micro-plots,

– NOPIi, Number of pixel of micro-plot i with DV = 0

– % PIi, % of pixels of micro-plot i with DV = 0

– Class: Micro-plots can be classified as %PIi or %IDVi over the maximum of a selected

micro-plot. The resulting classes correspond to previously established percentages of

pixels as defined in the interface; for example: classes 0, 1, 2, 3, 4 and 5 could be equal

to 0, 1–20, 21–40, 41–60, 61–80 and 81–100%, respectively, or to the selected

percentage that is indicated.

The operational flowchart of SARI� is shown in Fig. 1.

Field locations, airborne images and processing

Remotely sensed images were obtained from a 1.95 ha portion of LaFloridaII farm (Utrera,

Seville) and in a 2.69 ha portion of the Navajas farm (Sta. Cruz, Cordoba) in Southern

Spain. Geographic co-ordinates of the upper left corner were X = 242 061 m,

Y = 4 124 806 m; and X = 360 870 m, Y = 4 185 307 m (Universe Transverse Mer-

cator system, zone 30 North, UTM-30N), respectively. In both locations, winter wheat
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(T. durum L. cultivar Mexicali) was sown in mid-November, 2005 at 140 kg ha-1, and

harvested early in June, 2006, and the fields were naturally infested with A. sterilis. Multi-

spectral band colour-infrared KODAK film photographs (green, G: 500–600 nm; red, R:

600–700 nm; near infrared, NIR 700–1 100 nm) (Eastman Kodak Co., Rochester, New

York, USA) were taken in mid-May, 2006 at noon. At this time, wheat plants were at an

advanced stage of senescence and yellowing, while the A. sterilis panicles were at an

advanced stage of seed maturation and partly green, corresponding to stages 92 and 83,

respectively, as described by Lancashire et al. (1991). Photographs were taken from a

turbo-prop twin-engine plane CESSNA 421 with WILD RC-30 photographic equipment.

Flight altitude was 1 500 m, and photographs had an average scale of 1:10 000. Selected

photographs were digitized using a Hewlett Packard ScanJet 4C scanner to obtain pixels of

Fig. 1 SARI� operations flowchart; software initialization, main processes/sub-processes,
additional information, parameters inserted by the user, data outcome of SARI execution
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0.5 and 1 m. Supervised classification of the grassy weed patches in wheat was previously

described by López-Granados et al. (2006), who recommended the use of the NDVI index

due to the high per-class accuracies obtained (0.87–0.94) in all locations.

Ground truth data

Each farm was visited during mid-May 2006 to assess visually ground-truth crop areas of

several categories of weed abundance: (a) A. sterilis-free, (b) low (1–30 A. sterilis panicles

m-2, average 20 m-2), (c) intermediate (31–80 panicles m-2, average 60 m-2), and

(d) high infestation ([81 panicles m-2, average 140 m-2). About 10–12 selected crop

areas measuring 2–3 m2 of each weed density category were collected as training pixels for

the development of threshold level, and a similar number of points of each category for the

accuracy assessment. In addition, about 50 ground control points, namely singular points

such as fence lines and lanes, were also geo-referenced in each farm to ensure accurate

geographical co-ordinates of the images. Weed abundance areas and control points were

geo-referenced using a sub-meter differential GPS TRIMBLE PRO-XRS (Trimble Navi-

gation Limited, California, USA) and then overlaid onto the remotely sensed images using

PATHFINDER OFFICE 2.51 software (Trimble Navigation Limited, California, USA). In

the NDVI image of LaFloridaII and Navajas, BDV of each weed density category was

defined from the corresponding ground-based geo-referenced points through an iterative

process with a set of threshold BDV interval. To avoid any subjective estimation, each set

of BDV was checked through a numerical confusion matrix analysis. The OA and KC of

the whole classification process were calculated.

Quantitative information and herbicide prescription map provided by SARI�

To show the basic output and prescription map achieved by SARI�, the NDVI image of

Navajas (Fig. 2a) was processed under the following specifications: BDVMin and BDVMax

of 0.16 and 0.55, respectively, with no merging of clusters (Merging Distance = 0), no

minimum cluster size limitation (CSMin = 1), and CSMax of 20 9 13 pixels and micro-

plots size of 20 9 13 pixels. The classification criteria of the resulting micro-plots was %

of pixels with class 1, 2 and 3, corresponding to \11, 11–26, and [26% infested pixels,

respectively.

Weed patch assessment

SARI� software was used to determine weed patches (DV: 0.56–0.79) of over 1 pixel

(CSMin = 1), with no limitation on the maximum size (CSMax Width and Length\10 000),

grouped by area into the following classes:\3, 3–10, 11–50, 51–100, 101–500, 501–1 000

and[1 000 pixels. The number, mean size and its standard deviation, and total area of the

patches of each class were determined based on different merging distances between

patches of 1, 2, 3, 5 and 10 pixels.

Visually, weed patches were not uniform in infestation intensity (Fig. 2a). To show the

capacity of SARI� for determining zones of similar weed density, two selected patches of

50 m 9 50 m were isolated at LaFloridaII farm (Fig. 3). BDVs of the weed abundance

categories were based on the geo-referenced ground-truth points. The area of each infes-

tation zone was calculated by SARI� by using BDV with no limitation of cluster size and

no merging of clusters.
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Results

Weed abundance categories

The mean NDVI values and the selected BDV of weed free, very low/low, intermediate

and high weed pressure categories were \0.56, 0.56–0.66, 0.67–0.72 and 0.73–0.80 for

LaFloridaII, respectively, assessed with an overall classification accuracy (OA) of 93.6%

and KC of 0.89 (Table 1). For the same categories at Navajas, the defined BDVs were

\0.16, 0.16–0.39, 0.40–0.46 and 0.47–0.59 (Table 1), with an OA 84.8% and KC 0.78,

respectively.

Quantitative information and herbicide prescription map provided by SARI�

The basic output and prescription maps provided by SARI� for the selected field plot at

Navajas are shown in Table 2 and Fig. 2b, respectively. The original image was sectioned

into 112 micro-plots of 20 9 13 pixels. The output of each micro-plot provided by SARI�

Fig. 2 a NDVI image view of Navajas (320 9 91 m) where wheat crop is shown in black (NDVI values
\0.16) and wild oat patches in white (NDVI values 0.16–0.55); overall classification accuracy and Kappa
coefficients were 84.8% and 0.78; and b herbicide prescription map: image processing characteristics and
micro-plot classification criteria are described in the SARI Software section of the text. Low (\11% infested
pixels), intermediate (11–26%) and high ([26%) weed intensity classes correspond to white, cyan/grey and
black colours, respectively. Micro-plot size is 20 9 13 m. Geographic coordinates (UTM-30N) are
indicated in meters (Color figure online)
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gives its geographic location and key parameters such as the integrated digital values of

each cluster (IDV), the number of pixels of each micro-plot (MPX) and their relationship

IDV/MPX, among others (Table 2). Each micro-plot was also classified by the % infested

pixels, such as \11, 11–26, and [26% infested pixels, for the classes 1, 2, and 3,

respectively (Table 2). These micro-plot classifications can then be visualised as the site-

specific prescription map (Fig. 2b).

Weed patch assessment

Avena sterilis patches were 47.5 and 19.2% of total area at LaFloridaII and Navajas,

respectively. The number and area of weed patches at LaFloridaII was influenced by

merging distance between patches (Table 3). The total number of patches with no merging

was 227. Patch size distribution consisted of a few large patches and many small patches

(Table 3). Merging of neighbouring patches consistently decreased the number of patches

and increased their size. For example, the total number of patches decreased from 227 to 72

and 49 as merging distance increased from 1 to 2 to 3 pixels, respectively. It can be

concluded that most patches were separated from each other by a few pixels, usually less

than 3 m. Thus, the distance between patches considered greatly influenced the resulting

number of patches and their average size. A similar numerical distribution of patches

occurred at Navajas farm (data not shown for abbreviation).

SARI� efficiently quantified the zones of similar weed density within patches of each

micro-plot. For example, for the two selected patches of LaFloridaII previously indicated

(Fig. 3a–h), the zones classified as weed-free, low, intermediate or high infestation were

75, 12, 10 and 2% of their total area for patch #1, and 14, 23, 25 and 36% for patch #2,

respectively. High A. sterilis densities usually occurred in the centre of the patches, thus

coinciding with high DV; A. sterilis densities normally decreased from the centre of the

patches to the A. sterilis-free zones, and so the corresponding DV decreased.

Fig. 3 View of the two selected wild oat patches of LaFloridaII (a–d and e–h) classified by infestation
intensity: a, e overall (NDVI values 0.56–0.80); b, f low (0.56–0.60); c, g intermediate (0.61–0.67); and d,
h high (0.68–0.8). Black pixel are Avena-free crop; white pixel are Avena-infested crop; the whiter the pixel,
the higher the DV values, indicating high Avena infestation. Geographic coordinates (UTM-30N) are
indicated in meters
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Discussion

Remotely sensed images cover large areas, ranging from several hundred hectares to

dozens of square kilometres. Agricultural operations such as sowing, fertilization and

pesticide applications are designed for field areas of smaller size, such as 20–30 ha, or

with a high level of detail as with precision agriculture. In order to use remote sensing for

agriculture, the first step is to isolate the image of the field in which to implement the

desired action. Consequently, planning site-specific operations by remote sensing requires

the isolated plot image to be sectioned into small micro-plots, for example of about

50–200 m2, and then interpreting the appropriate agro-environmental indicator for the

desired operation at each micro-plot. CLUAS� software was developed to programme

site-specific actions for orchards and tree plantations by automatically determining agro-

environmental indicators of each individual tree or small area (Garcı́a-Torres et al.

2008b). The study has shown that similar actions can be planned using SARI� in agri-

cultural plots where annual crops are growing. This software is effective in sectioning

images and assessing key agro-environmental characteristics of each micro-plot,

regardless of the size of the original image. Thus, SARI� meets one basic requirement of

precision agriculture; that is, characterizing the needs of each small defined area

Table 2 Quantitative information provided by SARI� as Excel files for the sectioning of Navajas plot
(Fig. 2a)

Micro-plota Coordinates Pixel
micro-
plot-1

Integrated
digital values

Averaged
digital values

Classification pixel
DV = 0

X Y No. of
pixels.

%
Pixel

Class

1 360 881 4 185 307 260 52.5 0.20 182 70.0 3

2 360 898 4 185 318 260 16.1 0.06 72 27.6 3

3 360 915 4 185 328 260 41.3 0.16 168 64.6 3

4 360 932 4 185 339 260 48.3 0.19 174 66.9 3

5 360 949 4 185 349 260 7.0 0.03 35 13.4 2

6 360 966 4 185 360 260 3.1 0.01 17 6.5 1

: : : : : : : : :

: : : : : : : : :

107 361 090 4 185 349 260 0.0 0.00 0 0.0 1

108 361 107 4 185 360 260 0.0 0.00 0 0.0 1

109 361 124 4 185 370 260 0.0 0.00 0 0.0 1

110 361 141 4 185 381 260 0.0 0.00 0 0.0 1

111 361 158 4 185 391 260 0.0 0.00 0 0.0 1

112 361 174 4 185 401 260 0.0 0.00 0 0.0 1

Overall
image
pixels

27 348 Digital
values
(DV)

Overall 1439.0

Average
pixel-1

0.05

Processing characteristics and micro-plot classification criteria are described in the text
a Only data of the first and last six micro-plots are shown out of a total of 112 micro-plots

332 Precision Agric (2012) 13:322–336

123



T
a

b
le

3
Q

u
an

ti
ta

ti
v

e
as

se
ss

m
en

t
o

f
A

ve
n

a
st

er
il

is
w

ee
d

p
at

ch
es

id
en

ti
fi

ed
b

y
S

A
R

I�
w

it
h

an
N

D
V

I
im

ag
e

fr
o
m

L
aF

lo
ri

d
aI

I
af

fe
ct

ed
b
y

m
er

g
in

g
d
is

ta
n
ce

b
et

w
ee

n
p
at

ch
es

M
er

g
in

g
d

is
ta

n
ce

(m
)a

O
v
er

al
l

p
at

ch
es

P
at

ch
si

ze
(m

2
)

5
0

0
0

–
1

0
0

0
0

1
0

0
0

–
5

0
0

0
5

0
0

–
1

0
0

0
1

0
0

–
5

0
0

5
1

–
1
0

0
1

1
–

5
0

3
–

1
0

\
3

1
N

u
m

b
er

2
2

7
–

1
4

8
2

8
5

8
1

0
2

2
3

%
1

0
0

–
0

.4
1

.7
3

.5
1

2
.3

2
5

.5
4

4
.9

1
0

.1

%
O

f
to

ta
l

ar
ea

b
–

–
1

1
.2

3
0

.1
1

9
.3

1
7

.5
1

5
.0

5
.6

0
.6

M
ea

n
si

ze
(m

2
)

–
–

1
0

6
7

±
0

c
7

1
5

±
1

2
5

2
3

4
±

1
1

0
7

2
±

1
5

2
4

±
1

0
5

±
2

2
±

0

2
N

u
m

b
er

7
2

–
2

3
5

7
2

3
2

6
6

%
1

0
0

–
2

.7
4

.1
6

.9
9

.7
3

1
.9

3
6

.1
8

.3

%
O

f
to

ta
l

ar
ea

a
–

–
4

9
.7

2
5

.5
1

0
.8

5
.2

6
.7

0
.2

0
.0

1

M
ea

n
si

ze
(m

2
)

–
–

2
3

6
2

±
1

2
3

1
8

1
7

±
9

8
2

0
6

±
1

2
1

7
0

±
1

2
2

7
±

1
2

5
.7

±
2

.4
2

.0
±

0

3
N

u
m

b
er

4
9

.0
–

2
4

4
6

1
1

1
6

6

%
1

0
0

–
4

.0
8

.1
8

.1
1

2
.2

2
2

.0
3

2
.4

1
2

%
O

f
to

ta
l

ar
ea

a
–

–
5

9
.0

2
7

.3
5

.2
4

.1
3

.1
0

.9
0

.1

M
ea

n
si

ze
(m

2
)

–
–

2
8

0
7

±
1

2
6

9
6

4
9

±
1

1
7

1
6

3
±

2
1

6
5

±
1

7
2

7
±

9
6

±
2

2
±

0

5
N

u
m

b
er

1
9

.0
1

1
6

2
5

1
3

%
1

0
0

5
.2

5
.2

3
1

.5
1

0
.4

2
6

.3
5

.2
1

5
.7

%
O

f
to

ta
l

ar
ea

a
–

7
7

.5
–

7
.8

1
1

.6
1

.2
1

.6
0

.0
0
3

0
.0

0
6

M
ea

n
si

ze
(m

2
)

7
3

7
0

±
0

–
7

4
5

±
0

1
8

4
±

1
8

5
9

±
1

5
3

0
±

9
3

±
0

2
±

1

1
0

N
u

m
b

er
5

.0
1

–
–

1
–

2
1

–

%
1

0
0

2
0

–
–

2
0

4
0

2
0

%
O

f
to

ta
l

ar
ea

a
–

9
8

.3
–

–
1

.2
–

0
.3

0
.0

6
–

M
ea

n
si

ze
(m

2
)

–
9

3
4

4
±

0
–

–
1

1
8

±
0

–
1

7
±

5
6

±
0

–

a
P

ix
el

si
ze

w
as

1
m

b
O

v
er

al
l

w
ee

d
p

at
ch

ar
ea

w
as

9
5

0
2

m
2

c
S

ta
n

d
ar

d
d

ev
ia

ti
o

n

Precision Agric (2012) 13:322–336 333

123



(Blackmore 1996; Kropff et al. 1997). In addition, SARI� software can work with any

biotic or abiotic factor that can be discriminated within the remotely sensed image and

with the parameters to characterize such factors as the BDV, patch distance and patch

sizes.

Most applications of remotely sensed imagery in agriculture require a spatial resolution

of less than 10–15 m pixel-1. Generally, the finer the spatial resolution, the more accurate

the assessment. Efficient programming of site-specific operations of biotic factors, such as

mapping weeds, normally requires spatial resolution of about 1 m or less (López-Granados

et al. 2006; Peña-Barragán et al. 2007). Remotely sensed images with spatial resolution

from 0.25 to 1.0 m were suitable for olive grove characterization using CLUAS� software

(Garcı́a-Torres et al. 2008b). In this study, remotely sensed imagery with similar spatial

resolution has been used with SARI�.

Patchy distribution of weeds in fields has been studied using ground techniques

(Krohmann et al. 2006; Ruiz et al. 2006), complemented with geo-statistical approaches

(Jurado-Expósito et al. 2003), concluding that weed infestations were concentrated in a few

large but unevenly-shaped patches, with a larger number of smaller and more even patches

accounting for a small proportion of the infestation. Generally, the weed patch study using

SARI� software is in agreement with previous findings. However, patch studies carried out

on remote images through SARI� software are much more cost–effective than those

achieved through conventional ground techniques.

An important limitation of the SARI system herein described is that weeds or other

biotic or abiotic factors have to be discriminated in the remotely sensed image. Referring to

weeds, nowadays weed discrimination in crops is mainly restricted to late season species

overgrowing the crop with different stages of senescence (López-Granados et al. 2006;

Peña-Barragán et al. 2007). However, efforts to discriminate early weed discrimination in

crop rows is under development (Gerhards 2010; Ford et al. 2011), which will largely

amplify the possibilities of using SARI.

Conclusions

SARI� software splits field plot images into grids composed of rectangular micro-

images or micro-plots, whose width and length are defined as multiples of the image

spatial resolution. SARI� calculates different indicators for each micro-plot, including

the IDV and the %PI with a DV = 0; the system also classifies the micro-plots in

arbitrarily defined classes based on these indicators. Using SARI�, the key crop char-

acteristics can be spatially assessed from remotely sensed imagery, meeting one basic

requirement of precision agriculture: a characterisation of the needs of each small

defined area.

SARI� is a practical piece of software for sectioning remotely sensed images, assessing

agro-environmental indicators and implementing weed control strategies for each micro-

image. The SARI� system provides geo-referenced, quantitative and visual herbicide

prescription application maps, and this information could be transferred to variable-rate

application equipment for practical SSWM strategies. SARI� can greatly improve and

facilitate the use of remote imagery for precision agriculture.
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