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ABSTRACT 14 

Dirofilaria immitis (hearthworm) is a filarial roundworm transmitted by mosquitoes to 15 

different vertebrate hosts (dogs, cats and humans, among others), causing dirofilariosis. The 16 

adult worms reside in the pulmonary arteries affecting vessels and tissues and resulting in 17 

different pathological manifestations. Worms migrate to the heart and surrounding major 18 

vessels in heavy infections. Dirofilariosis can result in serious damage to affected hosts. In 19 

the last few years, a re-emergence of the disease driven by the climate change has been 20 

pointed out. Very recently, the knowledge at molecular level of this parasite has been 21 

extended by the published studies on its genome and transcriptome. Nevertheless, studies on 22 

the expression of defined protein sets in different parasite compartments and the 23 

corresponding role of those proteins in the host-parasite relationship have been relatively 24 

scarce to date. These include the description of the adult worm secretome, and some of the 25 

proteins eliciting humoral immune responses and those related with plasminogen binding in 26 

secreted and surface extracts of the parasite. Here, we investigate by proteomics the somatic 27 

and surface compartments of the D. immitis adult worm, adding new information on protein 28 

expression and localization that would facilitate a deeper understanding of the host-parasite 29 

relationships in dirofilariosis. 30 

 31 
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1. Introduction 34 

Dirofilariosis is a vector-borne disease in temperate and tropical areas worldwide 35 

caused by several Dirofilaria species (Simón et al., 2009). Dirofilaria immitis is responsible 36 

of cardiopulmonary dirofilariosis in canine and feline animals and accidentally humans. D. 37 

immitis adult worms can survive for several years (>7) in the lung arteries and right ventricle 38 

of immunocompetent hosts, while releasing microfilariae that circulate in the peripheral 39 

blood vessels. These can be taken by mosquito vectors when they feed on infected 40 

individuals and transmitted to the next vertebrate host (McCall et al., 2008). 41 

Cardiopulmonary dirofilariosis is usually a chronic disease. It progressively affects 42 

lung arteries, the lung parenchyma and the hearth in the last stage of the disease (Venco, 43 

2007). The pathogenic mechanisms are related with both inflammatory and non-44 

inflammatory responses (Kaiser et al., 1989). Additionally, acute seizures overlapping with 45 

the chronic phase of the disease can occur, due to massive death of adult worms either 46 

spontaneously or after an adulticide treatment, occasionally resulting in the death of the 47 

affected animal. This massive death of worms is linked with the triggering of inflammatory 48 

responses and occurrence of thrombi that can result in the death of affected animals (Simón 49 

et al., 2012). 50 

 The complex host-parasite relationships of dirofilariasis resulting in a long-lasting 51 

survival of the parasite, the diverse pathogenic mechanisms displayed by the parasite and the 52 

control of pathological consequences that adult worms exert over the host, as well as the 53 

relatively complex metabolic machinery of the parasite are not well known at molecular 54 

level to date. Information about the protein composition of D. immitis is still scarce when 55 

compared to the available proteomic information in other filarial nematodes (Simón et al., 56 

2012). Many of the related studies in D. immitis have focused on single, specific proteins, 57 

resulting in a very low number of D. immitis proteins present in databanks (e.g., 143 entries 58 
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in the GenBank Protein database using “Dirofilaria immitis” as key words). Only few 59 

studies have looked at sets of proteins, among them the recent study on the identification of 60 

those proteins present in the secretome of the adult parasite (Geary et al., 2012) and also 61 

those performed by our group. These included proteins identified by two-dimensional 62 

electrophoresis and mass spectrometry in D. immitis adult worms somatic extracts that were 63 

reactive against sera from infected dogs, cats and human patients suffering dirofilariasis 64 

(Oleaga et al., 2009; González-Miguel et al., 2010a, b). These studies allowed the 65 

identification of immunoreactive proteins of the parasite involved in parasite metabolism, 66 

plasminogen binding, detoxification, up-regulation of anti-inflammatory (Th2) responses 67 

and others. 68 

Regarding antigen characterization, excreted/secreted antigens (E/S) of D. immitis 69 

adult worms, these have shown to stimulate a Th2 anti-inflammatory response driven by 70 

prostaglandin E2 and accompanied by a decrease of permeability in blood vessels (Morchón 71 

et al., 2010). Later, it has been demonstrated that the D. immitis E/S and surface proteins 72 

also activate the fibrinolytic system of the host promoting thrombi elimination, and 10 and 73 

11 plasminogen-binding proteins, respectively, were identified in those two worm 74 

compartments (González-Miguel et al., 2012, 2013). Somatic antigens showed on the 75 

contrary pro-inflammatory properties, mainly driven by antigens from the symbiotic bacteria 76 

Wolbachia. The inflammatory phenomenon is then exacerbated at the vascular endothelium 77 

level when adult worms die and somatic antigens are released in situ (Morchón et al., 2010), 78 

although the participation of specific molecules of the adult worm in the triggering of 79 

inflammatory responses has not been demonstrated to date. 80 

Lately, the study of the genome of D. immitis has added new valuable information on 81 

the potential set of proteins that could be expressed by the parasite (Godel et al., 2012). The 82 

transcriptome of D. immitis adult worms has also bee recently released (Fu et al., 2012). 83 
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Nonetheless, the identification and characterization of the protein expression patterns in 84 

specific parasite compartments and stages is still a priority. This information could aid to 85 

focus on defined interventions against dirofilariosis based in the definition of new drug and 86 

immune targets in the parasite. Especially important in this context are those molecules 87 

exposed by the parasite and used by D. immitis to modulate its relationships with the 88 

vertebrate host. 89 

 Here we present our contribution to expand the knowledge about protein expression 90 

of D. immitis adult worms in specific parasite compartments, and the potential relationship 91 

of some of the identified proteins with parasite survival and pathogenic mechanisms during 92 

dirofilariasis. For this, we analyze two different compartments of the worms - somatic and 93 

surface- using a proteomic approach for the identification and comparison of the most 94 

abundant proteins in both parasite’s compartments. Additionally, we perform the 95 

immunolocalization of two of the identified proteins –GAPDH and P22U- in adult worms. 96 

 97 

2. Material and methods 98 

2.1. Protein extracts of D. immitis adult worms. 99 

Somatic and surface antigens were obtained from D. immitis adult worms as 100 

previously described (Morchón et al., 2008; Hernandez-González et al., 2010). Briefly, 10 101 

male and female worms were obtained from a naturally infected dog and extensively washed 102 

with PBS. For somatic antigens, 4 male and female worms were sonicated in 5 cycles of 70 103 

kHz (30 seg each) at 4°C and centrifuged at 10,000 g for 20 min and the supernatant was 104 

collected. To obtain the surface antigens, 5 worms were subjected to trypsin digestion by 105 

incubation with 1 ng/µl of sequencing grade trypsin (Sigma) in PBS at 37ºC for 45 min. The 106 

supernatant containing the released peptides was then subjected to DTT and iodoacetamide 107 

treatment as follows: supernatants were reduced with 10 mM dithiothreitol (DTT) in 50 mM 108 
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NH4HCO3 in a microwave oven for 3 min at 560 W. The reaction was stopped with 10% 109 

trifluoroacetic acid. The remaining adult worm was used for immunolocalization studies (see 110 

2.3.). 111 

A cocktail of protease inhibitors (1mM EDTA, 1mM N-ethylmaleimide, 0.1 µM 112 

pepstatin A, 1mM PMSF and 0.1 mM N-tosylamide-L-phenylalanine chloromethyl ketone) 113 

was added to all samples and were lyophilized and stored at -20°C until analysis. 114 

 115 

2.2. Liquid chromatography and tandem mass spectrometry (LC–MS/MS).  116 

Fifty g of each of the above-mentioned samples were resuspended in 100µl of Urea 117 

2M in 50 mM ABC and 60µl of each sample were loaded onto a trap column (PepMap C18, 118 

300µm×5mm, LC Packings, Amsterdam The Netherlands) and desalted with 0.1% TFA at 119 

30µl/min during 10 min. Previously, all samples were digested with 500 ug of trypsin at 120 

37ºC. The peptides were then loaded onto an analytical column (PepMap C18 3µ 100 A, 121 

75µm×15 cm, LC Packings) equilibrated in 5% acetonitrile and 0.1% formic acid. Elution 122 

was carried out with a linear 5–65% gradient of solvent B (95% acetonitrile, 0.1% formic 123 

acid) in 120 min at a flow rate of 300nl/min. The eluted peptides were analyzed with a 124 

nanoESI-Q-TOF mass spectrometer (QSTAR-XL, Applied Biosystems) in an information 125 

dependent acquisition mode (IDA). 126 

Protein identification was performed using Mascot v2.2 (Matrix Science) search 127 

engines. Mascot were used to process peak list generated directly from QSTAR wiff files 128 

with Sciex Analyst import filter options using the default parameters and used to search 129 

NCBInr protein database (20090602; 8430240 sequences; 2898477468 residues). Searches 130 

were also performed on the recently released set of ESTs of D. immitis (assembled unigenes 131 

longer than 300 bp) available from Transcriptome Shotgun Assembly Sequence Database 132 

(TSA) at NCBI with the following accession numbers: JR895929–JR916738, and on the D. 133 
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immitis whole genome tryptic peptides dataset available at 134 

http://nematodes.org/downloads/959nematodegenomes/blast/db/Dirofilaria_immitis_v1.3_2135 

0110901.fna. Additional searches were performed against the 1.1 Mb genome of Wolbachia 136 

isolated from Brugia malayi (wBm; Foster et al., 2005). Taxonomy search was done in 137 

Metazoa (Animals) sequences available at http://www.sanger.ac.uk (1175176 sequences). 138 

The search parameters were set to tryptic specificity, no cys-alkylation, restricted taxonomy 139 

to metazoa (animals), three missed cleavage and a tolerance in the mass measurement of 140 

100ppm in MS mode and 0.5 Da for MS/MS ions. Met oxidation and Asn/Gln deamination 141 

were set as variable modifications. To avoid using the same spectral evidence in more than 142 

one protein, the identified proteins are grouped based on MS/MS spectra by Mascot. Thus, 143 

proteins sharing MS/MS spectra are grouped, regardless of the peptide sequence assigned. 144 

The protein within each group that can explain more spectral data with confidence is shown 145 

as the primary protein of the group. Only the proteins of the group for which there is 146 

individual evidence (unique peptides with enough confidence) are also listed, usually toward 147 

the end of the protein list. Only primary proteins are shown in the results. The MS/MS 148 

spectra of the proteins identified with a single protein were inspected manually. Individual 149 

ions scores >69 indicate identity or extensive homology which is equivalent to a protein 150 

confidence threshold greater than 95%, was considered significant (p<0.05). 151 

For the proteins identified, the molecular function and biological process were 152 

assigned according to the AmiGO and the UniProtKB databases 153 

(http://amigo.geneontology.org and http://www.uniprot.org). Finally, the relative abundance 154 

of the predicted proteins in the trypsin digestion was assessed using the Exponentially 155 

Modified Protein Abundance Index – emPAI – calculated by Mascot and thus applying the 156 

default parameters and statistics used by Mascot. For redundant identifications the emPAI 157 

value from the higher score hit was considered. The relative abundance in percentage for the 158 
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identified proteins in each compartment was calculated assuming that 100% is equal to the 159 

sum of all the emPAI values in each compartment. 160 

 161 

2.3. Immunolocalization of the GAPDH and P22U proteins in D. immitis adult worms.  162 

One D. immitis adult worm was fixed in 10% formaldehyde and embedded in 163 

paraffin. Following, 5-µm-thick sections were placed on slides and incubated for 1 hour at 164 

37ºC with 1% bovine serum albumin (BSA) in PBS (blocking solution). Sections were then 165 

incubated for 1 hour at 37ºC either with a negative rabbit serum or a polyclonal rabbit serum 166 

against the recombinant GAPDH protein from Schistosoma bovis (GenBank accesión 167 

number GI:186462282) obtained by immunization of rabbits three times with 50 g of the S. 168 

bovis recombinant GAPDH as described elsewhere (Hernández-González et al., 2012) plus 169 

100 g saponin in PBS, or a polyclonal rabbit serum against the recombinant P22U protein 170 

from D. immitis (Frank et al., 1999), diluted 1:50 in blocking solution. Sections were washed 171 

four times with 0.05% Tween 20 in PBS and once with PBS, and incubated with an anti-172 

rabbit IgG marked with Alexa Fluor 594 and with phalloidin Alexa Fluor 488 (contrast 173 

staining binding actin) at 1:50 in blocking solution for 1 hour at 37ºC. The luminescent 174 

reaction was studied and recorded with a confocal microscope. 175 

 176 

3. Results 177 

3.1. Identified proteins. 178 

The proteomic analysis performed in this work allowed for the identification of 108 179 

proteins in the somatic extract and 16 in the surface digestion of D. immitis adult worms, 180 

from which 11 were shared by both extracts. The percentage (mean) of the peptide mass 181 

peaks that could not be assigned in the searched databases was 46% for somatic extracts and 182 

60% for surface extracts. The false discovery rate was 12.2% and 15.09% for somatic and 183 
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surface extracts, respectively. Table 1 shows the relevant information of the identified 184 

polypeptides, including their homology, score and their relative abundance or emPAI value. 185 

Of the identified proteins, 13 proteins were represented by 2 to 8 isoforms (data not shown). 186 

None of those proteins were from Wolbachia. 187 

As shown in Figure 1, 11 proteins –major sperm protein, polyprotein antigen, 188 

GAPDH, P22U, tropomyosin, small heat shock protein 12.6, paramyosin, MFP3, heat shock 189 

protein 70, troponin T and intermediate filament protein - are present in the two extracts 190 

studied here, being the relative abundance of the major sperm protein, polyprotein antigen, 191 

GAPDH, P22U, HSP12.6, paramyosin, MFP3 and HSP70 higher in the surface 192 

compartment than in the somatic extract (Fig. 1). 193 

 Only twelve of the 108 proteins in the somatic extract (fructose-bisphosphate 194 

aldolase, DiNCF, pepsin inhibitor Dit33, galectin, P22U, small heat shock protein p27, 195 

glutathione peroxidase Di29, intermediate filament protein, calreticulin precursor, 196 

peroxiredoxin, superoxide dismutase and polyprotein antigen) and two in the surface extract 197 

(polyprotein antigen and P22U) were identified as homologous to D. immitis proteins 198 

present in the databanks that were used to perform the searches. The remaining proteins 199 

were identified by homology with sequences from other organisms, mainly from the filarial 200 

nematodes Brugia malayi (23)/pahangi (2), Loa loa (24), Onchocerca volvulus (17)/O. 201 

gibsoni (1), Wuchereria bancrofti (13) and other nematodes: Caenorhabditis elegans (12)/C. 202 

briggsae (2) and Ascaris suum (10)/A. lumbricoides (2) (Table 1). Some other proteins that 203 

were identified over more taxonomically distant invertebrate species were discarded because 204 

scores were very low, probably indicating unreliable homologies (data not shown), with the 205 

exception of the high-affinity octopamine transporter, identified on the homologous protein 206 

from Lumbricus terrestris (Table 1). In the surface extract, half of the identifications were 207 

done on the sequences from the lymph vessel residing parasite B. malayi (Table 1). 208 
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The majority of the identified proteins in both compartments are associated with 209 

molecular binding processes, being the catalytic activity group best represented in somatic 210 

extract, while the structural molecules were more abundant in the surface extract than in the 211 

somatic proteins (Fig. 2). Regarding biological processes assigned by homology, the 212 

identified proteins could be grouped into 9 families: structural-motility, energy-metabolism-213 

redox processes, stress response, immune response, proteolysis, transcription-translation, 214 

signalling, other functions and unknown. The representation of each family for each parasite 215 

compartment is shown in Figure 3, indicating the relative percentage for each family. Those 216 

molecules related with energy, metabolism and redox processes are the most abundant in the 217 

somatic extract, while structural-motility proteins are dominant in the surface digestion 218 

products (Fig. 3). In the “proteolysis” group, main differences were found between somatic 219 

and surface extracts: while 3 out of 5 molecules in this group were identified as protease 220 

inhibitors in the somatic extract, a proteolytic papain-like enzyme was the only 221 

representative of this group in the surface extract and was not identified in the somatic 222 

proteins. 223 

 224 

3.2. The GAPDH and P22U proteins mainly localize in the cuticle of D. immitis adult 225 

worms. 226 

Two of the proteins shared by the two parasite compartments analyzed here were 227 

localized in transverse sections of D. immitis adult worms after incubation with specific anti-228 

sera using a confocal microscope. As Figure 4 shows, both proteins were predominantly 229 

present in the cuticle, although the P22U showed to be localized within the cuticle, while the 230 

anti-GAPDH serum sharply stained the outermost surface of the worm. Anti-GAPDH 231 

reactivity was also found inside the worm, although less abundantly than at the surface of 232 
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the parasite. No reactivity was found in worm sections incubated with the preimmune 233 

negative serum (Fig. 4). 234 

 235 

4. Discussion. 236 

 The expansion of animal dirofilariasis to temperate and cold climate areas and the 237 

rising in the number of human cases poses this disease as a globally emerging problem 238 

(Simón et al., 2012). The proper application and use of preventive tools and treatment 239 

alternatives better than those available to date are required (Fu et al., 2012). Nonetheless, the 240 

identification of new targets in the parasite have been precluded due to the limited 241 

information about D. immitis protein expression and, more importantly, the scarce 242 

knowledge about D. immitis proteins interacting with the host and about the related 243 

mechanisms of interaction. 244 

 The present study, together with that performed by Geary et al. (2012) on the 245 

secretome of D. immitis, partially fills this gap for adult worms. Here, we have used the 246 

LC/MS/MS technique to identify 108 and 16 proteins of the parasite in specific 247 

compartments, some related with the pathology triggered after the sudden death of adult 248 

worms –usually after treatment-, specifically the somatic components, and some others 249 

associated with the host-parasite relationship during the chronic infection and putatively 250 

found at the host-parasite interface (surface proteins). The recent release of a transcriptomic 251 

database of the parasite (Fu et al., 2012) and the available data on the D. immitis genome 252 

have facilitated the identification of proteins in this work, although due to the used approach 253 

only the most abundant proteins in both parasite’s compartments studied here have been 254 

identified. 255 

 Somatic proteins represent those exported to the outside of the parasite, including 256 

excreted/secreted and surface components, as well as those which are only exposed to the 257 
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host after parasite’s death and destruction. When adult worms die spontaneously or by 258 

adulticide treatments, a sudden release of somatic antigens and Wolbachia molecules to the 259 

circulation occurs, triggering the most serious pathological effects of dirofilariosis. These 260 

are mainly related with inflammatory processes that have been investigated on vascular 261 

endothelial cells in vitro (Morchón et al., 2008; Simón et al., 2008) and in infected animals 262 

(Oleaga et al., 2009; González-Miguel et al., 2010a, 2010b) by proteomic techniques. A 263 

number of allergens found here in the somatic extract could contribute as well to the 264 

inflammatory reaction after parasites death. 265 

Here, the ten proteins with the highest relative abundance found in the somatic 266 

extract are tropomyosin, major sperm protein, P22U, pepsin inhibitor Dit33, an ubiquitin 267 

family member, the small heat shock protein 12.6, myosin regulatory light chain 1, DiNCF, 268 

triose phosphate isomerase and acyl CoA binding protein. The DiNCF (IL8-like) molecule 269 

could contribute to the proinflammatory reaction upon release from death parasites, due to 270 

the potential of the IL8-like molecules to trigger inflammation. Remarkably, DiNCF has not 271 

been found in the secretome of D. immitis or at the surface in the present work, thus it could 272 

be usually not exposed to the host and only released after parasite’s damage. 273 

The fourth most abundant protein in the somatic extract is the pepsin inhibitor Dit33, 274 

belonging to a family that has been also identified in the secretome of D. immitis (Av33; 275 

Willenbücher et al., 1993). Two other peptidase inhibitors (serpin and cysteine protease 276 

inhibitor) were also found in the somatic extract, being absent in the secretome and in the 277 

surface extract. No protease inhibitor was found at the surface. Inside the proteolytic family, 278 

the papain-like protease was found to be potentially associated to the surface of the worm. 279 

This protease could be used to digest host antibodies and other blood components, and 280 

certainly to regulate host immune responses, since it is well known that parasite cysteine 281 
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proteases are unusually immunogenic (Sajid and McKerrow, 2002) and potent allergens 282 

(e.g., Rodríguez-Maíllo et al., 2007), situating those proteases at the host-parasite interface. 283 

Of the ten most abundant proteins in the somatic extract, the tropomyosin, major 284 

sperm protein, P22U and small heat shock protein 12.6 were also found in the surface 285 

extract during our study. None of those four proteins have been found by Geary et al. (2012) 286 

in the secretome of the parasite, although the P22U has been described as a component of 287 

the excretory/secretory products of D. immitis by other authors (Frank et al., 1999; 288 

González-Miguel et al., 2012) and characterized as a plasminogen-binding protein 289 

(González-Miguel et al., 2012), thus potentially interacting with the host. Its presence at the 290 

surface of D. immitis is confirmed here by immunolocalization, suggesting the re-association 291 

of this molecule to the parasite surface after being excreted. 292 

 The presence of the other three above-mentioned molecules at the host-parasite 293 

interface could also be inferred from former publications that have identified them as 294 

protective antigens (Sereda et al., 2008; Gnanasekar et al., 2008; Dakshinamoorthy et al., 295 

2012) or as diagnostic antigens (Park et al., 2008) for other filarial nematodes. It is important 296 

mentioning that the majority of the proteins identified at the surface of worms in the present 297 

work have been described as well as diagnostic or vaccine candidate antigens in 298 

dirofilariasis and other nematode infections -polyprotein antigen (Poole et al., 1992, 1996; 299 

Tekuza et al., 2002a, b; Vercauteren et al., 2004), paramyosin (Zhang et al., 2011), 300 

intermediate filament protein (Cho-Ngwa et al., 2011), HSP70 (Ravi et al., 2004), and the 301 

papain family cysteine protease (Rodriguez-Mahillo et al., 2007). 302 

Of those shared with the somatic extract, the major sperm protein, the polyprotein 303 

antigen and the P22U showed to rank among the 5 most abundant proteins in the surface 304 

extract, together with the the papain-like cysteine proteinase and the GAPDH. The presence 305 

of this glycolic enzyme in the surface of D. immitis adult worms, confirmed by 306 
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immunolocalization in the present work, could be related with the newly described function 307 

of GAPDH in this and other helminth parasites as a plasminogen binding molecule at the 308 

host-parasite interface (Erttmann et al., 2005; Ramajo-Hernández et al., 2007; González-309 

Miguel et al., 2012, 2013). 310 

The remaining molecules identified here as potentially associated with the surface 311 

structures of D. immitis adult worms, either at the cuticle or at the intestinal tract, were not 312 

detected in the secretome of the parasite, with the exception of the HSP70. Some of them 313 

have been characterized as immunodominant antigens in other filarial nematodes (HSP70; 314 

Ravi et al., 2004) or as potential immunomodulators (JNK-associated leucine-zipper protein; 315 

Wang et al., 2013), although their presence at the host-parasite interface and related 316 

functions in dirofilariosis should be further investigated. 317 

D. immitis contains an endosymbiont, Wolbachia, which is essential for the survival 318 

and reproduction of the parasite. It has also been postulated that Wolbachia-derived products 319 

may impact upon the host immune system (rev. in Simón et al., 2012). We therefore, 320 

specifically searched with our spectra derived from somatic and surface extracts of D. 321 

immitis for matches to the genome of Wolbachia wBm, but found none. Similarly, previous 322 

proteomic studies on D. immitis failed to identify endosymbiont proteins in adult worm 323 

extracts (González-Miguel et al., 2010a, b; 2012; 2013; Geary et al., 2012). This could be 324 

attributed to a low representation of Wolbachia proteins in the extracts of D. immitis. It is, of 325 

course, very likely that dying parasites would release Wolbachia proteins, and the relative 326 

influence of parasite and endosymbiont products on host immunity in vivo remains to be 327 

determined. 328 

In summary, the present work has allowed the identification of 108 and 16 proteins 329 

expressed in the somatic and the surface compartments of D. immitis adult worms. This 330 

represents an extension of those parasite compartments already characterized by other 331 
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authors (secretome), and opens the way for further studies on the functionality and the 332 

participation of the identified proteins in the host-parasite relationships of dirofilariasis. 333 
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Table 462 

Table 1. Proteins of D. immitis somatic and surface adult worm extracts identified by LC-463 

MS/MS.  464 

 465 

Figure captions 466 

Figure 1. Somatic and surface proteins identified in Dirofilaria immitis adult worms by LC-467 

MS/MS. 108 and 16 proteins were identified in somatic (SO) and surface (SU) extracts, 468 

respectively. From those, 11 were found in both compartments. The comparison of the 469 

relative abundance of the 11 shared proteins in somatic and surface extracts is shown. Grey 470 

bars, somatic proteins; dotted bars, surface proteins. MSP, major sperm protein; PPA, 471 

polyprotein antigen; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; TROPM, 472 

tropomyosin; HSP12.6, small heat shock protein 12.6; PARAM, paramyosin; HSP70, heat 473 

shock protein 70; TROPO, troponin T; IFP, intermediate filament protein. 474 

 475 

Figure 2. Comparison of the relative abundance of the proteins indentified by LC-MS/MS in 476 

somatic (grey bars) and surface (Dotted bars) extracts of D. immitis adult worms, classified 477 

by their molecular function (GO). 478 

 479 

Figure 3. Comparison of the relative abundance of the nine family groups of proteins (GO) 480 

detected in D. immitis somatic (A) and surface (B) adult worm extracts. 481 

 482 

Figure 4. Immunolocalization of the GAPDH (second file) and P22U (third file) proteins in 483 

D. immitis adult worms (transversal sections). The confocal microscope images (4×) are 484 

shown under normal light (C)) and green (A) or red fluorescence (B) after incubation with 485 

phalloidin plus an anti-GAPDH rabbit serum (second file), an anti-P22U rabbit serum (third 486 
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file) or the corresponding naïve serum (first file). Specific reactivity of actin is shown in 487 

green and specific anti-GAPDH and P22U reactivity is shown in red. 488 



PROTEINS OF D. immitis SOMATIC AND SURFACE ADULT WORM EXTRACTS IDENTIFIED BY LC-MS/MS 

Protein name Database ID nb. Species Score NP emPAI 

SOMATIC PROTEINS 

Mesocentin ADY39862 Ascaris suum 3987 32 0.12 

Myosin regulatory light chain 1 XM_003138853 Loa loa 2311 12 1.31 

Aminopeptidase ES-62 precursor AF077194 Acanthocheilonema viteae 1769 38 0.91 

Polyprotein antigen DIU52967 Dirofilaria immitis 1714 10 1.05 

Apolipophorin ADY39826 Ascaris suum 1651 35 0.42 

Thrombospondin AAB99830 Haemonchus contortus 1616 46 0.09 

Fructose-bisphosphate aldolase JQ780094 Dirofilaria immitis 1245 22 0.70 

Tropomyosin gi|154466686 Ascaris lumbricoides 1207 29 4.56 

Aspartic protease OVU81605 Onchocerca volvulus 1120 66 0.30 

Dosage compensation protein dpy-30  EJW84023 Wuchereria bancrofti 893 51 0.64 

MFP3 XM_003137007 Loa loa  855 27 0.92 

Glycogen phosphorylase XM_003141550 Loa loa 842 11 0.47 

Triosephosphate isomerase  XM_003145134 Loa loa 702 22 1.20 

DiNCF gi|2160474 Dirofilaria immitis 679 18 1.26 

Heat shock protein 70 gi|7673686 Wuchereria bancrofti 639 10 0.58 

Calponin protein 3 XM_003148786 Loa loa 614 23 0.68 

Pepsin inhibitor Dit33 gi|31339942 Dirofilaria immitis 609 21 2.29 

ATP-dependent DNA helicase II XM_001899708 Brugia malayi 497 22 0.27 

Actin gi|6626 Caenorhabditis elegans 473 12 0.84 

Tumor D52 family protein XM_003143389 Loa loa 438 7 0.37 

Adenine phosphoribosyltransferase XM_001901344 Brugia malayi 425 11 0.61 

FKBP-type peptidyl-prolyl cis-trans isomerase-59 EJW82003 Wuchereria bancrofti 410 11 0.15 

Alpha tubulin  DQ010542 Onchocerca volvulus 397 9 0.11 

TTR-51 protein XM_003145789 Loa loa 360 17 1.09 

Chaperonin HSP-60 EJD75295 Loa loa 354 10 0.90 

Calponin (Ov9M) gi|1352090 Onchocerca volvulus 352 8 0.58 

Galectin gi|7159326 Dirofilaria immitis 349 8 0.80 

Table 1 - R2

http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c2160474&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c7673686&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c31339942&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c6626&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1352090&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c7159326&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999


P22U gi|3253097 Dirofilaria immitis 337 47 2.78 

Cytoplasmic intermediate filament protein XP_001902854 Brugia malayi 333 10 0.29 

Major sperm protein gi|118137388 Ascaris suum 324 9 3.45 

Immunodominant hypodermal antigen OV17 OV17_ONCVO Onchocerca volvulus 309 21 0.61 

14-3-3 family member (ftt-2) gi|17568359 Caenorhabditis elegans 304 7 0.40 

Small heat shock protein 12.6 gi|170591664 Brugia malayi 301 6 1.55 

Octapeptide-repeat protein T2  XM_001900570 Brugia malayi 300 6 0.24 

Heat shock protein 90 gi|3096951 Brugia pahangi 296 7 0.26 

Adenylate kinase isoenzyme 1  XP_001894222 Brugia malayi 294 6 0.26 

Annexin A5 gb|ADY46116 Ascaris suum 285 11 0.15 

Major antigen EJD74046 Loa loa 271 8 0.04 

Beta-galactoside-binding lectin gi|433317 Onchocerca volvulus 269 7 0.35 

Small heat shock protein p27 gi|1206025 Dirofilaria immitis 268 7 1.07 

DS DNA-binding domain containing protein XP_001902452 Brugia malayi 268 5 0.33 

Serpin protein 6 XP_001900434 Brugia malayi 261 6 0.11 

GAPDH gi|1945477 Onchocerca volvulus 259 12 0.30 

OV25 heat shock protein gi|9777 Onchocerca volvulus 255 8 0.88 

OV-16 antigen precursor AAA29411 Onchocerca volvulus 251 11 0.47 

Glycosyl hydrolase family 31 protein EJW88543 Wuchereria bancrofti 249 11 0.14 

Hypothetical protein XP_003147689 Loa loa 247 5 0.18 

Galectin XP_003139211 Loa loa 245 8 0.34 

Troponin-c ABO84939 Brugia pahangi 228 11 0.21 

Phosphoglycerate kinase 1 gi|17508823 Caenorhabditis elegans 221 4 0.34 

Acyl CoA binding protein XM_001895645 Brugia malayi 215 8 1.20 

Glutathione peroxidase Di29 gi|1708061 Dirofilaria immitis 213 6 0.64 

Enolase gi|32440997 Onchocerca volvulus 206 3 0.22 

Ubiquitin family member gi|25151716 Caenorhabditis elegans 202 4 1.80 

Thioredoxin XP_001900803 Brugia malayi 196 14 1.10 

Heat shock factor binding protein 1 XP_003145843 Loa loa 189 3 0.14 

http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c3253097&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c118137388&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://www.ncbi.nlm.nih.gov/protein/548438?report=genbank&log$=protalign&blast_rank=1&RID=JY61FC7Y016
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c17568359&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c170591664&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c3096951&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c433317&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1206025&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1945477&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c9777&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c17508823&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1708061&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c32440997&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c25151716&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999


MCC EJD75504 Loa loa 186 3 0.04 

Troponin gi|6065738 Anisakis simplex 183 5 0.65 

ML domain-containing protein XP_003136496 Loa loa 182 6 0.32 

Muscle positioning family member  gi|17569083 Caenorhabditis elegans 181 4 0.23 

Transthyretin-like family protein XP_001892758 Brugia malayi 180 8 0.36 

Transthyretin-like protein 46 ADY47514 Ascaris suum 172 4 0.29 

Phosphofructokinase XP_003136359 Loa loa 169 4 0.10 

Oxidoreductase EJW80846 Wuchereria bancrofti 169 3 0.16 

Cysteine protease inhibitor XP_003147913 Loa loa 168 7 0.68 

Polyprotein XP_001901258 Brugia malayi 168 2 0.08 

SPARC family protein EJW80102 Wuchereria bancrofti 165 7 0.18 

Heat shock protein 10 EJW83482 Wuchereria bancrofti 167 4 0.24 

Hypothetical protein XM_003144363 Loa loa 162 4 0.27 

Hypothetical protein CBG17351 gi|157768372 Caenorhabditis briggsae 162 4 0.25 

Intermediate filament protein gi|7159290 Dirofilaria immitis 159 4 0.11 

HD domain-containing protein EJW87016 Wuchereria bancrofti 157 8 0.11 

Disorganized muscle protein 1 ADY45671 Ascaris suum 153 6 0.23 

Putative fatty acid retinoid binding protein 2 ACT55269 Onchocerca volvulus 138 2 0.09 

Hypothetical protein XP_003145485 Loa loa 135 2 0.10 

Hypothetical protein T22F3.3 gi|17564550 Caenorhabditis elegans 132 4 0.10 

Calreticulin precursor gi|4115903 Dirofilaria immitis 128 3 0.15 

Small heat shock protein gi|1518125 Brugia malayi 125 4 0.19 

Translation elongation factor aEF-2 XP_003141031 Loa loa 123 3 0.22 

Peroxiredoxin (thioredoxin peroxidase) gi|2352262 Dirofilaria immitis 122 3 0.32 

MFP2 sperm cell motility protein XP_003144076 Loa loa 121 6 0.29 

TB2/DP1 family protein EJW82952 Wuchereria bancrofti 119 3 0.29 

Glucose phosphate isomerase XP_001900986 Brugia malayi 119 3 0.08 

DJ-1 family protein XP_003142071 Loa loa 117 2 0.09 

Fumarase gi|31580769 Ascaris suum 116 3 0.01 

http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c6065738&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c17569083&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://www.ncbi.nlm.nih.gov/protein/170574310?report=genbank&log$=protalign&blast_rank=3&RID=JYCRP3D701R
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c157768372&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c7159290&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c17564550&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c4115903&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1518125&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c2352262&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c31580769&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999


60S ribosomal protein L5 EJW84695 Wuchereria bancrofti 115 2 0.08 

ATP synthase subunit beta XP_003143628 Loa loa 114 3 0.08 

Mitochondrial prohibitin complex protein 2 EJW83593 Wuchereria bancrofti 113 2 0.08 

Antigen maltose binding protein gi|558046 Onchocerca volvulus 112 2 0.53 

Cell Division Cycle related family member gi|17532375 Caenorhabditis elegans 103 3 0.04 

Translationally controlled tumor protein gi|2501147 Brugia malayi 100 2 0.35 

S1 protein/Ov20 gi|1019801 Onchocerca volvulus 90 2 0.20 

DnaK protein EJW87493 Wuchereria bancrofti 90 2 0.06 

Cyclophilin Ovcyp-2 AAC47233 Onchocerca volvulus 89 6 0.39 

Hydrolase EJW81476 Wuchereria bancrofti 87 6 0.07 

Paramyosin gi|126256672 Trichinella spiralis 85 1 0.03 

CK1/WORM6 protein kinase EJW80549 Wuchereria bancrofti 80 4 0.15 

Microfilariae surface-associated protein gi|45602845 Onchocerca volvulus 76 1 0.19 

Profilin EFO23797 Loa loa 74 2 0.24 

Glutathione S-transferase 1 ADY45818 Ascaris suum 70 2 0.11 

Lactate dehydrogenase gi|17535107 Caenorhabditis elegans 69 1 0.09 

Superoxide dismutase gi|2209364 Dirofilaria immitis 67 1 0.21 

Hypothetical protein CBG08063 gi|157766821 Caenorhabditis briggsae 65 1 0.26 

As37 immunoglobulin-like family protein gi|22036079 Ascaris suum 63 1 0.09 

Ezrin/Radixin/Moesin family member  gi|17505420 Caenorhabditis elegans 63 1 0.05 

SMC gi|56758564 Schistosoma japonicum 60 2 0.07 

Titin gi|72000919 Caenorhabditis elegans 54 3 0.00 

Ov87 (galectin) gi|4100353 Onchocerca volvulus 53 1 0.09 

Antigen gi|170590552 Brugia malayi 52 2 - 

Myosin heavy chain gi|3941223 Schistosoma japonicum 51 3 - 

Chromodomain protein family member gi|17569817 Caenorhabditis elegans 50 1 0.02 

SURFACE PROTEINS 

Polyprotein antigen gi|1663728 Dirofilaria immitis 191 7 0.20 

GAPDH gi|1945477 Onchocerca volvulus 114 4 0.19 

http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c558046&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c17532375&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c2501147&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c1019801&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c126256672&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c45602845&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c17535107&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c2209364&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c157766821&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c22036079&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c17505420&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001377.dat&hit=gi%7c56758564&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c72000919&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c4100353&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c170590552&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c3941223&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c17569817&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003407.dat&hit=gi%7c1663728&px=1&ave_thresh=54&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003407.dat&hit=gi%7c1945477&px=1&ave_thresh=54&_sigthreshold=0.05&_server_mudpit_switch=99999999


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table footnotes 

NP Number of matching peptides 

MFP3 PP2A targeted MSP fiber protein 3 

DiNCF Dirofilaria immitis neutrophil chemotactic factor 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

MCC Macroglobulin complement component family protein 

ML MD-2-related lipid-recognition domain 

SPARC Secreted protein acidic and rich in cysteine 

MFP2 PP2A targeted MSP fiber protein 2 

SMC Structural maintenance of chromosomes 

NSF N-ethylmaleimide sensitive secretion factor 

 

Paramyosin gi|915306 Onchocerca gibsoni 80 2 0.06 

Intermediate filament protein gi|170596673 Brugia malayi 79 2 - 

Tropomyosin gi|42559553 Ascaris lumbricoides 79 5 0.10 

Major sperm protein gi|118137388 Ascaris suum 76 2 0.24 

P22U gi|3253097 Dirofilaria immitis 69 3 0.14 

High-affinity octopamine transporter gi|110816318 Lumbricus terrestris 63 1 0.04 

Papain family cysteine protease gi|170595047 Brugia malayi 59 1 0.11 

NSF gi|133901658 Caenorhabditis elegans 53 6 - 

Troponin T ADY43415.1 Ascaris suum 51 2 0.04 

JNK-associated leucine-zipper protein XM_001899700.1 Brugia malayi 47 2 0.02 

MFP3 XM_003137007.1 Loa loa 45 2 0.05 

Small heat shock protein 12.6 XM_001900555.1 Brugia malayi 37 2 0.07 

Conserved hypothetical protein XP_001901762.1 Brugia malayi 30 2 0.03 

Heat shock 70 kDa protein XM_001901744.1 Brugia malayi 27 10 0.04 

RhoGEF domain containing protein XM_001896860.1 Brugia malayi 24 2 0.04 

DnaJ C terminal region family protein XM_001900397.1 Brugia malayi 23 2 0.05 

http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003408.dat&hit=gi%7c915306&px=1&ave_thresh=54&_sigthreshold=0.05&_noerrortolerant=1&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003408.dat&hit=gi%7c170596673&px=1&ave_thresh=54&_sigthreshold=0.05&_noerrortolerant=1&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001382.dat&hit=gi%7c42559553&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001378.dat&hit=gi%7c118137388&px=1&ave_thresh=47&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003407.dat&hit=gi%7c3253097&px=1&ave_thresh=54&_sigthreshold=0.05&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003408.dat&hit=gi%7c110816318&px=1&ave_thresh=54&_sigthreshold=0.05&_noerrortolerant=1&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20101028/F003408.dat&hit=gi%7c170595047&px=1&ave_thresh=54&_sigthreshold=0.05&_noerrortolerant=1&_server_mudpit_switch=99999999
http://prot-xp-001/mascot/cgi/protein_view.pl?file=../data/20090807/F001382.dat&hit=gi%7c133901658&px=1&ave_thresh=45&_sigthreshold=0.05&_server_mudpit_switch=99999999
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