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 Abstract 

Hydrothermally carbonized organic materials (furfural, glucose, starch, cellulose and 

eucalyptus sawdust) have been used as precursors to produce high-surface area carbons. The 

synthesis methodology comprises two steps: i) hydrothermal carbonization of organic 

materials and ii) chemical activation with KOH as activating agent. In this way, activated 

carbon materials with a high surface area (up to 2700 m2 g-1) and narrow micropore size 

distribution in the supermicropore range (0.7 - 2 nm) are produced. The textural properties of 

the activated carbon products can be easily tuned by modifying the activating conditions (i. e., 

activation temperature and the amount of KOH used). The activated carbon materials exhibit 

high hydrogen uptakes, up to 6.4 wt%, and large isosteric heats of adsorption, up to 8.5 kJ 

mol-1. In particular, the hydrogen storage density of the carbons is high and ranges between 

12 and 16.4 μmol H2·m-2. The hydrogen storage density is closely related to the pore size of 

the carbons, with small micropores (ca. 1 nm) favouring a high density. Taking into account 

the high hydrogen storage capacities of these materials, as well as the simplicity of their 

synthesis procedure and the ready availability and low-cost of the raw precursors, it can be 

concluded that these activated carbons constitute a promising adsorbent for hydrogen storage. 
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Broader context 

 

Hydrogen storage is widely-known to be a limiting step for achieving a hydrogen-based 

economy. In spite of the research efforts, up to date there is no material capable of storing 

enough amount of hydrogen to accomplish the targets established by the US DOE for on-

board applications. Porous carbon materials are among the main candidates for hydrogen 

storage due to their relatively low cost, high surface area, large pore volume and ability to 

design their pore structure. In this manuscript we report on the preparation of activated 

carbons from hydrothermally carbonized substances by a low time consuming chemical 

activation process with KOH. The activated carbons possess high surface areas (up to 2700 

m2 g-1) and narrow pore size distributions in the supermicropore range (0.7 - 2 nm). The 

textural properties of the activated carbon products can be easily tuned by modifying the 

activating conditions (i. e., activation temperature and the amount of KOH used). The 

activated carbon materials exhibit high hydrogen uptakes, up to 6.4 wt% (20 bar and -196ºC), 

and large isosteric heats of adsorption, up to 8.5 kJ mol-1. In particular, the hydrogen storage 

density of the carbons is high (12 - 16.4 μmol H2•m-2) and closely related to the pore size of 

the carbons, with small micropores (ca. 1 nm) favouring a high density. 
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1. Introduction 

In the last few years the process of hydrothermal carbonization, i.e., heat treatment of an 

aqueous solution/dispersion of an organic material such as saccharides (glucose, sucrose, 

starch or cellulose), simpler compounds such as furfural or more complex substances such as 

biomass, at temperatures in the range 150 – 350ºC under autogeneous pressure, has received 

increasing attention.1 This is due to several reasons: i) the precursors are readily available, 

cheap and renewable (i.e., saccharides or biomass), ii) it is a “green” and simple process as it 

only involves water as solvent and consists of a simple heat-treatment in a closed autoclave 

and iii) the resulting solid carbon products exhibit attractive chemical and structural 

properties. The solid products, which are termed hydrochar, are composed of spherical 

microparticles, whose size can be tuned by modifying the operating conditions (i.e., 

temperature, solution concentration, reaction time and precursor).1-3 These microparticles 

consist of small clusters of condensed aromatic structures, along with some 

aliphatic/hydroaromatic structures, bearing a high concentration of oxygen groups. The 

oxygen groups in the core are stable functionalities, whereas those in the shell are more 

reactive/hydrophilic.2,3 These chemical and physical properties make this material suitable as 

sacrificial template for the fabrication of hollow spheres of inorganic materials (Ga2O3, GaN, 

WO3, SnO2, etc.)4-8 or for the synthesis of metal/carbon composites.9 However, the solid 

product has the drawback of possessing almost no porosity,2,3 unless it is subjected to 

additional heat-treatment at higher temperature10 or synthesized in the presence of a 

template.11-13 This restricts its application in adsorption processes such as removal of 

contaminants or in gas/energy storage. The synthesis of highly porous carbon materials based 

on the hydrochar products therefore presents a challenge. Porous materials based on 

hydrochar can be useful in emergent applications such as hydrogen storage or electrical 

energy storage (supercapacitors).  
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High temperature treatment of a mixture of raw carbonaceous material and certain 

chemical agents (e.g., KOH, H3PO4, SnCl2, etc) is a well-known route to highly porous 

carbon materials. This process, commonly referred to as chemical activation, gives rise to 

carbon materials that possess high surface area (> 2000 m2 g-1) and a large porosity made up 

of super-micropores (~ 1 - 2 nm) and small mesopores.14-17 High surface area microporous 

carbons have great relevance for potential use as hydrogen stores or as electrode materials in 

electrochemical capacitors. Both the magnitude of the surface area and the pore size of some 

chemically activated carbons can be modulated by controlling the activation conditions (i. e., 

temperature, type and amount of chemical agent, heating rate, impregnation method, etc).18-20 

Taking into account the chemical characteristics of hydrochar products (i.e., high 

concentration of oxygen functional groups and low degree of aromatization), it can be 

envisaged that this type of material may constitute an excellent precursor for the preparation 

of activated carbons via controlled chemical activation. To the best of our knowledge, this 

type of material has never been activated before. In this work, we investigate the use of 

hydrochar as precursor for the preparation of chemically activated carbons. We analysed 

various types of hydrochar products obtained from a variety of substances: a) biomass 

(eucalyptus sawdust), b) saccharides (glucose, starch, cellulose) and c) furfural, and 

investigated how the textural characteristics of the activated carbons can be modulated 

through variation of the activation conditions (activation temperature and the hydrochar/KOH 

ratio). Finally, we assessed the use of the chemically activated carbons as adsorbents for 

hydrogen storage.  

2. Experimental 

2.1 Synthesis of hydrochar materials 

Hydrochar materials were prepared by hydrothermal carbonization of the following 

substances: α-D-Glucose (96%, Aldrich), potato starch (Sigma-Aldrich), cellulose (Aldrich), 
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eucalyptus sawdust and furfural (Aldrich). Briefly, an aqueous solution/dispersion of the 

various materials, at a concentration of 320 g L-1 (except for furfural, where 145 g L-1 was 

used), was placed in a stainless steel autoclave and heated up to 230ºC (for glucose and starch) 

or 250ºC (for cellulose, eucalyptus sawdust and furfural) and maintained at the target 

temperature for 2 h. The resulting solid product, denoted as hydrochar, was recovered by 

filtration and washed abundantly with distilled water and then dried at 120ºC for 4 h. The 

various hydrochar materials are denoted as follows: G = glucose-based hydrochar, S = starch-

based hydrochar, C = cellulose-based hydrochar, E = eucalyptus sawdust based-hydrochar 

and F = furfural-based hydrochar. 

2.2 Chemical activation of the hydrochar materials 

The hydrochar materials were chemically activated using potassium hydroxide (Sigma-

Aldrich). The cellulose-derived hydrochar was activated at temperatures in the range 600 – 

800ºC at hydrochar/KOH weight ratios of 1:2 or 1:4. For the rest of the hydrochar materials, 

the operational conditions were: 700ºC and a hydrochar/KOH ratio of 1:4. Briefly, the 

hydrochar was thoroughly mixed with KOH at the desired ratio in an agate mortar and then 

the mixture was heat treated to the target temperature (heating ramp rate of 3ºC min-1) in a 

horizontal furnace under a nitrogen gas flow and held at the desired temperature for 1 h. The 

activated samples were then thoroughly washed several times with 10 wt% HCl to remove 

any inorganic salts, and then washed with distilled water until neutral pH. Finally, the 

activated carbon was dried in an oven at 120ºC for 3 h. The activated carbons thus 

synthesized were denoted as X-Y-T, where X is the hydrochar designation as described above, 

Y is the hydrochar/KOH weight ratio (i.e., 1/2 or 1/4) and T is the activation temperature (in 

ºC). To differentiate the four activated carbons derived from cellulose, they were denoted (for 

hydrochar designation, X) as Cn, where n is 1, 2, 3 or 4 depending on the activation 

conditions. 
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Two of the cellulose derived activated carbons were subjected to further activation, and the 

resulting re-activated carbons were designated as ACn (Y-T), where Y is the hydrochar/KOH 

weight ratio (i.e., 1/2 or 1/4) and T is the activation temperature (in ºC) for the second 

activation step. 

2.3 Characterization 

The morphology of the samples was examined by Scanning Electron Microscopy (SEM) 

using a Zeiss DSM 942 microscope. Diffuse reflectance infrared (IR) spectra of the 

powders of the materials were recorded on a Nicolet Magna-IR 560 spectrometer fitted 

with a diffuse reflection attachment. Nitrogen sorption isotherms and textural properties 

of the carbons were determined at -196oC using nitrogen in a conventional volumetric 

technique by a Micromeritics ASAP 2020 sorptometer. The surface area was calculated 

using the BET method based on adsorption data in the partial pressure (P/Po) range 0.04 

to 0.2  and total pore volume was determined from the amount of nitrogen adsorbed at a 

relative pressure of 0.99. Micropore surface area and micropore volume were obtained via 

t-plot analysis. The characteristic adsorption energy, E0, and the average pore width, L0, 

were calculated by the analysis of the low pressure data using the Dubinin-Radushkevich 

equation21 and the equation proposed by Stoeckli22 respectively. The pore size 

distribution (PSD) was determined via a Non Local Density Functional Theory (NLDFT) 

method using nitrogen adsorption data, and assuming a slit pore model. 

Hydrogen uptake measurements: Hydrogen uptake capacity of the carbons was 

measured by gravimetric analysis with an Intelligent Gravimetric Analyser, IGA, (Hiden) 

using 99.9999% purity hydrogen additionally purified by a molecular sieve filter. The 

hydrogen uptake measurements were performed at -196oC (in a liquid nitrogen bath) over 

the pressure range 0 to 20 bar. With the purpose of calculating the isosteric heat of 

adsorption, hydrogen uptake measurements were also performed at -186ºC (in a liquid 
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argon bath) over the pressure range 0 – 20 bar. The uptake data was corrected for the 

buoyancy of the system and samples. The hydrogen uptake was calculated on the basis of 

a density of 1.5 g/cm3 for the carbons.  

3. Results and Discussion 

3.1  Structural and chemical properties of the hydrochar materials and activated carbons 

A schematic representation of the overall synthesis procedure of the superactivated carbons is 

depicted in Figure 1. It comprises two simple steps: 1) hydrothermal carbonization of 

saccharides (glucose, starch and cellulose), furfural or biomass (eucalyptus sawdust), which 

gives rise to a carbon-rich solid called hydrochar and 2) chemical activation of the obtained 

hydrochars with KOH as activating agent.  

Our previous work has shown that hydrochar materials derived from glucose, starch and 

cellulose are composed of agglomerates of spherical particles of size in the micron range.2,3 

This is illustrated, for the present materials, in Figures 2a and 2b. For the furfural-derived 

hydrochar, the SEM image displayed in Figure 2c shows that the morphology is similar to 

that of mono/polysaccharides. However, in the case of the eucalyptus sawdust-derived 

hydrochar, Figure 2d reveals that the particles retain the cellular appearance of the raw 

material, although they are covered by microspheres, which are probably generated as a 

consequence of the transformation of the cellulosic fraction.3 From a chemical point of view, 

these materials possess a high concentration of oxygen groups, as evidenced by the elemental 

chemical analysis given in Table 1. The O/C atomic ratios of the hydrochars (ca. 0.26) in 

Table 1 are in the typical range (i.e., O/C atomic ratio of 0.2 – 0.4) previously reported.2,3 As 

illustrated in Figure 1, the chemical hydrochar model structure consists of small clusters of 

condensed benzene rings that form stable groups with oxygen in the core (i.e., ether, quinone, 

pyrone), whereas the shell possesses more reactive/hydrophilic oxygen functionalities (i.e., 

hydroxyl, carbonyl, carboxylic, ester).2,3 The oxygen functional groups can be identified by 
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infrared spectroscopy. As an example, the FT-IR spectra of the cellulose and eucalyptus 

sawdust-derived hydrochars with the corresponding peak assignments are shown in Figure S1 

(Supporting Information). The chemical structure and morphology of the hydrochars are the 

result of the following reactions: (i) hydrolysis of the organic substrate, (ii) dehydration and 

fragmentation into soluble products of the monomers that come from the hydrolysis process, 

(iii) polymerization or condensation of the soluble products, (iv) aromatization of the 

polymers thus formed, (v) appearance of a short burst of nucleation and (vi) growth of the 

nuclei so formed by diffusion and linkage (through the reactive oxygen functionalities) of 

species from the solution to the surface of the nuclei.2,3 The high functionalization of the 

hydrochar, as well as its low condensation degree, make this material a good precursor for the 

chemical activation process, as these characteristics make the hydrochar highly reactive and 

the reactivity of the precursor is a key parameter in the activation process.20,23  

For temperatures < 700ºC, the reactions between the activating agent (KOH) and the 

carbonaceous materials (hydrochar) consist of solid-solid or solid-liquid processes that occur 

through the following stoichiometric redox reaction:24,25 

6 KOH + 2 C ↔ 2 K + 3 H2 + 2 K2CO3        (1) 

For temperatures higher than 700ºC, decomposition of K2CO3 takes place:18,26 

K2CO3 ↔ K2O + CO2          (2) 

Several studies have shown that the higher the reactivity of the precursor, the lower the 

temperature required to trigger reaction (1),20,23 the higher the degree of gasification caused 

by the CO2 evolved from K2CO3 according to reaction (2) and the larger the resultant 

porosity development.18 

The activated carbons exhibit morphology characterized by irregular shaped particles 

with large conchoidal cavities and smooth surfaces, as shown by the SEM images of E-1/4-

700 (Figure 2e) and C1-1/4-600 (Figure 2f) samples. This morphology was found to be 
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common for all activated samples regardless of the hydrochar precursor, thereby suggesting 

that a drastic morphological transformation takes place during the activation process. This 

indicates that the activated carbons retain no memory of the structure of their parent 

hydrochar. Regarding their chemical composition, in relation to the hydrochar samples, a 

large decrease in the O/C atomic ratio is registered (see Table 1). Thus, the O/C values are < 

0.06, except for the sample activated at the lowest temperature (i.e., sample C1-1/4-600) and 

that activated at a lower hydrochar/KOH ratio (i.e., sample C4-1/2-700), which have an 

atomic O/C ratio of ca. 0.1. The decrease in atomic O/C ratio (compared to the precursor 

hydrochar) is due to heat-treatment of the hydrochar at a higher temperature, which causes 

further carbonization and release of oxygenated compounds such as CO and CO2. As 

expected, increase in activation temperature leads to a decrease of the O/C ratio: (O/C)C1-1/4-

600 (0.099) > (O/C)C2-1/4-700 (0.057) > (O/C)C3-1/4-800 (0.035). On the other hand, sample C4-

1/2-700 has the highest O/C atomic ratio due probably to the lower amount of KOH used in 

relation to the rest of the samples and therefore a lower burn-off of the sample, as confirmed 

by the yield of 48% (Table 2). 

3.2 Porous textural characteristics of the activated carbons 

The hydrochar materials possess hardly any porosity; the saccharide and eucalyptus sawdust 

derived hydrochars have surface area < 4 m2 g-1, and the cellulose-derived hydrochar exhibits 

a surface area of ca. 30 m2 g-1. These surface area values match well with the external surface 

area determined by the αs-plot technique.3 Therefore, the hydrochar materials posses virtually 

no framework-confined pores, and their surface area arises mainly from interparticle voids. 

However, after chemical activation with KOH, all the hydrochar materials generate porous 

carbons with  highly developed porosity in the supermicropore range and surface areas 

typically > 2000 m2 g-1 (Table 2). 
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The nitrogen sorption isotherms for the cellulose-derived hydrochars activated at various 

temperatures in the 600 – 800ºC range, at a hydrochar/KOH weight ratio of 1:4, are shown in 

Figure 3a and the corresponding textural parameters are summarized in Table 2. It can be 

seen that all the activated samples, regardless of the activation temperature, exhibit a type I 

isotherm, typical of microporous materials. The microporous character of the materials is 

confirmed by the value of the characteristic adsorption energy, E0, determined using the 

Dubinin-Raduskevich equation. All the activated carbons possess values of E0 > 16 kJ·mol-1 

(Table 2) as expected for microporous materials.27,28 As the activation temperature increases, 

there is a widening of the knee of the isotherm, which indicates a broadening of the 

micropore size distribution, and formation of larger micropores. This is supported by the 

decrease in the value of the characteristic energy E0 (from 18.3 kJ mol-1 at 600ºC to 16.5 kJ 

mol-1 at 800ºC) and the increase of the average pore width L0 (from 1.6 nm at 600ºC to > 2 

nm at 800ºC). This widening of the micropore size is also confirmed by the DFT pore size 

distribution curves shown in Figure 3b. Thus, whereas the sample activated at 600ºC 

possesses only one pore system centred at 1.2 nm, the samples activated at 700 and 800ºC 

possess a second pore system at 1.5 nm for the former and 2.0 nm for the latter. This result 

reveals an enlargement of the pore size as the activation temperature increases. This widening 

of the pore distribution with the activation temperature is related to gasification of the 

hydrochar precursor by the CO2 evolved in the decomposition of the K2CO3 generated in the 

activation process for temperatures higher than 700ºC.18,24,26 The gasification of the 

hydrochar precursor as the temperature rises is confirmed by the decrease in the yield at 

higher activation temperature (Table 2).  

The nitrogen sorption isotherms in Figure 3a show that there is an upward shift in 

adsorption (i.e., an increase in overall porosity) when the activation temperature increases 

from 600 to 700ºC. The surface area and total pore volume increase from 2014 m2 g-1 and 



 12 

0.94 cm3 g-1 at 600ºC to 2370 m2 g-1 and 1.08 cm3 g-1 at 700ºC. A further increase in 

activation temperature from 700 to 800oC, however results in a decrease in porosity to levels 

comparable to activation at 600oC. The surface area (2047 m2 g-1) and pore volume          

(0.98 cm3 g-1) of the sample activated at 800oC are lower than for the 700oC sample. The 

samples activated at 600 and 700ºC possess a similar proportion of microporosity with 92 – 

95% of their surface area and 85 – 91% of pore volume arising from micropores. For the 

sample activated at 800oC, the proportion of microporosity is lower at 83% of surface area 

and 76% of pore volume. The porosity data suggest that the optimum activation temperature 

for the cellulose based hydrochar materials is ca. 700ºC. Similar trends, on the effect of 

activation temperature, have previously been reported for other types of carbon 

precursors.29,30 When the cellulose-derived hydrochar is activated at 700oC using a 

hydrochar/KOH weight ratio of 1/2 instead of 1/4,  the resulting activated carbon exhibits 

lower porosity as shown by the isotherm in Figure 3a and textural parameters in Table 2. 

Indeed, the nitrogen uptake of sample C4-1/2-700 is almost half that of C2-1/4-700, with the 

consequence that the surface area and pore volume of the former are about half those of the 

latter.  

The pore size distribution (PSD) curves shown in Figure 3b indicate that activated 

carbons obtained by using small amounts of activating agent (hydrochar/KOH ratio of 1/2) 

exhibit narrower PSD and smaller micropores compared to the samples prepared at KOH 

hydrochar/KOH ratio of 1/4. Thus, the PSD of sample C4-1/2-700 is centred at ca. 0.9 nm 

and no pores above 2 nm are observed (Figure 3b). The presence of smaller pores is 

supported by the value of E0 and L0 (22.3 kJ mol-1 and 1.0 nm, respectively). The generation 

of a wider PSD for carbons activated at hydrochar/KOH ratio of 1/4 is due to the greater 

formation of K2CO3 and hence more CO2 is generated leading to higher gasification of the 
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carbon.18,24,26 This explanation is consistent with the decrease in carbon yield as the amount 

of KOH used increases (Table 2).  

Taking into account the results described above for the cellulose-derived activated 

carbons, the other hydrochar samples (from glucose, starch, furfural and sawdust) were 

activated at 700ºC using a hydrochar/KOH ratio of 1/4. The nitrogen sorption isotherms for 

these samples are shown in Figure 4a. It can be clearly seen that, regardless of the type of 

hydrochar used as precursor, all the resulting activated carbons exhibit the same shape of 

isotherm, which suggests similar textural characteristics. This is confirmed by the textural 

parameters in Table 2. The samples possess similar pore volume of ca. 1.0 cm3 g-1, and 

surface area of ca. 2200 m2 g-1 except for  the activated carbon prepared from cellulose-

derived hydrochar which has a slightly higher surface area and pore volume, i.e. 2370 m2 g-1 

and 1.08 cm3 g-1. The samples have comparable proportion of micropore surface area (93 – 

95%) and micropore volume (85 – 91%). Furthermore, all the samples have similar values of 

E0, between 17.3 and 18.3 kJ mol-1, and L0 in the 1.6 - 1.8 nm range. The pore size 

distribution of the samples, given in Figure 4b, shows a bimodal pore size distribution, 

centred at 1.2 and 1.5 nm. In all the samples, the population of the smaller pore size is 

slightly higher than that of the larger one, except for the activated carbon derived from 

eucalyptus sawdust-derived hydrochar, where the population of both pore size systems is the 

same. These results indicate that, regardless of the type of hydrochar used, the activated 

carbons generated exhibit similar textural characteristics. This may be related to the fact that, 

as shown by the SEM images (Figure 2e and 2f), the activated carbons retain no memory of 

the structure of their parent hydrochar.  

Overall, the porosity data shows that hydrochar materials constitute an excellent precursor 

for the synthesis, via chemical activation with KOH, of carbon materials with high surface 

area (up to 2400 m2 g-1) and relatively narrow PSDs centred in the supermicropore range. The 
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chemical activation with KOH greatly enhances the textural properties of the hydrochar 

materials thereby potentially broadening their fields of application. Additionally, it is clear 

that varying the operating conditions (i.e., activation temperature and hydrochar/KOH weight 

ratio) permits some control over the textural properties. Specifically, the size of the 

micropores can be tuned between 1 and 2 nm by modifying the carbonization temperature 

and the amount of activating agent. This is illustrated in Figure 3b for the cellulose-derived 

activated carbons. A further attraction of the present synthesis route is that the precursors 

used are readily available, and can be obtained via an environmentally friendly (green) and 

sustainable process (i.e. hydrothermal carbonization). It is worth emphasizing that the use of 

eucalyptus sawdust provides particular advantages (even when compared to glucose, 

cellulose, starch and furfural) in view of the fact that it is readily available and is directly 

obtained from nature without any need for extraction or processing from biomass. 

3.3 Porous textural characteristics of re-activated carbons 

To further fine-tune the textural properties of the activated carbons, we performed the 

activation of two cellulose derived activated carbons. The effect of the second activation step 

appears to depend on the re-activation conditions. Re-activation of sample C1-1/4-600 at 

600oC and a hydrochar/KOH ratio of 1/4, yielding sample AC1(1/4-600) does not have any 

significant effect on porosity as shown in Figure 5a. The nitrogen sorption isotherm remains 

largely unchanged except for a slightly smaller adsorption step. The surface area and pore 

volume only undergo small decreases from 2014 m2/g and 0.94 cm3/g to 1853 m2/g and 0.87 

cm3/g as shown in Table 3. The pore size distribution also remains largely unchanged with a 

pore size maxima of ca. 1.2 nm as shown in Figure 5b. The unchanging porosity is confirmed 

by similar E0 (18 – 18.3 kJ mol-1) and L0 (1.6 nm) values (Table 3). However, re-activation of 

sample C1-1/4-600 at 700oC and a hydrochar/KOH ratio of 1/4, yielding sample AC1(1/4-

700) causes major changes in porosity. The overall porosity significantly increases (Figure 5a) 
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and new pores of size ca. 2 nm are generated in addition to the original 1.2 nm pores so that 

the re-activated AC1(1/4-700) sample has a bimodal pore size distribution (Figure 5b). The 

surface area and pore volume increase to 2722 m2/g and 1.23 cm3/g. As expected the E0 value 

decreases to 16.8 kJ mol-1 and L0 value increases to 2.0 nm. However, despite the vastly 

different effects of the two re-activation processes, the proportion of microporosity remains 

unaffected at 91% of surface area and 85% of pore volume. This means that the main effect 

of the re-activation step is to alter the micropore size distribution but without generating any 

larger pores (i.e. mesopores) outside the micropore range. 

Re-activation of the rather low surface area sample C4-1/2-700 generated interesting 

results. Re-activation at 600oC and a hydrochar/KOH ratio of 1/2, yielding sample AC4(1/2-

600) does not have any effect on the overall porosity as shown in Figure 6a and Table 3. The 

nitrogen sorption isotherm remains unchanged (Figure 6a) and the surface area and pore 

volume remain virtually unchanged at 1280 m2/g and ca. 0.64 – 0.68 cm3/g, as shown in 

Table 3. However, the pore size distribution broadens significantly (Figure 6b). The change 

in micropore size distribution is confirmed by the decrease in the E0 value from 22.3 kJ mol-1 

to 19.1 kJ mol-1 and increase in L0 value from 1.0 nm to 1.4 nm (Table 3). The main effect of 

the re-activation step is therefore alteration of the micropore size distribution but without any 

change in the overall textural properties or proportion of microporosity, which remains at ca. 

95% of surface area and 83% of pore volume. On the other hand re-activation of sample C4-

1/2-700 at 700oC and a hydrochar/KOH ratio of 1/4 to yield sample AC4(1/4-700) causes 

major increase in porosity (Figure 6a) and new pores of size between 1 and 3 nm are 

generated; the original 0.9 nm pores do not appear to be retained (Figure 6b). The surface 

area and pore volume increase to 2469 m2/g and 1.18 cm3/g. The E0 value decreases from 

22.3 kJ mol-1 to 16.8 kJ mol-1 and in L0 value increases from 1.0 nm to 2.0 nm. This 

represents a shift in micropore size distribution from 0.9 nm to between 1.2 and 2 nm. 
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Nevertheless, the proportion of microporosity is only slightly lower at 91% of surface area 

and 81% of pore volume. Once again the main effect of the re-activation appears to be a 

modification of the micropore size distribution. 

 

3.4 Hydrogen storage  

Figure 7 shows the dependence of the hydrogen uptake on pressure at -196ºC for the 

activated carbons produced from the hydrochar samples derived from cellulose (Figure 7a) 

and the other hydrochar precursors (Figure 7b). All the activated carbons exhibit similar 

hydrogen uptake isotherms, which show complete reversibility (i.e., no hysteresis). 

Furthermore, no saturation is achieved in the 20 bar pressure range, which suggests that 

higher hydrogen adsorption capacity can be achieved by increasing the pressure above 20 bar. 

The shape of the hydrogen uptake isotherms at -186ºC (liquid argon bath) is similar to those 

in Figure 7 (Figure S2, Supporting Information) but with lower hydrogen uptake as expected 

for sorption at higher temperature. The hydrogen storage capacities at 1 and 20 bar are given 

in Table 2. The hydrogen storage capacity of the activated carbons is in the 2.1 – 2.5 wt% 

range at 1 bar and 4.2 – 5.6 wt% range at 20 bar. The hydrogen uptakes reported here are in 

most cases superior to those obtained for other activated carbons with large surface area (in 

the 1500 – 3200 m2 g-1 range) under similar conditions.31-36 

The effect of re-activation of the activated carbons on hydrogen storage depends on the 

reactivation conditions and any subsequent changes in porosity as shown in Figure 8. Re-

activation of sample C1-1/4-600 at 600oC and a hydrochar/KOH ratio of 1/4 to yield sample 

AC1(1/4-600) does not have any significant effect on hydrogen storage as shown in Figure 8a. 

This is not surprising given that the overall porosity does not alter significantly on 

reactivation as discussed above. However, re-activation of sample C1-1/4-600 at 700oC and a 

hydrochar/KOH ratio of 1/4 (yielding sample AC1(1/4-700)) increases the total hydrogen 
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uptake (Figure 8a) especially at 20 bar (Table 3). The uptake at 20 bar increases from 4.9 to 

6.4 wt%. Re-activation of sample C4-1/2-700 at 600oC and a hydrochar/KOH ratio of 1/2 

(yielding sample AC4(1/2-600)) causes a decrease in hydrogen uptake (Figure 8b), with the 

uptake at 20 bar reducing from 4.2 wt% to 3.9 wt%. This is an interesting result given that the 

overall porosity (total surface area, pore volume and proportion of microporosity) remain 

unchanged after re-activation. The decrease in hydrogen uptake appears to be related to a 

change in micropore size distribution. As shown in Figure 6b, the micropore size distribution 

broadens significantly despite the unchanging overall textural properties or proportion of 

microporosity. This suggests that the broadening of micropore size from 0.9 nm to 1.1 nm 

(with L0 value increasing from 1.0 nm to 1.4 nm) creates pores that are less effective in 

hydrogen storage. This result indicates the sensitivity of hydrogen uptake in carbons to the 

pore size even within the micropore range. On the other hand re-activation of sample C4-1/2-

700 at 700oC and a hydrochar/KOH ratio of 1/4 to yield sample AC4(1/4-700) significantly 

increases the hydrogen uptake (Figure 8b). The uptake at 20 bar increases from 4.2 wt% to 

5.7 wt%. It is however noteworthy that the increase in hydrogen uptake (i.e., 36%) is much 

lower that the 92% increase in surface area. This may be explained by the fact that much of 

the increase in surface area is related to the creation of larger (ca. 2 nm) micropores that are 

less efficient in hydrogen storage.  

A first glance at Figure 7 and 8 and the data given in Table 2 and 3 shows that: a) the 

higher the surface area, the greater the hydrogen uptake (Figure 7a and Figure 8), b) activated 

carbons with comparable textural characteristics (e.g., those synthesized at 700oC and a 

hydrochar/KOH ratio of 1/4) exhibit similar hydrogen uptakes (Figure 7b) regardless of the 

hydrochar used as precursor and c) re-activation may be used to further enhance the hydrogen 

uptake of the carbons. The hydrogen uptake of the activated and reactivated carbons is 

plotted as a function of surface area in Figure 9 to explore variation in hydrogen storage 
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density. A linear relationship is obtained for the activated carbons (slope = 2.44×10-3 ± 

0.00006 wt%/(m2 g-1) = 12.2 ± 0.3 μmol H2 m-2), except for C4-1/2-700 (16.4 μmol m-2). All 

the carbons clearly outperform the Chahine rule (slope = 10 μmol H2 m-2),37 represented by 

the solid line in Figure 9. We have previously observed similar behaviour for KOH activated 

carbide-derived carbons (11.8 ± 0.7 μmol H2 m-2)38 and KOH activated zeolite-templated 

carbons (10.7 ± 0.8 μmol H2 m-2)].39 It should be noted that Gogotsi et al. have already 

pointed out that the Chahine rule is not generally valid.40 The values of hydrogen storage 

density (i.e., uptake per surface area) obtained for the hydrochar-based activated carbons are 

superior to those reported in the literature for: a) KOH activated CDCs (10 ± 0.7 μmol H2 m-2) 

and CO2 activated CDCs (9 ± 0.1 μmol H2 m-2) (measured at -196ºC and 60 bar),40 b) 

different carbon nanostructures consisting of activated carbons and CNTs (9.55 μmol H2 m-2)  

(-196ºC and 60 bar)31 and activated carbons, SWNTs, SWNHs, GCFs (11.75 μmol H2·m-2) (-

196ºC and 20 bar)34 and c) chemically activated carbons obtained from anthracite (9 ± 0.1 

μmol H2 m-2) (-196ºC and 20 bar).36 These can be more clearly seen if the hydrogen uptake is 

plotted as a function of surface area for all the materials mentioned above (Figure S3, 

Supporting Information).  

The case of sample C4-1/2-700, which exhibits the highest storage density (i.e., ratio of 

hydrogen storage per surface area) is remarkable; the sample does not fit the linear 

relationship existing for the rest of the activated carbons (Figure 9). The sample possesses the 

smallest pore size, 0.9 nm according to the DFT pore size distribution, a value which is very 

similar to that deduced using the Stoeckli equation, i.e., 1.0 nm (Table 2). This result agrees 

with several previous reports, which show that pores < 1nm are most efficient for hydrogen 

storage.40-48 As discussed above, reactivation of this sample reduces the hydrogen uptake 

capacity  due to an increase in pore size from 0.9 to 1.1 nm even though the overall surface 

area, pore volume and microporosity remain unchanged. Whilst the hydrogen uptake density 
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of the activated carbons is in the range 11.7 to 12.5 μmol H2 m-2 at 20 bar and 5.1 to 5.7 μmol 

H2 m-2 at 1 bar the uptake density of sample C4-1/2-700 is much higher at 16.4 and 9.0 μmol 

H2 m-2 at 20 and 1 bar respectively. An increase in micropore size generally causes a decrease 

in hydrogen uptake density, as illustrated in Tables 2 and 3. The critical influence of the pore 

size on hydrogen uptake is clearly observed if the hydrogen uptake density (i.e., normalized 

to surface area) in μmol H2·m-2 is plotted as a function of the average pore width, L0, as 

shown in Figure 10. There is a linear decrease in hydrogen uptake density as micropore size 

increases in the 0.9 to 2 nm range. The higher hydrogen uptake (at 20 bar) of samples X-1/4-

700 and Cn-1/4-T compared to C4-1/2-700 despite their larger pore size may be attributed to 

the compensation effect of their higher surface area. The hydrogen uptake when plotted as a 

function of the pore volume (Figure S4, Supporting Information) shows a relationship similar 

to that of surface area (Figure 9). The sample with the smallest value of L0 (i.e., C4-1/2-700) 

lies above the fitting line, whereas the samples with the largest L0 (i. e., C2-1/4-700 and C3-

1/4-800) lie below the fitting line. 

With the aim of better understanding the influence of the pore size on the hydrogen 

adsorption, the isosteric heat of adsorption (Qst) was calculated from hydrogen isotherms 

measured at two temperatures, i.e., -196 and -186ºC. The dependence of the isosteric heat of 

adsorption on the surface coverage (θ) is given by the Clausius-Clapeyron equation: 

θ(1/T) 
ln(P)  R - Qst ⎥

⎦

⎤
⎢
⎣

⎡
∂
∂

=             (3) 

where R is the universal gas constant, P the pressure and T the temperature. The plot of the 

isosteric heat of adsorption as a function of the amount of hydrogen adsorbed for some 

representative activated carbons is shown in Figure 11. It can be seen that the heat of 

adsorption decreases at higher hydrogen uptake.48,49 At low surface coverage (indicative of 

the hydrogen-surface interaction) the isosteric heat of adsorption reaches a value of ~ 5.8 kJ 
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mol-1 for C2-1/4-700, ~ 8 kJ mol-1 for E-1/4-700 and ~ 8.5 kJ mol-1 for C4-1/2-700. In all 

cases Qst decreases to between 3 and 3.9 kJ mol-1 at high surface coverage. The higher value 

of Qst for C4-1/2-700 in comparison with that for C2-1/4-700 and E-1/4-700 confirms that the 

carbon-hydrogen interaction is greater as the micropore size diminishes. On the other hand, 

although C2-1/4-700 and E-1/4-700 possess similar pore size distribution, their Qst differ 

significantly with a higher value for sample E-1/4-700. Both samples exhibit the same 

hydrogen uptake (5.6 wt%) although E-1/4-700 has slightly lower surface area (2252 m2 g1) 

compared to C2-1/4-700 (2370 m2 g1). Although our data suggest that porosity is the 

overriding factor in determining the hydrogen storage capacity, it is worthwhile to note that a 

comparison between E-1/4-700 (5.2% oxygen) and C2-1/4-700 (7.1% oxygen) suggests that 

for carbons with similar textural properties, the oxygen content may have a role in 

determining Qst. Overall, the Qst values observed here are similar to those of other carbon 

materials such as Ti-CDCs (8.5 kJ mol-1),40 SWCNs (7.4-7.8 kJ mol-1),50 zeolite-templated 

carbons (8.2 kJ mol-1)48 and higher than those of most activated carbons (4 - 6.5 kJ mol-1)51-54 

and MOFs (3 - 5.6 kJ mol-1).51,55,56 This higher interaction between hydrogen and the surface 

of the activated carbons reported here in comparison with other activated carbons would 

explain the higher hydrogen uptake density per unit surface area of these materials compared 

to those of other activated carbons.  

4. Conclusions  

In summary, we have demonstrated that hydrochar materials prepared by hydrothermal 

carbonization of a variety of organic materials (saccharides, biomass or furfural) constitute 

excellent precursors for the synthesis of activated carbons (via chemical activation), which 

exhibit highly developed porosity made up of super-micropores. These activated carbons 

have high surface area (> 2000 m2 g-1), large pore volumes (~ 1 cm3 g-1) and narrow 

micropore size distributions in the 0.8 - 2 nm range. Moreover, it has been shown that the 
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pore characteristics (i.e., pore size and surface area) can be modulated by varying the 

activation conditions (i.e., activation temperature and the amount of KOH). Re-activation of 

the activated carbons may be used to further fine-tune the porosity of the carbons. The 

hydrochar-derived activated carbons exhibit high hydrogen uptakes, up to 6.4 wt%. 

Furthermore, the interaction between carbon and hydrogen molecules is strong, as shown by 

the isosteric heat of adsorption of between 6 and 8.5 kJ mol-1. This strong interaction leads to 

higher specific hydrogen uptakes (in the range 11.7 – 16.4 μmol H2 m-2) than those normally 

obtained for activated carbons. These uptake characteristics, and the fact that the precursors 

used are readily available, and can be obtained via “green” and sustainable processes (e.g., 

hydrothermal carbonization) make the present activated carbons promising candidates for 

hydrogen storage. More generally, our findings provide further evidence that pores < 1nm are 

the most efficient for hydrogen storage. 
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Table 1. Elemental analysis of hydrochar precursors and activated carbons. 

 

 

 

 

 

 

 
 

 

 

[a] Atomic ratio 
 

Sample  C [%] H [%] O [%] (O/C) [a] (H/C) [a] 

C 69.5 6.2 24.4 0.263 1.076 
S 68.8 6.6 24.6 0.269 1.151 

C1-1/4-600 86.9 1.2 11.5 0.099 0.163 
C2-1/4-700 92.2 0.6 7.1 0.057 0.072 
C3-1/4-800 95.0 0.2 4.4 0.035 0.030 
C4-1/2-700 85.8 1.7 11.9 0.103 0.239 
G-1/4-700 92.8 0.6 6.4 0.052 0.074 
S-1/4-700 91.9 0.5 7.3 0.059 0.065 
E-1/4-700 94.1 0.5 5.2 0.041 0.067 
F-1/4-700 93.0 0.6 6.1 0.049 0.072 
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Table 2. Textural properties, activation process yield and hydrogen uptake capacity of activated 

carbons. 

 
 

[a] (g of activated carbon/100g hydrochar). [b] Maxima of the pore size distribution calculated by NLDFT. [c] 
Hydrogen uptake capacity at -196ºC and 20 bar; the hydrogen uptake capacity at -196ºC and 1 bar is indicated in 
parenthesis. 
 

 

 

Microporosity 

 
 

H2 uptake 
[wt %] [c] 

 
H2 uptake 

density 
[μmol H2 m-2] [c]Sample  Yield  

[%] [a] 

Surface 
area 

 [m2 g-1] 

Pore 
volume 

[cm3 g-1] 

Smicropore 
[m2 g-1] 

Vmicropore 
[cm3 g-1]

E0  
[kJ mol-1] 

L0 
[nm]

PSD 
maximum 
[nm] [b] 

  

C1-1/4-600 42 2014 0.94 1843 0.81 18.3 1.6 1.2 4.9 (2.3) 12.2 (5.7) 
C2-1/4-700 34 2370 1.08 2201 0.96 17.3 1.8 1.2/1.5 5.6 (2.5) 11.8 (5.3) 
C3-1/4-800 33 2047 0.98 1707 0.74 16.5 > 2.0 1.2/2.0 4.8 (2.1) 11.7 (5.1) 
C4-1/2-700 48 1283 0.68 1229 0.57 22.3 1.0 0.9 4.2 (2.3) 16.4 (9.0) 
G-1/4-700 43 2121 1.00 2012 0.91 17.8 1.7 1.2/1.5 5.3 (2.4) 12.5 (5.7) 
S-1/4-700 37 2194 1.01 2082 0.92 18.0 1.6 1.2/1.5 5.4 (2.4) 12.3 (5.5) 
E-1/4-700 36 2252 1.03 2088 0.91 17.6 1.7 1.2/1.5 5.6 (2.5) 12.4 (5.6) 
F-1/4-700 34 2179 1.03 2067 0.94 18.3 1.6 1.2/1.5 5.4 (2.5) 12.4 (5.7) 
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Table 3. Textural properties, reactivation process yield and hydrogen uptake capacity of doubly 

activated carbons. 

 

 
 

[a] (g of activated carbon/100g hydrochar). [b] Maxima of the pore size distribution calculated by NLDFT. [c] 
Hydrogen uptake capacity at -196ºC and 20 bar; the hydrogen uptake capacity at -196ºC and 1 bar is indicated in 
parenthesis. 

Microporosity 

 
 

H2 uptake 
[wt %] [c] 

 
H2 uptake 

density 
[μmol H2 m-2] [c]Sample  

Surface 
area 

 [m2 g-1] 

Pore 
volume 

[cm3 g-1] 

Smicropore 
[m2 g-1] 

Vmicropore 
[cm3 g-1]

E0  
[kJ mol-1] 

L0 
[nm]

PSD 
maximum 
[nm] [b] 

  

C1-1/4-600 2014 0.94 1843 0.81 18.3 1.6 1.2 4.9 (2.3) 12.2 (5.7) 
AC1 (1/4-600) 1853 0.87 1676 0.73 18.0 1.6 1.2 5.1 (2.2) 13.8 (5.9) 
AC1 (1/4-700) 2722 1.23 2502 1.06 16.8 2.0 1.2/2.0 6.4 (2.5) 11.7 (4.6) 

          
C4-1/2-700 1283 0.68 1229 0.57 22.3 1.0 0.9 4.2 (2.3) 16.4 (9.0) 

AC4 (1/2-700) 1280 0.64 1197 0.53 19.1 1.4 1.1 3.9 (1.6) 15.2 (6.3) 
AC4 (1/4-700) 2469 1.18 2254 0.96 16.8 2.0 1.2/2.0 5.7 (2.2) 11.5 (4.5) 
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Figure 1. Schematic illustration of the overall synthesis procedure for the activated carbons: (1) 

hydrothermal carbonization at 230 – 250ºC for 2 h, and (2) chemical activation with KOH. 
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Figure 2. SEM images of (a-d) hydrochar materials derived from (a) glucose (G), (b) cellulose 

(C), (c) Furfural (F), (d) eucalyptus sawdust (E), and (e-f) activated carbons (e) E-1/4-700 and (f) 

C1-1/4-600. 
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Figure 3. (a) Nitrogen sorption isotherms and (b) pore size distributions of activated carbons 

obtained from cellulose-derived hydrochars following activation at various temperature (600 – 

800ºC) and hydrochar/KOH weight ratio (1/2 or 1/4).  
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Figure 4. (a) Nitrogen sorption isotherms and (b) pore size distributions of activated carbons 

obtained from various hydrochars following activation at 700ºC and hydrochar/KOH weight 

ratio of 1/4. For clarity, the isotherms for G-1/4-700, S-1/4-700, C2-1/4-700 and E-1/4-700 are 

offset (y-axis) by 50, 100, 100 and 200 cm3 g-1 respectively, and the PSD curves by 0.007, 0.014, 

0.014 and 0.024 cm3 g-1 respectively. 
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Figure 5. (a) Nitrogen sorption isotherms and (b) pore size distributions of activated carbon C1-

1/4-600 before and after re-activation at a hydrochar/KOH weight ratio of 1/4 and 600ºC (sample 

AC1(1/4-600)) or 700oC (sample AC1(1/4-700)).  
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Figure 6. (a) Nitrogen sorption isotherms and (b) pore size distributions of activated carbon C4-

1/2-700 before and after re-activation at 700ºC and a hydrochar/KOH weight ratio of 1/2 (sample 

AC4(1/2-600)) or 1/4 (sample AC4(1/4-700)).  
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Figure 7. Hydrogen uptake isotherms at -196ºC for activated carbons (a) prepared from 

cellulose-derived hydrochar under various activation conditions, and (b) prepared from various 

hydrochar materials via activation at 700oC and hydrochar/KOH ratio of 1/4. Inset in (b) shows 

hydrogen uptake at high pressure. 

0 5 10 15 20
0

1

2

3

4

5

6

E-1/4-700
F-1/4-700
S-1/4-700
G-1/4-700

H
yd

ro
ge

n 
up

ta
ke

 (%
 w

t)

Pressure (bar)

18 19 20

5.2

5.6

b 

0 5 10 15 20
0

1

2

3

4

5

6

C1-1/4-700 
C2-1/4-600 
C3-1/4-800 
C4-1/2-700 

Pressure (bar)

H
yd

ro
ge

n 
up

ta
ke

 (%
 w

t)

a 



 35 

 

Pressure (bar)
0 5 10 15 20

H
yd

ro
ge

n 
up

ta
ke

 (w
t%

)

0

1

2

3

4

5

6

C1-1/4-600
AC1(1/4-600)
AC1(1/4-700)

a

Pressure (bar)
0 5 10 15 20

H
yd

ro
ge

n 
up

ta
ke

 (w
t%

)

0

1

2

3

4

5

6

C4-1/2-700
AC4(1/2-700)
AC4(1/4-700)

b

 

 

Figure 8. Hydrogen uptake isotherms at -196ºC for activated and re-activated carbons; (a) 

activated carbon C1-1/4-600 before and after re-activation at a hydrochar/KOH weight ratio of 

1/4 and 600ºC (sample AC1(1/4-600)) or 700oC (sample AC1(1/4-700)), and (b) prepared from 

cellulose-derived hydrochar under various activation conditions, and (b) activated carbon C4-

1/2-700 before and after re-activation at 700ºC and a hydrochar/KOH weight ratio of 1/2 (sample 

AC4(1/2-600)) or 1/4 (sample AC4(1/4-700)). 
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Figure 9. Correlation between hydrogen uptake capacity and surface area of activated (○) and 

re-activated (●) carbons. The solid line corresponds to the Chahine rule and the dotted lines to 

the fitting of the experimental points to a line which passes through the axes-origin. 
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Figure 10. Plot of specific hydrogen uptake (in μmol H2 m-2) as a function of pore size for the 

activated (○) and re-activated (●) carbons (sample C3-1/4-800 is represented by a line since L0 

> 2 nm). 
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Figure 11.  Evolution of the isosteric heat of hydrogen adsorption (Qst) as a function of hydrogen 

uptake. 
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