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We report on experimental tests of the trend of random laser

linewidth versus pumping power as predicted by an Haus master

equation that is formally identical to the one-dimensional Gross-

Pitaevskii equation in an harmonic potential. Experiments are

done by employing picosecond pumped dispersions of Titanium-

dioxide particles in dye-doped methanol. The derivation of the

master equations is also detailed and shown to be in agreement

with experiments analytically predicting the value of the threshold

linewidth.
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1. Introduction

Laser action is obtained by the simultaneous presence of gain due to stimulated emission and

optical feedback. In a conventional laser these elements are embodied by an active medium

placed between two mirrors that act as an optical resonator. As predicted by Letokov [1]

laserlike emission may be also obtained if the resonator is replaced by a multiple scattering

medium, (such as an ensemble of particles [2] or atoms [3]) which has the role of trapping

light: if the volume of the inverted area is sufficiently large to compensate the losses at the

surface, a random laser (RL) is obtained. This well known phenomenon [4] retains many
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features of standard lasers, such line narrowing at threshold, laser spiking [5], and coherence

[6, 7].

The main effect of multiple scattering is to increase the path length of photons inside

the medium providing enhanced amplified spontaneous emission. If the scattering mean free

path is much longer than the wavelength of light, the system may be described by using a

diffusive model in which the “photon particle” is characterized by a linear increase of the

mean square displacement with time, as in the standard of Brownian motion [8]. In this

model, the energy flow inside the multiple scattering medium is treated by a continuity

equation while neglecting phase and interference effects. RL in the low scattering regime

may be theoretically investigated by adding a gain term to the diffusive equation [9], which

enables to predict the temporal shape of the emission or to study its coherence properties

[10].

At the end of last decade the presence of narrow intense spikes was discovered on random

lasing spectra [7] in strongly scattering zinc oxide samples. The presence of these features

can be explained as a signature of efficient resonant cavities, localized in a confined spatial

region, in which the distribution of disorder determines the wavelength that feels higher

amplification [11]. Although this point is still debated, and early works shows that the

situation is more rich, random lasing may be seen as a superposition of electromagnetic

modes put in oscillation in disordered fashion, with overlapping, finite spatial extent [12].

The nature of this kind of lasing modes is resonant and cannot be described by a diffusive

model [13, 14] that neglects interference effects.

In this manuscript we report on a model, originally introduced by the authors[15], in

which RL action is attributed to many coupled modes with overlapping resonances, and

this is taken as a starting point for deriving a nonlinear equation, which predicts the RL

lineshape. This theory is not limited by the diffusive approximation, which is not valid in

the strongly scattering regime, and also not limited to a specific dimensionality. Such an

approach relies on a completely electromagnetic perspective, and allows (i) to derive closed-

form analytical predictions, (ii) to rigourously define a threshold for the RL action and (iii) to

predict the shape of the RL spectrum at various pumping intensities. The overall linewidth

is described by an Haus Master equations [16] that is formally identical to a Gross-Pitaevskii

equation [17, 18]; its solution, either analytical (which is valid in proximity of the threshold)

or numerical, provides a linewidth shape in quantitative agreement with the experimental
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results.

In addition, the fact that the solution of a master equation, typically employed to de-

scribe ultra-short pulse generation, furnishes the description of laser emission in a disordered

medium denotes that the latter can be interpreted as a coherent and collective emission of

several electromagnetic resonances, eventually encompassing different degrees of localization,

measured by the spreading in their life-time (temporal decay-constant) distribution. This

corresponds to the fact that all the resonances tend to vibrate with a deterministic phase-

relation, i.e., through a spontaneous phase-locking mechanism. As also stated in the early

thermodynamic treatments of lasers (see, e.g.,[19]), such a process can be interpreted as a

classical condensation process, that is a transition from a disordered “thermal” regime (all

the modes oscillate independently) to a “ferromagnetic-like” regime (all the modes oscillates

coherently). This links RL emission with recent investigation of condensation processes at

a classical regime [20], with the remarkable difference that for RL the system is dissipative

instead of Hamiltonian; in addition, this extends the thermodynamic approaches to lasers

[21] to the case of disordered resonators[22]

This paper is organized as follows: in section II we discuss the current state of under-

standing concerning the degree of localization of electromagnetic resonances in RL samples

and we report on the derivation of the Haus equation for RL and its theoretical predictions;

in section III we report on the comparison of the predicted linewidth with picosecond-pump

RL, and conclusions are drawn in section IV.

2. The Haus equation for Random Lasers

We consider a disordered arrangement of dielectric scatterers in which the single particle,

or interstices between them may act as optical cavities. Eigenmodes of a inhomogeneous

dielectric material are eigensolutions of the Maxwell equation with a definite wavelength,

spatial extent and lifetime (with reference to open systems).

A signature of presence of localized modes, has been firstly recognized in linear systems,

by Wiersma et al. [23], as a decrement of the enhancement factor of backscattering cone in

highly scattering media (kℓ lower then 10, with l the transport mean free path and k the

wavenumber) while Maret et al.[24] noticed the presence of light localization by measuring

the time of flight in samples with kℓ 2.5.

When gain is introduced, light localizations become lasing modes that are spatially over-
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lapping and compete for energy. This results into spikes that are visible in the RL spectrum,

as the corresponding high Q cavities sustains a more efficient amplification due to lower losses

with respect to extended modes. Lagendijk et al, studied the spatial extent of lasing modes,

[11] in gallium phosphide samples (kℓ ≈ 6.4) embedded in an active medium pumped in a

3 µm2 area. They retrieve a mode extension between 1 and 4 µm while numerical simula-

tion [25] results in a sub-micron localization length for comparable samples. Earlier studies

demonstrate that coexistence between localized and extended modes in strongly scattering

system plays a fundamental role in the physics of RL [26] as they survive together in spatially

extended random lasing with kℓ ≃ 4 [4]. All these reported results, even if not conclusive,

prove that even if Anderson localization is theoretically expected for kℓ ≤ 1, a signature of

the presence of localized modes can be found even for higher values. This means also that

in condition of sufficiently strong scattering, diffusive approximation, that disregards any

resonant behavior cannot be consistently applied.

In a previous paper[15] the authors proposed an analytical model in which RL action is

assumed to be sustained by a large number of electromagnetic resonances. Here we add more

details on the theoretical part. Our picture is not affected the difference between localized

modes and extended modes. Both types of modes have an eigenfrequency and can lase.

g0

a0

aavg

w

wj

L
o
ss
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Fig. 1. Scheme of losses and gain profile as modeled by our theory.

We start considering the spectral distribution the losses in highly scattering systems,

these are expected to have a smooth profile interleaved by the high Q resonant modes in the

frequency domain. As schematically depicted in figure 1 the spectral profile of losses α(ω)

will appear like:

α(w) = α0 −
N
∑

j=1

αj(ω − ωj) (1)

in which α0 is the average (nonresonant) value of losses and αj(ω − ωj) is a sharply peaked

(centered at ωj) line shape corresponding to a localized mode j (αj is centered at (ω = 0) for
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convenience). α0 is independent on the frequency ω due to the limited width of the spectral

line.

The oscillation condition (gain must compensate losses) for the random lasing results to

be:

g[ω,A(ω)] = α(w)A(ω) (2)

where A(ω) is the random lasing spectral content and g[ω,A(ω)] is the spectral shape of

gain, that nonlinearly depends on the whole spectral content because of the of the nonlinear

susceptibility of the medium [16, 27]:

g[ω,A(ω)] = g0{(1− t2gω
2)A(ω) +

∫ ∫ ∫

dω1dω2dω3δ(ω + ω1 − ω2 − ω3)χ(ω1;ω2ω3) (3)

A(ω1)
∗A(ω2)A(ω3)},

where tg is the lifetime of the gain bandwidth, and g0 the linear gain coefficient. By using

(1) in the oscillation condition (2) we have

g[ω,A(ω)] = α0A(ω)−
N
∑

j=1

αj(ω − ωj)A(ωj) (4)

in which we are allowed to substitute A(ω) with A(ωj) in the second therm of the right side of

the equation as, being αj(ω−ωj) much narrower of the spectrum A(ω), it will “probe” only

the resonance frequencies. As the number of the active localized modes in a macroscopic

sample is enormous, we can suppose that the spectral distance of two contiguous resonances

tends to zero, thus we apply the continuous limit to equation (4):

g[ω,A(ω)] = α0A(ω)−
∫

αavg(ω − Ω)A(Ω)dΩ. (5)

This equation can also be derived by assuming that all the modes are coupled with

overlapping resonances, such that the Time Domain Coupled Mode [28] theory for the generic

mode Ai is written as

g[Ai]i =
∑

j

Kij(ωi − ωj)Aj (6)

where K is the coupling coefficients between two modes, that in general will depend on the

distance between the resonance frequencies (the coupling will be vanishing as the spectral

separation between modes increases). As the number of modes goes to infinity equation (5)
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is obtained, being αavg the average value of the couplings over all resonances and Ω takes

the place of ωj .

By defining the Fourier transform as:

F [a(ω)] =
1

2π

∫

a(t) exp(iωt)dt (7)

we may cast equation (5) in the time domain:

g[t, a(t)] = [α0 − φ(t)]a(t) (8)

were by exploiting the convolution theorem, we substituted αavg , with his Fourier transform

φ(t). αavg is narrow with respect to the gain bandwidth; hence φL(t) can be expanded

around t = 0 with a parabolic function of time:

φL(t) ∼= (α0 − αL)[1− (t/tL)
2] (9)

where αL is the average loss for the high-Q modes (α0 < αL) and tL is their average lifetime.

Physically equation (9) has a simple interpretation: the various localized modes have a

spread in their decay time distribution, this implies that at the beginning all the modes are

put into oscillation and the average loss is high; then short living (de-localized) modes or

radiate out their energy or transmit it to long living modes, correspondingly the average

loss is reduced and the collective laser emission goes above threshold. Finally when also the

long living modes (that oscillate in phase during the emission) emit their radiation, losses

are increased again and the oscillation is below threshold.

The analytical form of gain in time domain is well known from the physics of mode locking

[16, 29] and result from the Fourier transform of equation (3):

g[t, a(t)] = g0

[

a(t) + t2g
d2a(t)

dt2
− γs|a(t)|2a(t)

]

(10)

where the second therm inside the square parentheses results into the finite bandwidth of

fluorescence, and the third models the gain saturation. Lasing condition in the time domain

turns out to be

g0

[

a(t) + t2g
d2a(t)

dt2
− γs|a(t)|2a(t)

]

= (11)

= [α0 − (α− αL)][1− (t/tL)
2]a(t)
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By putting a = a0ϕ and t = t0τ , with

a2
0
= tg

√
α0 − αL (12)

t2
0
= tgtL

√
g0√

α0 − αL
(13)

equation (11) can be cast, with the help of some algebra, in a dimensionless form:

− d2ϕ

dτ 2
+ τ 2ϕ+ |ϕ|2ϕ = Eϕ (14)

where the “nonlinear eigenvalue” E is given by

E =
tL
tg

g0 − αL√
α0 − αL

=
p− 1

κ
√
p
. (15)

Thus E results to be determined by the adimensional pump energy as p = g0/αL and the

constant κ is defined as

κ ≡ tg
tL

√

(
α0

αL
− 1). (16)

κ is completely defined from the characteristics of the lasing material in fact tg, tL, αL, and

α0 reflects gain, resonance and scattering properties of the system. Equation (14), takes in

account for gain saturation, finite gain bandwidth, and the mode coupling due to overlapping

resonances of the random lasing medium. It has bell shaped solution for E > 1 and this

implies the presence of a sharp threshold for the laser action that may be defined as

pth = 1 +
κ2

2
+ κ

√
4 + κ2

2
. (17)

The RL spectral lineshape is found from the Fourier transform ϕ̃(τ) of the solution of Eq.(14)

as:

S(ω) = |A(ω2)| = t2g
γs
|ϕ̃(ωt0)|2 (18)

.

A. Generalized equation

Equation (14) can be further generalized by accounting for higher order gain saturation,

indeed the correspoding time-domain gain is given by

g[t, a(t)] = g0

[

t2g
d2a(t)

dt2
+

a(t)

1 + γs|a(t)|2
]

, (19)
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which reduces to (10) in the small saturation limit. Equation (14) becomes

− d2ϕ

dτ 2
+ τ 2ϕ+

1

ǫ
(1− 1

1 + ǫ|ϕ|2 )ϕ = Eϕ (20)

with ǫ = γsa
2

0
a dimensionless parameter measuring gain saturation. As ǫ → 0 equation (14)

is obtained.

In the experiments reported below no significant discrepancy has been obtained when

comparing the measured quantities with equation (14) and (20); thus denoting the fact that

the lowest order approximation for the gain saturation [Eq. (14)] accurately describes the

experimentally accessible regime.

B. Solution at threshold

φ(τ) and its Fourier transform S(ω) (that is the intensity spectrum of the random laser) can

be approximated by a gaussian near threshold, indeed as E ∼= 1 it is (see, e.g.,[18])

ϕ(τ) ∼= 21/4
√
E − 1 exp(−τ 2/2) (21)

which can be Fourier transformed and once recast in real-world units leads to

S(ω) =
t2g√
2πγS

(E − 1) exp

[

−ω2

8π2W 2

th

]

(22)

were the waist Wth is

2πtgWth =

√

κ

2
=

√

√

√

√

tg
2tL

√

α0

αL

− 1 (23)

Note that a Gaussian lineshape was originally predicted by Lethovov [1], in the framework

of the diffusive approximation for light propagation; in that case the width of the spectral

waist was determined by Brownian motion of the particles forming the scattering medium.

Here our approach also holds well beyond the diffusive approximation, and no motion is

assumed for the disordered material in which the amplification is present. What is limiting

the width of the Gaussian spectrum is the distribution of decay times, and specifically

the value coefficient of κ, which measures (within numerical factors) the ratio between the

spectral waist at threshold and the gain bandwidth (∼= 1/tg) following equation (23).

tL measures the average long-living modes decay time hence correlated value of losses is

αL
∼= 1/tL. In addition α0 is the value of losses of the delocalized/diffusive modes, being

l the transport mean free path and v the energy transport velocity (which is of the order

of c/n̄ with n̄ the average refractive index), it is α0
∼= v/l ∼= D/l2 >> αL with D the light
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diffusion constant (D = vl/3); furthermore for an almost localized regime kl ∼= 1, hence

l ∼= λ/2π, which gives

κ2 ∼= 2πtg
λ

√

D

tL
, (24)

and

Wth
∼=

√

√

√

√

1

4πtgλ

√

D

tL
. (25)

Equation (25) shows that the RL spectral waist in the localized regime decreases with

the light diffusion constant (which in finite-size real world system never vanishes at the

localization), increases with the gain bandwidth, and is narrower the longer is the spread of

the decay time distribution or, equivalently, the longer the lifetimes of localized modes.

C. Solution beyond threshold

The predicted RL spectrum, as obtained after the numerical solution of Eq.(14), is shown

in figure 2 for an increasing nonlinear eigenvalue E beyond the threshold. Figure 3 and 4
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Fig. 2. (Color Online)Shape of the intensity spectrum for different values of the nonlinear

eigenvalue E.

show respectively the waist and the peak of the spectrum as functions of E, for different

values of the κ parameter.

Eq.(14) connects the random lasing spectra found by the nonlinear Schrodinger equation

(14) to the physics of Bose Einstein condensates [17]. Indeed, Eq.(14) is formally identical to
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Fig. 3. (Color Online) Waist (standard deviation) theoretically predicted for the RL spec-

trum in the high scattering regime. The curves are shown for different values of the κ

parameter.

Fig. 4. (Color Online) Peak intensity theoretically predicted for RL in the high scattering

regime. The curves are shown for different values of the κ parameter.

the bound state of a one-dimensional Gross-Pitaevskii equation that governs ultracold atoms

[17, 18]. The modulation of losses φ(τ), which plays the role of the external potential V (~r),

may be seen as a temporal trapping effect that accounts for the existence of localized modes

(low loss) that compete with extended ones. In addition, this theoretical approach allows

to obtain a spectral shape, and in particular the corresponding RL linewidth, as function of
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the pumping energy density, thus furnishing an equivalent of the Schwalow-Townes [30] law

for RL.

3. Experimental results

We used a colloidal dispersion of TiO2 (Sachetleben Hombitan R611) particles in methanol

doped by Rhodamine B (Sigma- Aldrich R6626, 10−3 M). We studied the sediment on

the bottom of the couvette that deposes after half an hour from the preparation. The

packing-fraction of the random lasing sample is 0.2 and its average refractive index nav=1.5.

As the presence of the absorbing dyes makes impossible to perform elastic experiment,

we measured mean free path by enhanced backscattering technique in a dye free solution

containing titanium dioxide dispersed in methanol and NaCl (see figure 5). The presence

of salt mimic the effect of the dyes on titanium dioxide (to screen Columbian interaction

between particles) resulting in a sample with a packing fraction closer to the active sample.

We obtained a value of kℓ = 8 (ℓ = 0.65 µm ). Pumping has been obtained by using

Fig. 5. Enhanced backscattering cone from disorderly arranged titanium dioxide particles

(≈ 300 nm diameter, 0.2 packing fraction) in methanol.

a picosecond Nd:YAG frequency-doubled laser system (10Hz repetition rate, spot size 0.8

mm). Emission is retrieved by a fiber coupled spectrograph (Jobin Yvon, focal length 140

mm) and a thermoelectrically cooled CCD camera. The measured emission spectra rapidly

shrinks above a threshold energy, and its waist qualitatively reproduces what predicted

by equation (14). To obtain a quantitative agreement between theory and experiments,
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we first measure 1/tg ≃230nm (in wavelength units) by fitting the peak of the rhodamine

fluorescence spectrum by a parabola

I(ω) = I0[1− (ω − ω0)
2t2g] (26)

(ω0 is the central wavelength of the fluorescence emission).

An estimate for the values of α0 and αL are obtained by the properties of the system:

1/α0 is the time needed to travel a mean free path:

1

α0

=
ℓ

c
nav ≈ 3fs (27)

while 1/αL may be found from the average of the inverse of the width of the random lasing

spikes, that are observed in the peak of the spectrum: 1/αL ≈ 2tL ≈10ps thus obtaining

α0/αL ≈ 3300 and allowing to found an estimate of κ ≡ κth ≈ 0.11.

To fit the data with our model, the nonlinear Schrodinger equation (14) is numerically

solved to obtain the shape of the spectra for different values of the nonlinear eigenvalue E.

The resulting relation between the waist W and E is approximated by a polynomial function

W(E). One has to find the relation between E and the pumping energy of the laser E. The

connection passes through the parameter p defined in equation (15). p is proportional to

the g0 that is the linear gain, and correspondingly to the pumping energy E. We leave the

parameter κ and the constat of proportionality between p and E

p = CE (28)

as a free parameter of the fit. Figure 6 shows the normalized waist of the spectrum (calcu-

lated as the standard deviation) as function of the pumping intensity. From the fit we

obtain an experimental value of κ of 0.14 which is of the same order of magnitude of

the estimated theoretical one above. The value of the threshold energy is found to be

Eth = 0.1 mJ. The analytically estimated spectral waist (after Eq.(23)) is hence given by

Wth =
√

κth/2/(2πtg) ∼=10nm, which is in quantitative agreement with the measured one.

Similarly the predicted trend for the peak-spectrum also fit well with Eq.(18), as shown

in Figure 7. In this case the energy axis is the same as that determined for the waist in

Fig.(6) and a fitting scaling parameter is adopted for the vertical scale.



13

0 0.5 1
2

3

4

5

6

W
 t g (

× 
10

−
2 )

pump energy (mJ)
0 0.5 1

−10

0

10

20

30

no
nl

in
ea

r 
ei

ge
nv

al
ue

 E

Fig. 6. (Color Online) Measured spectral linewidth Vs Energy (dots, left scale), the thick
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the fit.

Fig. 7. (Color Online) As in Fig.(6) for the measured peak spectrum.

4. Conclusions

In conclusion we reported a detailed analysis concerning a novel theoretical model for random

lasing in which light amplification is driven by a huge number of coupled resonant spatially

localized modes. Our approach does not need the diffusive approximation and results into a

Gross-Pitaevskii equation, as derived by following the Haus theory of mode-locking, which

plays the role of the Schwalow-Townes law for RL and is in quantitative agreement with the
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experimental results, while also rigorously defining a threshold for the RL action.

With respect to [15], we clarify the role of losses in the time domain and the data fitting

procedure. Moreover we derive equation (25) that connects diffusion constant to the lasing

threshold.

Our results furnish novel insights on the nature of the random lasing phenomena, and

open the way to further investigations on the phase-locking phenomena in disordered systems

and generalized nonlinear equations for the corresponding emission spectral linewidth and

temporal dynamics.
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