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We study the entanglement generated between Dirac modes in a 2-dimensional conformally flat

Robertson-Walker universe. We find radical qualitative differences between the bosonic and fermionic

entanglement generated by the expansion. The particular way in which fermionic fields get entangled

encodes more information about the underlying spacetime than the bosonic case, thereby allowing us to

reconstruct the parameters of the history of the expansion. This highlights the importance of bosonic/

fermionic statistics to account for relativistic effects on the entanglement of quantum fields.
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I. INTRODUCTION

The phenomenon of entanglement has been extensively
studied in nonrelativistic settings. Much of the interest on
this quantum property has stemmed from its relevance in
quantum information theory. However, relatively little is
known about relativistic effects on entanglement [1–21]
despite the fact that many of the systems used in the
implementation of quantum information involve relativis-
tic systems such as photons. The vast majority of inves-
tigations on entanglement assume that the world is flat and
nonrelativistic. Understanding entanglement in spacetime
is ultimately necessary because the world is fundamentally
relativistic. Moreover, entanglement plays a prominent
role in black hole thermodynamics [22–29] and in the
information loss problem [11,30–34].

Recently, there has been increased interest in understand-
ing entanglement and quantum communication in black
hole spacetimes [21,35–37] and in using quantum informa-
tion techniques to address questions in gravity [38,39].
Studies on relativistic entanglement show that conceptually
important qualitative differences to a nonrelativistic treat-
ment arise. For instance, entanglement was found to be an
observer-dependent property that is degraded from the
perspective of accelerated observers moving in flat space-
time [6,7,9,16,40]. These results suggest that entanglement
in curved spacetime might not be an invariant concept.

In this paper we study the creation of entanglement
between Dirac modes due to the expansion of a
Robertson-Walker spacetime. A general study of entangle-
ment in curved spacetime is problematic because particle
states cannot always be defined in a meaningful way.
However, it has been possible to learn about certain aspects
of entanglement in curved spacetimes that have asymptoti-
cally flat regions [4,5,34,41]. Such studies show that
entanglement can be created by the dynamics of the

underlying spacetime [15,41] as well as destroyed by the
loss of information in the presence of a spacetime horizon
[6,21,34].
Such investigations not only deepen our understanding

of entanglement but also offer the prospect of employing
entanglement as a tool to learn about curved spacetime. For
example, the entanglement generated between bosonic
modes due to the expansion of a model 2-dimensional
universe was shown to contain information about its his-
tory [41], affording the possibility of deducing cosmologi-
cal parameters of the underlying spacetime from the
entanglement. This novel way of obtaining information
about cosmological parameters could provide new insight
into the early universe both theoretically (incorporating
into cosmology entanglement as a purely quantum effect
produced by gravitational interactions in an expanding
universe) and experimentally (either by the development
of methods to measure entanglement between modes of the
background fields or by measuring entanglement creation
in condensed matter analogs of expanding spacetime
[42,43]). Other interesting results show that entanglement
plays a role in the thermodynamic properties of Robertson-
Walker type spacetimes [44] and can in principle be used to
distinguish between different spacetimes [15] and probe
spacetime fluctuations [45].
Here we consider entanglement between modes of a

Dirac field in a 2-dimensional Robertson-Walker universe.
We find that the entanglement generated by the expansion
of the universe for the same fixed conditions is lower than
for the bosonic case [41]. However we also find that fer-
mionic entanglement codifies more information about the
underlying spacetime structure. These contrasts are com-
mensurate with the flat spacetime case, in which entangle-
ment in fermionic systems was found to be more robust
against acceleration than that in bosonic systems [7,16]. In
the limit of infinite acceleration fermionic entanglement
remains finite due to statistical effects [46,47] which re-
semble those found in first quantization scenarios [48].*Previously known as Fuentes-Guridi and Fuentes-Schuller.
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Our paper is organized as follows: In Sec. II we revise
the Dirac equation in a spatially flat d-dimensional
Robertson-Walker universe. Subsequently setting d ¼ 2,
in Sec. III we calculate the entanglement entropy of two
Dirac modes and compare it with the bosonic case. In
Sec. IV we explain the origin of the entanglement pecu-
liarities of the fermionic case, showing how it can give us
more information about the parameters of the expansion.
Conclusions are presented in Sec. V.

II. DIRAC FIELD IN A d-DIMENSIONAL
ROBERTSON-WALKER UNIVERSE

As we mentioned before, entanglement between
modes of a quantum field in curved spacetime can be
investigated in special cases where the spacetime has at
least two asymptotically flat regions. Such is the case of the
Robertson-Walker universe where spacetime is flat in the
distant past and in the far future. In this section, following
the work done by Bernard and Duncan [49,50], we find the
state of a Dirac field in the far future that corresponds to a
vacuum state in the remote past.

Consider a Dirac field c with mass m on a
d-dimensional spatially flat Robertson-Walker spacetime
with line element,

ds2 ¼ Cð�Þð�d�2 þ dxidx
iÞ: (1)

xi are the spacial coordinates and the temporal coordinate
� is called the conformal time to distinguish it from the
cosmological time t. The metric is conformally flat, as are
all Robertson-Walker metrics. The dynamics of the field is
given by the covariant form of the Dirac equation on a
curved background,

fi��ð@� � ��Þ þmgc ¼ 0; (2)

where �� are the curved Dirac-Pauli matrices and �� are

spinorial affine connections. The curved Dirac-Pauli ma-
trices satisfy the condition,

���� þ ���� ¼ 2g��; (3)

where g�� is the spacetime metric. In the flat case where
the metric is given by ���, the constant special relativistic
matrices are defined by

��� ��� þ ��� ��� ¼ 2���: (4)

The relation between curved and flat �matrices is given by
�� ¼ e�

� ��� where e�
� is the vierbein (tetrad) field sat-

isfying the relation e�
�e�

���� ¼ g��.

In order to find the solutions to the Dirac equation
Eq. (2) on this spacetime, we note that Cð�Þ is independent
of x. We exploit the resulting spatial translational invari-
ance and separate the solutions into

c kð�; xÞ ¼ eik�xCð1�dÞ=4ð ��0@� þ i �� � k�mC1=2Þ�kð�Þ;
(5)

where k2 ¼ jkj2 ¼ P
d�1
i¼1 k2i . Inserting this into the Dirac

equation, we obtain the following coupled equations:

ð@2� þm2C� im _CC�1=2 þ jkj2Þ�ð�Þ
k ¼ 0; (6)

using the fact that the eigenvalues of ��0 are�1. In order to
quantize the field and express it in terms of creation and
annihilation operators, positive and negative frequency
modes must be identified. This cannot be done globally.
However positive and negative frequency modes can be
identified in the far past and future where the spacetime
admits timelike killing vector fields �@=@�. Provided
Cð�Þ is constant in the far past � ! �1 and far future
� ! þ1, the asymptotic solutions of Equation (6) will be

�ð�Þ
in � e�i!in� and �ð�Þ

out � e�i!out� respectively, where

!in ¼ ðjkj2 þ�2
inÞ1=2; !out ¼ ðjkj2 þ�2

outÞ1=2;
�in ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cð�1Þ

p
; �out ¼ m

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cðþ1Þ

p
:

(7)

The action of the Killing vector field on the asymptotic

solutions allow us to identify �ð�Þ�
in and �ð�Þ�

out as negative

frequency solutions. The sign flip is due to the explicit
factor i in (6). A consequence of the linear transformation
properties of such functions is that the Bogolubov trans-
formations associated with the transformation between in
and out solutions take the simple form [50]

�ð�Þ
in ðkÞ ¼ �ð�Þ

k �ð�Þ
out ðkÞ þ �ð�Þ

k �ð�Þ�
out ðkÞ; (8)

where ��
k and ��

k are Bogoliubov coefficients.

The curved-space spinor solutions of the Dirac equation
are defined by (with corresponding Uout, Vout, and Kout),

Uinðk; �; x; tÞ � KinðkÞ½Cð�Þ�ð1�dÞ=4½�i@t þ ik � ��

�m
ffiffiffiffiffiffiffiffiffiffiffi
Cð�Þ

q
��inð�Þð�Þ

k eik�xuð0; �Þ;
Vinðk; �; x; tÞ � KinðkÞ½Cð�Þ�ð1�dÞ=4½i@t � ik � ��

�m
ffiffiffiffiffiffiffiffiffiffiffi
Cð�Þ

q
��inðþÞ�ð�Þ

k e�ik�xvð0; �Þ;

(9)

where Kin � �ð1=jkjÞðð!in ��inÞ=2�inÞ1=2 and uð0; �Þ,
vð0; �Þ are flat space spinors satisfying

�0uð0; �Þ ¼ �iuð0; �Þ; �0vð0; �Þ ¼ ivð0; �Þ;
for 1 	 � 	 2d=2�1. The field in the in region can then be
expanded as

c ðxÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2	Þ1�d
p Z

dd�1k

�
�in

!in

� Xd=2�1

�¼1

½ainðk; �Þ


Uinðk; �; x; �Þ þ byinðk; �ÞVinðk; �; x; �Þ�; (10)

with a similar expression for the out region. The in and out
creation and annihilation operators for particles and anti-
particles obey the usual anticommutation relations. Using
the Bogoliubov transformation one can expand the out
operators in terms of in operators
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aoutðk; �Þ ¼
�
�in!out

!in�out

�
1=2 Kin

Kout

�
�ð�Þ
k ainðk; �Þ

þ �ð�Þ�
k

X
�0
X��0 ð�kÞbyinð�k; �0Þ

�
; (11)

boutðk; �Þ ¼
�
�in!out

!in�out

�
1=2 Kin

Kout

�
�ð�Þ
k binðk; �Þ

þ �ð�Þ�
k

X
�0
X��0 ð�kÞayinð�k; �0Þ

�
; (12)

where

X��0 ð�kÞ ¼ �2�2
outK

2
out �uoutð�k; �0Þvð0; �Þ; (13)

and

Kin=out ¼ 1

jkj
�
!in=outðkÞ ��in=out

�in=out

�
1=2

: (14)

This yields the following relationship between Bogoliubov
coefficients:

j�ð�Þ
k j2 � 2�2

outK
2
out

�
1�!out

�out

�
j�ð�Þ

k j2 ¼�out

�in

!in

!out

�
Kout

Kin

�
2
:

(15)

We consider the special solvable case presented in [50]
Cð�Þ ¼ ð1þ 
ð1þ tanh��ÞÞ2, where 
, � are positive real
parameters controlling the total volume and rapidity of
the expansion, respectively. In this case the solutions
of the Dirac equation that, in the remote past, reduce to
positive frequency modes are

�ð�Þ
in ¼ exp

�
�i!þ�� i!�

�
ln½2 cosh���

�


 F1

�
1þ ið!� �m
Þ

�
;
ið!� �m
Þ

�
;


 1� i!in

�
;
1þ tanhð��Þ

2

�
;

where F1 is the ordinary hypergeometric function.
Similarly, one may find a complete set of modes of the
field behaving as positive and negative frequency modes in
the far future,

�ð�Þ
out ¼ exp

�
�i!þ�� i!�

�
ln½2 cosh���

�


 F1

�
1þ ið!� �m
Þ

�
;
ið!� �m
Þ

�
;


 1þ i!out

�
;
1� tanhð��Þ

2

�
;

where !� ¼ ð!out �!inÞ=2. The spacetime obtained by
considering this special form of Cð�Þ was introduced by
Duncan [50]. It is easy to see that it corresponds to a
Minkowskian spacetime in the far future and past, i.e.,
C ! ð1þ 2
Þ2 in the out region and C ! 1 at the in
region.

If we define j��j2 � j�ð�Þ
k =�ð�Þ

k j2, for this spacetime

we get that

j��j2 ¼ ð!� þm
Þð!þ þm
Þ
ð!� �m
Þð!þ �m
Þ


 sinh½	� ð!� �m
Þ� sinh½	� ð!� þm
Þ�
sinh½	� ð!þ þm
Þ� sinh½	� ð!þ �m
Þ� : (16)

An analogous procedure can be followed for scalar fields
[41]. The time dependent Klein-Gordon equation in this
spacetime is given by

ð@2� þ k2 þ Cð�Þm2Þ�kð�Þ ¼ 0: (17)

After some algebra, the solutions of Klein-Gordon
equation behaving as positive frequency modes as � !
�1ðt ! �1Þ, are found to be

�inð�Þ ¼ exp

�
�i!þ�� i!�

�
ln½2 cosh���

�


 F

�
1

2
� i �!

2�
þ i!�

�
;
1

2
þ i �!

2�
þ i!�

�
;


 1� i
!in

�
;
1þ tanhð��Þ

2

�
:

Similarly we have

�outð�Þ ¼ exp

�
�i!þ�� i!�

�
ln½2 cosh���

�


 F

�
1

2
� i �!

2�
þ i!�

�
;
1

2
þ i �!

2�
þ i!�

�
;


 1� i
!out

�
;
1� tanhð��Þ

2

�
;

where �! ¼ ðm2ð2
þ 1Þ2 � �2Þ1=2. Computing the quo-
tient of the Bogoliubov coefficients for this bosonic case,
we find

j��
B j2 ¼

cosh	� �!þ cosh2	� !�
cosh	� �!þ cosh2	� !þ

: (18)

III. ENTANGLEMENT GENERATED DUE TO
THE EXPANSION OF THE UNIVERSE

It is then possible to find the state in the far future that
corresponds to the vacuum state in the far past. By doing
that we will show that the vacuum state of the field in the
asymptotic past evolves to an entangled state in the asymp-
totic future. The entanglement generated by the expansion
codifies information about the parameters of the expansion,
this information is more easily obtained from fermionic
fields than bosonic, as we will show below.
Since we want to study fundamental behavior we will

consider the 2-dimensional case, which has all the funda-
mental features of the higher dimensional settings.
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Using the relationship between particle operators in
asymptotic times,

binðkÞ ¼ ½���
k boutðkÞ þ ���

k �ðkÞayoutð�kÞ�; (19)

we can obtain the asymptotically past vacuum state in
terms of the asymptotically future Fock basis. Demanding
that binð �k; �Þj0iin ¼ 0we can find the in vacuum in terms of
the out modes. Because of the form of the Bogoliubov
transformations the in vacuum must be of the form

j0iin ¼
Y
k

ðA0j0iout þ A1j1k1�kioutÞ;

where to compress notation j1�ki represents an antiparticle
mode with momentum �k and j1ki a particle mode with
momentum k. Here wewrote the state for each frequency in
the Schmidt decomposition. Since different k do not mix it
is enough to consider only one frequency. Imposing
binð �kÞj0iin ¼ 0 we obtain the following condition on the
vacuum coefficients:

���
k A1j1�ki þ ���

k �ð �kÞA0j1�ki ¼ 0; (20)

giving

A1 ¼ ����
k

���
k

�ð �kÞA0 ¼ �����ð �kÞA0; (21)

where

���ðkÞ ¼ ���
k

���
k

: (22)

From the vacuum normalization,

1¼
in
h0j0iin ¼ jA0j2ð1þ j��ðkÞ�ð �kÞj2Þ: (23)

Therefore, the vacuum state

j0iin ¼
Y
k

j0iout � ���ðkÞ�ð �kÞj1k1�kioutffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ j��ðkÞ�ð �kÞj2

q (24)

is an entangled state of particle modes and antiparticle
modes with opposite momenta.

Since the state is pure, the entanglement is quantified by
the von-Neumann entropy given by Sð�kÞ ¼ Trð�klog2�kÞ
where �k is the reduced density matrix of the state for
mode k. Tracing over the antiparticle modes with momen-
tum �k (or alternatively, particle modes with momentum
k) we obtain

�k ¼ 1

ð1þ j��
k �ð �kÞj2Þ

ðj0ih0j þ j���
k ðkÞ�ð �kÞj2j1kih1kjÞ:

(25)

The von-Neumann entropy of this state is simply

Sð�kÞ ¼ log2ð1þ j��
k �ð �kÞj2Þ

� j���
k �ð �kÞj2log2ðj���

k �ð �kÞj2Þ
ð1þ j��

k �ð �kÞj2Þ
: (26)

Using the following identity:

j���j2 ¼ 2�outK
2
outð�out �!outÞ ¼

�
�out

jkj
�
1�!out

�out

��
2
;

(27)

we obtain the entanglement entropy

Sð�kÞ ¼ log2

�
1þ�2

out

jkj2
�
1�!out

�out

�
2j��

k j2
�

�
�2

out

jkj2 ð1� !out

�out
Þ2j���

k j2
ð1þ �2

out

jkj2 ð1� !out

�out
Þ2j��

k j2Þ


 log2

�
�2

out

jkj2
�
1�!out

�out

�
2j���

k ð �kÞj2
�
: (28)

Using (28) we find that the fermionic entanglement is

SF ¼ log2
1þ j��

F j2
j��

F jð2j��
F j2Þ=ðj��

F j2þ1Þ

 !
; (29)

where j�Fj ¼ j��
k �ð �kÞj. Note that for massless fields

(m ¼ 0) the entanglement vanishes since !� ¼ 0 and
�� ¼ 0. Comparing our result to the bosonic case studied
in [41] we find

SB ¼ log2
j��

B jð2j��
B j2Þ=ðj��

B j2�1Þ

1� j�Bj2
 !

; (30)

where the expression for �B in (18) differs from that in
Ref. [41] due to the different scale factor used.
The difference between the bosonic and fermionic cases

means that the response of entanglement to the dynamics
of the expansion of the Universe depends on the nature of
the quantum field. We see from (24) that each fermionic
field mode is always in a qubit state (the exclusion princi-
ple imposes a dimension-2 Hilbert space for the partial
state). However, in the bosonic case [41] the Hilbert space
for each mode is of infinite dimension, as every occupation
number state of the out Fock basis participates in the in
vacuum. In both cases the entanglement increases mono-
tonically with the expansion rate � and the total volume
expansion parameter 
. It is possible to find analytically the
asymptotic values that both fermionic and bosonic entan-
glement reach at infinity. For example, when k ¼ m ¼
� ¼ 1 we find that as 
 ! 1

��
B ! e�	

ffiffi
2

p
; �F ! e�	

ffiffi
2

p e	
ffiffi
2

p
� e	

e	
ffiffi
2

p þ1 � 1
; (31)

respectively, yielding

SBð
 ! 1Þ � 0:0913; SFð
 ! 1Þ � 0:0048: (32)

The entanglement entropy is bounded by SE < log2N
where N is the Hilbert space dimension of the partial
state. The fermionic upper limit SE ¼ 1 corresponds to a
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maximally entangled state. For bosons the unbounded
dimension of the Hilbert space implies the entropy of
entanglement is not bounded by unity [41]. However, this
distinction does not guarantee that we can extract more
information from bosons as we shall now demonstrate.

IV. FERMIONIC ENTANGLEMENTAND
THE EXPANSION OF THE UNIVERSE

As seen in Figs. 1 and 2 the entanglement behavior is
completely different for bosons (Fig. 1) and fermions
(Fig. 2). Although the behavior as the mass of the field
varies seems qualitatively similar, the variation with the
frequency of the mode is completely different.

The entanglement dependence on jkj for bosons is
monotonically decreasing whereas for fermions, the global
spacetime structure ‘‘selects’’ one value of jkj for which
the expansion of the spacetime generates a larger amount

of entanglement (peak in Fig. 2). We shall see that this
selection of a privileged mode is sensitive to the expansion
parameters. This may be related to the fermionic nature of
the field insofar as the exclusion principle impedes entan-
glement for too small jkj.
Regardless of its origin, we can take advantage of this

special behavior for fermionic fields to use the expansion-
generated entanglement to engineer a method to obtain
information about the underlying spacetime more effi-
ciently than for bosons.

A. Using fermionic fields to extract information
from the ST structure

Doing a conjoint analysis of the mass and momentum
dependence of the entropy we can exploit the characteristic
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FIG. 1 (color online). Bosonic field: SE for a fixed massm ¼ 1
as a function of jkj (up) and for a fixed jkj ¼ 1 as a function ofm
(down) for different rapidities � ¼ 1; . . . ; 100. An asymptotic
regime is reached when � ! 1. 
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FIG. 2 (color online). Fermionic field: SE for a fixed mass
m ¼ 1 as a function of jkj (up) and for a fixed jkj ¼ 1 as a
function ofm (down) for different rapidities � ¼ 1; . . . ; 100. The
maximum shifts to the right reaching an asymptotic value as
� ! 1. 
 is fixed 
 ¼ 1. The behavior as jkj varies is radically
different from the bosonic case.
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peak that SEðm; jkjÞ presents for fermionic fields to
obtain information from the underlying structure of the
space-time better than we can do with a bosonic field.
Let us first show both dependences simultaneously.
Figure 3 shows the entropy of entanglement as a function
of our field parameters (jkj and mass) for different values
of the rapidity.

We see from Fig. 3 that there is no saturation as � ! 1.
Instead, as � is increased the plot is just rescaled. This is
crucial in order to be able to trace back the metric parame-
ters from entanglement creation. We also see from Fig. 3
that, for a given field mass, there is an optimal value of jkj
that maximizes the entropy. In Fig. 4 we represent this
optimal jkj as a function of the mass for different values of
�, showing how the mode which get most entangled as a
result of the spacetime expansion changes with the mass
field for different rapidities.

From the figure we can readily notice two important
features:

(i) The optimal jkj curve is very sensitive to � variations
and there is no saturation (no accumulation of these
lines) as � is increased.

(ii) There is always a field mass for which the optimal
jkj clearly distinguishes arbitrarily large values of �.

In Fig. 5 we can see a consequence of the rescaling
(instead of saturation) of SEðm; jkjÞ when � varies. In this
figure we show simultaneously the entropy in the optimal
curve and the value of the optimal jkj as a function of the
mass of the field for two different values of �, showing that
if � turns out to be very large, entanglement decays more
slowly for higher masses.
The relationship between mass and the optimal fre-

quency is very sensitive to variations in �, presenting no
saturation. Conversely Fig. 6 shows that the optimal jkj
curve is almost completely insensitive to 
. All the differ-
ent 
 curves are very close to each other. We can take
advantage of this to estimate the rapidity independently of

FIG. 3 (color online). SEðm; jkjÞ for 
 ¼ 1, � ¼ 1 (up) � ¼
100 (down). Red color (dark area closer to the origin of coor-
dinates in the grayscale version) equals SEðm; jkjÞ.
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FIG. 4 (color online). 
 ¼ 1, optimal jkj curves (maximum
entanglement mode) as a function of the field mass for
� ¼ 10; . . . ; 2000.
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the value of 
 using the entanglement induced by the
expansion on fermionic fields.

B. Optimal jkj tuning method

1. Part I: Rapidity estimation protocol

Given a field of fixed mass, we obtain the entanglement
for different modes k1; . . . ; kn of the field. Then the mode ki
that returns the maximum entropy will codify information
about the rapidity �, as seen in Fig. 4. One advantage of
this method is that there is no need to assume a fixed 
 to
estimate �, since the tuning curves (Fig. 4) have low
sensitivity to 
 (Fig. 6). Furthermore this method does
not saturate for higher values of � since we can use heavier
fields to overcome the saturation observed in Fig. 2. While
one might expect that heavier masses would mean smaller
maximum entropy, Fig. 5 shows that if � is high enough to
force us to look at heavier fields to improve its estimation,
the amount of entanglement will also be high enough due
to the scaling properties of SEðjkj; mÞ. We can therefore
safely use more massive fields to estimate � since they
better codify its value.
Hence we have a method for extracting information

about � that is not affected by the value of 
.
Information about � is quite clearly encoded in the optimal
jkj curve, which is a direct consequence of the peaked
behavior of SEðjkj; mÞ.

2. Part II: Lower bound for 
 via optimal jkj tuning
We can see from Fig. 4 that for different values of � the

maximum value for the entanglement at the optimal point
(optimal k and optimalm) is always Smax

E � 0:35. Consider
now 
 � 1. In Fig. 7 we can see how the maximum
entanglement that can be achieved for optimal frequency
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FIG. 5 (color online). SE (blue continuous line) and k (red
dashed line) in the line of optimal k as a function of mass for
� ¼ 10 (up) and � ¼ 1500 (down). 
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 ¼ 1.
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FIG. 6 (color online). Optimal jkj as a function of the mass of
the field for different values of 
 ¼ 6; 9; 12; . . . ; 99 and � ¼ 10,
100, 1000, showing rapid saturation in 
. For higher 
 these
curves are completely insensitive to 
 variations, being very little
sensitive for smaller values 
 < 10.
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and mass varies with the volume parameter 
. Indeed, the
maximum possible entanglement that the optimal mode
can achieve is a function of only 
 and is independent of �.
Hence information about 
 is encoded in the maximum
achievable fermionic entanglement. Consequently we can
find a method for obtaining a lower bound for the total
volume of the expansion of the spacetime regardless of the
value of the rapidity.

In this fashion we obtain a lower bound for 
 since the
entanglement measured for the optimal mode is never
larger than the maximum achievable entanglement repre-
sented in Fig. 7, SEðjkj; mÞ 	 Smax

E . For instance if the
entanglement in the optimal mode is SE > 0:35 this will
tell us that 
 > 1, whereas if SE > 0:87 then we can infer
that 
 > 10. Note that as 
 increases the entanglement in
the optimal jkjmode for the optimal mass field approaches
that of a maximally entangled state when 
 ! 1.

Although this method presents saturation when 
 ! 1
(being most effective for 
 	 20) its insensitivity to �
means that the optimal jkj method gives us two indepen-
dent methods for estimating � and 
. In other words, all the
information about the parameters of the expansion (both
volume and rapidity) is encoded in the entanglement for
the optimal frequency jkj.

C. Interpretation for the dependence of SE on jkj
We have seen (Fig. 1) that for bosons a monotonically

decreasing entanglement is observed as jkj increases. By
contrast, in the fermionic case we see that there are privi-
leged jkj for which entanglement creation is maximum.
These modes are far more prone to entanglement than any
others.

To interpret this we can regard the optimal value of jkj as
being associated with a characteristic wavelength (propor-
tional to jkj�1) that is increasingly correlated with the
characteristic length of the Universe. As � increases the
peak of the entanglement entropy shifts towards higher jkj,
with smaller characteristic lengths. Intuitively, fermion
modes with higher characteristic lengths are less sensitive
to the underlying space-time because the exclusion princi-
ple impedes the excitation of ‘‘very long’’ modes (those
whose jkj ! 0).

What about small jkj modes? As shown in [41] and in
Fig. 1, for bosons the entanglement generation is higher
when jkj ! 0. This makes sense because modes of smaller
jkj are more easily excited as the spacetime expands (it is
energetically much ‘‘cheaper’’ to excite smaller jkj
modes). For fermions entanglement generation, somewhat
counterintuitively, decreases for jkj ! 0. However, if we
naively think of fermionic and bosonic excitations in a box
we can appreciate the distinction. We can put an infinite
number of bosons with the same quantum numbers into the
box. Conversely, we cannot put an infinite number of
fermions in the box due to the Pauli exclusion principle.
This ‘‘degeneracy pressure’’ impedes those ‘‘very long’’

modes (of small jkj) from being entangled by the under-
lying structure of the spacetime.

V. CONCLUSIONS

We have shown that the expansion of the Universe
(in a model 2-dimensional setting) generates an entangle-
ment in quantum fields that is qualitatively different for
fermions and bosons. This result is commensurate with
previous studies demonstrating significant differences
between the entanglement of bosonic and fermionic fields
[6,7,9,16].
We find that the entanglement generated by the expan-

sion of the universe as a function of the frequency of the
mode in the fermionic case peaks, while in the bosonic case
it monotonically decreases. For bosons the most sensitive
modes are those whose jkj is close to zero. However, for
fermions, modes of low jkj are insensitive to the under-
lying metric. There is an optimal value of jkj that is most
prone to expansion-generated entanglement. This feature
may be a consequence of the Pauli exclusion principle,
though we have no definitive proof of this.
We have also demonstrated that information about the

spacetime expansion parameters is encoded in the entan-
glement between fermionic particle and antiparticle modes
of opposite momenta. This can be extracted from the
peaked behavior of the entanglement shown in Fig. 2, a
feature absent in the bosonic case. Information about the
rapidity of the expansion (�) is codified in the frequency of
the maximally entangled mode, whereas the information
about the volume of the expansion (
) is codified in the
amount of entanglement generated for this optimal mode.
As 
 tends to infinity the maximum possible Smax

E in the
optimal mode approaches the maximally entangled state.
Hence the expansion parameters of spacetime are better

estimated from cosmologically generated fermionic entan-
glement. Furthermore, these results show that fermionic
entanglement is affected by the underlying spacetime
structure in a very counterintuitive way and in a radically
different manner than in the bosonic case. The manner and
extent to which these results carry over to d-dimensional
spacetime remains a subject for future study.
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Loss, Phys. Rev. A 64, 022303 (2001).
[49] C. Bernard and A. Duncan, Ann. Phys. (N.Y.) 107, 201

(1977).
[50] A. Duncan, Phys. Rev. D 17, 964 (1978).

ENTANGLEMENT OF DIRAC FIELDS IN AN EXPANDING . . . PHYSICAL REVIEW D 82, 045030 (2010)

045030-9

http://dx.doi.org/10.1103/PhysRevA.55.72
http://dx.doi.org/10.1103/RevModPhys.76.93
http://dx.doi.org/10.1103/PhysRevLett.91.180404
http://dx.doi.org/10.1103/PhysRevLett.91.180404
http://dx.doi.org/10.1103/PhysRevA.69.032113
http://dx.doi.org/10.1103/PhysRevA.69.032113
http://dx.doi.org/10.1103/PhysRevD.70.105001
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevLett.95.120404
http://dx.doi.org/10.1103/PhysRevA.74.032326
http://dx.doi.org/10.1016/j.physleta.2006.07.028
http://dx.doi.org/10.1016/j.physleta.2006.07.028
http://dx.doi.org/10.1103/PhysRevA.76.062112
http://dx.doi.org/10.1103/PhysRevA.76.062112
http://dx.doi.org/10.1088/1751-8113/40/30/024
http://dx.doi.org/10.1088/1751-8113/40/30/024
http://dx.doi.org/10.1088/1126-6708/2008/06/062
http://dx.doi.org/10.1088/1126-6708/2008/06/062
http://dx.doi.org/10.1103/PhysRevD.78.065015
http://dx.doi.org/10.1103/PhysRevA.79.052109
http://dx.doi.org/10.1103/PhysRevA.79.052109
http://dx.doi.org/10.1103/PhysRevA.79.052309
http://dx.doi.org/10.1103/PhysRevA.79.052309
http://dx.doi.org/10.1103/PhysRevD.79.044027
http://dx.doi.org/10.1103/PhysRevD.79.044027
http://dx.doi.org/10.1103/PhysRevA.80.012314
http://dx.doi.org/10.1103/PhysRevA.80.012314
http://dx.doi.org/10.1103/PhysRevA.79.064301
http://dx.doi.org/10.1103/PhysRevA.80.052304
http://dx.doi.org/10.1103/PhysRevD.81.045019
http://dx.doi.org/10.1103/PhysRevA.81.052120
http://dx.doi.org/10.1103/PhysRevA.81.052120
http://arXiv.org/abs/1006.1394
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.34.373
http://dx.doi.org/10.1103/PhysRevD.55.7666
http://dx.doi.org/10.1103/PhysRevD.55.7666
http://dx.doi.org/10.1103/PhysRevD.61.104016
http://dx.doi.org/10.1088/1126-6708/2006/06/012
http://dx.doi.org/10.1103/PhysRevD.75.024024
http://dx.doi.org/10.1016/j.physletb.2007.08.026
http://dx.doi.org/10.1088/0264-9381/25/15/154004
http://dx.doi.org/10.1088/0264-9381/25/15/154004
http://dx.doi.org/10.1088/1126-6708/2004/02/008
http://dx.doi.org/10.1088/1126-6708/2004/02/008
http://dx.doi.org/10.1088/1126-6708/2004/03/026
http://dx.doi.org/10.1088/1126-6708/2004/03/026
http://dx.doi.org/10.1103/PhysRevLett.96.061302
http://dx.doi.org/10.1103/PhysRevD.74.084010
http://dx.doi.org/10.1088/0264-9381/25/7/075011
http://dx.doi.org/10.1088/0264-9381/25/7/075011
http://dx.doi.org/10.1103/PhysRevD.78.065015
http://dx.doi.org/10.1016/j.physleta.2007.01.072
http://dx.doi.org/10.1088/1742-6596/33/1/061
http://dx.doi.org/10.1103/PhysRevD.75.084001
http://dx.doi.org/10.1103/PhysRevD.75.084001
http://dx.doi.org/10.1103/PhysRevA.80.022305
http://dx.doi.org/10.1103/PhysRevA.80.022305
http://dx.doi.org/10.1016/j.physleta.2006.07.028
http://dx.doi.org/10.1016/j.physleta.2006.07.028
http://dx.doi.org/10.1088/1367-2630/7/1/248
http://dx.doi.org/10.1088/1367-2630/7/1/248
http://dx.doi.org/10.1103/PhysRevA.76.033616
http://dx.doi.org/10.1103/PhysRevD.52.4512
http://dx.doi.org/10.1103/PhysRevA.78.022302
http://dx.doi.org/10.1103/PhysRevA.78.022302
http://dx.doi.org/10.1103/PhysRevA.80.042318
http://dx.doi.org/10.1103/PhysRevA.80.042318
http://dx.doi.org/10.1103/PhysRevA.81.032320
http://dx.doi.org/10.1103/PhysRevA.81.032320
http://dx.doi.org/10.1103/PhysRevA.64.022303
http://dx.doi.org/10.1016/0003-4916(77)90210-X
http://dx.doi.org/10.1016/0003-4916(77)90210-X
http://dx.doi.org/10.1103/PhysRevD.17.964

