brought to you by CORE

1 TITLE: Proteomic analysis of the somatic and surface compartments from *Dirofilaria*

2 *immitis* adult worms

- 3 **AUTHORS:** Morchón R.^{1*}, González-Miguel. J.¹, Carretón E.³, Kramer L. H.⁴, Valero L.⁵,
- 4 Montoya-Alonso J. A.³, Simón F.¹, Siles-Lucas M.²
- 5 **ADDRESS:** ¹Laboratory of Parasitology, Faculty of Pharmacy, University of Salamanca.
- 6 Avda. Licenciado Méndez Nieto, s/n. 37007 Salamanca, Spain. ²IRNASA, CSIC. C/Cordel
- 7 de Merinas, 40-52. 37008 Salamanca, Spain. ³Department of Animal Medicine and Surgery,
- 8 Veterinary Faculty, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
- ⁹ ⁴Department of Animal Production, Veterinary Biotechnology and Food Safety, University
- 10 of Parma, Via del Taglio 8, 43100 Parma, Italy. 5Servicio Central de Apoyo a la
- 11 Investigación Experimental, Universidad de Valencia, C/ Dr. Moliner, 50, 46100 Burjasot,
- 12 Spain.

14 ABSTRACT

15 Dirofilaria immitis (hearthworm) is a filarial roundworm transmitted by mosquitoes to 16 different vertebrate hosts (dogs, cats and humans, among others), causing dirofilariosis. The 17 adult worms reside in the pulmonary arteries affecting vessels and tissues and resulting in 18 different pathological manifestations. Worms migrate to the heart and surrounding major 19 vessels in heavy infections. Dirofilariosis can result in serious damage to affected hosts. In 20 the last few years, a re-emergence of the disease driven by the climate change has been 21 pointed out. Very recently, the knowledge at molecular level of this parasite has been 22 extended by the published studies on its genome and transcriptome. Nevertheless, studies on 23 the expression of defined protein sets in different parasite compartments and the 24 corresponding role of those proteins in the host-parasite relationship have been relatively 25 scarce to date. These include the description of the adult worm secretome, and some of the 26 proteins eliciting humoral immune responses and those related with plasminogen binding in 27 secreted and surface extracts of the parasite. Here, we investigate by proteomics the somatic 28 and surface compartments of the D. immitis adult worm, adding new information on protein 29 expression and localization that would facilitate a deeper understanding of the host-parasite 30 relationships in dirofilariosis.

31

32 KEYWORDS: *Dirofilaria immitis*; proteomics; somatic; surface.

34 **1. Introduction**

Dirofilariosis is a vector-borne disease in temperate and tropical areas worldwide caused by several *Dirofilaria* species (Simón et al., 2009). *Dirofilaria immitis* is responsible of cardiopulmonary dirofilariosis in canine and feline animals and accidentally humans. *D. immitis* adult worms can survive for several years (>7) in the lung arteries and right ventricle of immunocompetent hosts, while releasing microfilariae that circulate in the peripheral blood vessels. These can be taken by mosquito vectors when they feed on infected individuals and transmitted to the next vertebrate host (McCall et al., 2008).

42 Cardiopulmonary dirofilariosis is usually a chronic disease. It progressively affects 43 lung arteries, the lung parenchyma and the hearth in the last stage of the disease (Venco, 44 2007). The pathogenic mechanisms are related with both inflammatory and non-45 inflammatory responses (Kaiser et al., 1989). Additionally, acute seizures overlapping with 46 the chronic phase of the disease can occur, due to massive death of adult worms either 47 spontaneously or after an adulticide treatment, occasionally resulting in the death of the 48 affected animal. This massive death of worms is linked with the triggering of inflammatory 49 responses and occurrence of thrombi that can result in the death of affected animals (Simón 50 et al., 2012).

51 The complex host-parasite relationships of dirofilariasis resulting in a long-lasting 52 survival of the parasite, the diverse pathogenic mechanisms displayed by the parasite and the 53 control of pathological consequences that adult worms exert over the host, as well as the 54 relatively complex metabolic machinery of the parasite are not well known at molecular 55 level to date. Information about the protein composition of D. immitis is still scarce when 56 compared to the available proteomic information in other filarial nematodes (Simón et al., 57 2012). Many of the related studies in D. *immitis* have focused on single, specific proteins, 58 resulting in a very low number of *D. immitis* proteins present in databanks (e.g., 143 entries 59 in the GenBank Protein database using "Dirofilaria immitis" as key words). Only few 60 studies have looked at sets of proteins, among them the recent study on the identification of 61 those proteins present in the secretome of the adult parasite (Geary et al., 2012) and also 62 those performed by our group. These included proteins identified by two-dimensional 63 electrophoresis and mass spectrometry in D. *immitis* adult worms somatic extracts that were 64 reactive against sera from infected dogs, cats and human patients suffering dirofilariasis (Oleaga et al., 2009; González-Miguel et al., 2010a, b). These studies allowed the 65 66 identification of immunoreactive proteins of the parasite involved in parasite metabolism, plasminogen binding, detoxification, up-regulation of anti-inflammatory (Th2) responses 67 68 and others.

69 Regarding antigen characterization, excreted/secreted antigens (E/S) of D. immitis 70 adult worms, these have shown to stimulate a Th2 anti-inflammatory response driven by 71 prostaglandin E2 and accompanied by a decrease of permeability in blood vessels (Morchón 72 et al., 2010). Later, it has been demonstrated that the D. immitis E/S and surface proteins 73 also activate the fibrinolytic system of the host promoting thrombi elimination, and 10 and 74 11 plasminogen-binding proteins, respectively, were identified in those two worm 75 compartments (González-Miguel et al., 2012, 2013). Somatic antigens showed on the 76 contrary pro-inflammatory properties, mainly driven by antigens from the symbiotic bacteria 77 Wolbachia. The inflammatory phenomenon is then exacerbated at the vascular endothelium 78 level when adult worms die and somatic antigens are released in situ (Morchón et al., 2010), 79 although the participation of specific molecules of the adult worm in the triggering of 80 inflammatory responses has not been demonstrated to date.

Lately, the study of the genome of *D. immitis* has added new valuable information on the potential set of proteins that could be expressed by the parasite (Godel et al., 2012). The transcriptome of *D. immitis* adult worms has also bee recently released (Fu et al., 2012). Nonetheless, the identification and characterization of the protein expression patterns in specific parasite compartments and stages is still a priority. This information could aid to focus on defined interventions against dirofilariosis based in the definition of new drug and immune targets in the parasite. Especially important in this context are those molecules exposed by the parasite and used by *D. immitis* to modulate its relationships with the vertebrate host.

Here we present our contribution to expand the knowledge about protein expression of *D. immitis* adult worms in specific parasite compartments, and the potential relationship of some of the identified proteins with parasite survival and pathogenic mechanisms during dirofilariasis. For this, we analyze two different compartments of the worms - somatic and surface- using a proteomic approach for the identification and comparison of the most abundant proteins in both parasite's compartments. Additionally, we perform the immunolocalization of two of the identified proteins –GAPDH and P22U- in adult worms.

97

98 2. Material and methods

99 **2.1. Protein extracts of** *D. immitis* adult worms.

100 Somatic and surface antigens were obtained from D. immitis adult worms as 101 previously described (Morchón et al., 2008; Hernandez-González et al., 2010). Briefly, 10 102 male and female worms were obtained from a naturally infected dog and extensively washed 103 with PBS. For somatic antigens, 4 male and female worms were sonicated in 5 cycles of 70 104 kHz (30 seg each) at 4°C and centrifuged at 10,000 g for 20 min and the supernatant was 105 collected. To obtain the surface antigens, 5 worms were subjected to trypsin digestion by 106 incubation with 1 ng/µl of sequencing grade trypsin (Sigma) in PBS at 37°C for 45 min. The 107 supernatant containing the released peptides was then subjected to DTT and iodoacetamide 108 treatment as follows: supernatants were reduced with 10 mM dithiothreitol (DTT) in 50 mM NH₄HCO₃ in a microwave oven for 3 min at 560 W. The reaction was stopped with 10%
trifluoroacetic acid. The remaining adult worm was used for immunolocalization studies (see
2.3.).

A cocktail of protease inhibitors (1mM EDTA, 1mM N-ethylmaleimide, 0.1 μM
pepstatin A, 1mM PMSF and 0.1 mM N-tosylamide-L-phenylalanine chloromethyl ketone)
was added to all samples and were lyophilized and stored at -20°C until analysis.

115

116 **2.2. Liquid chromatography and tandem mass spectrometry (LC–MS/MS).**

117 Fifty µg of each of the above-mentioned samples were resuspended in 100µl of Urea 118 2M in 50 mM ABC and 60µl of each sample were loaded onto a trap column (PepMap C18, 119 300µm×5mm, LC Packings, Amsterdam The Netherlands) and desalted with 0.1% TFA at 120 30µl/min during 10 min. Previously, all samples were digested with 500 ug of trypsin at 121 37°C. The peptides were then loaded onto an analytical column (PepMap C18 3µ 100 A, 122 75µm×15 cm, LC Packings) equilibrated in 5% acetonitrile and 0.1% formic acid. Elution 123 was carried out with a linear 5-65% gradient of solvent B (95% acetonitrile, 0.1% formic 124 acid) in 120 min at a flow rate of 300nl/min. The eluted peptides were analyzed with a 125 nanoESI-Q-TOF mass spectrometer (QSTAR-XL, Applied Biosystems) in an information 126 dependent acquisition mode (IDA).

Protein identification was performed using Mascot v2.2 (Matrix Science) search engines. Mascot were used to process peak list generated directly from QSTAR wiff files with Sciex Analyst import filter options using the default parameters and used to search NCBInr protein database (20090602; 8430240 sequences; 2898477468 residues). Searches were also performed on the recently released set of ESTs of *D. immitis* (assembled unigenes longer than 300 bp) available from Transcriptome Shotgun Assembly Sequence Database (TSA) at NCBI with the following accession numbers: JR895929–JR916738, and on the *D*.

134 immitis whole peptides available genome tryptic dataset at 135 http://nematodes.org/downloads/959nematodegenomes/blast/db/Dirofilaria_immitis_v1.3_2 136 0110901.fna. Additional searches were performed against the 1.1 Mb genome of Wolbachia 137 isolated from Brugia malayi (wBm; Foster et al., 2005). Taxonomy search was done in 138 Metazoa (Animals) sequences available at http://www.sanger.ac.uk (1175176 sequences). 139 The search parameters were set to tryptic specificity, no cys-alkylation, restricted taxonomy 140 to metazoa (animals), three missed cleavage and a tolerance in the mass measurement of 141 100ppm in MS mode and 0.5 Da for MS/MS ions. Met oxidation and Asn/Gln deamination 142 were set as variable modifications. To avoid using the same spectral evidence in more than 143 one protein, the identified proteins are grouped based on MS/MS spectra by Mascot. Thus, 144 proteins sharing MS/MS spectra are grouped, regardless of the peptide sequence assigned. 145 The protein within each group that can explain more spectral data with confidence is shown 146 as the primary protein of the group. Only the proteins of the group for which there is 147 individual evidence (unique peptides with enough confidence) are also listed, usually toward 148 the end of the protein list. Only primary proteins are shown in the results. The MS/MS 149 spectra of the proteins identified with a single protein were inspected manually. Individual 150 ions scores >69 indicate identity or extensive homology which is equivalent to a protein 151 confidence threshold greater than 95%, was considered significant (p<0.05).

152 For the proteins identified, the molecular function and biological process were 153 according **UniProtKB** assigned to the AmiGO and the databases 154 (http://amigo.geneontology.org and http://www.uniprot.org). Finally, the relative abundance 155 of the predicted proteins in the trypsin digestion was assessed using the Exponentially 156 Modified Protein Abundance Index – emPAI – calculated by Mascot and thus applying the 157 default parameters and statistics used by Mascot. For redundant identifications the emPAI 158 value from the higher score hit was considered. The relative abundance in percentage for the identified proteins in each compartment was calculated assuming that 100% is equal to thesum of all the emPAI values in each compartment.

161

162 **2.3. Immunolocalization of the GAPDH and P22U proteins in** *D. immitis* adult worms.

163 One D. immitis adult worm was fixed in 10% formaldehyde and embedded in 164 paraffin. Following, 5-µm-thick sections were placed on slides and incubated for 1 hour at 165 37°C with 1% bovine serum albumin (BSA) in PBS (blocking solution). Sections were then 166 incubated for 1 hour at 37°C either with a negative rabbit serum or a polyclonal rabbit serum 167 against the recombinant GAPDH protein from Schistosoma bovis (GenBank accesión 168 number GI:186462282) obtained by immunization of rabbits three times with 50 µg of the S. 169 bovis recombinant GAPDH as described elsewhere (Hernández-González et al., 2012) plus 170 100 µg saponin in PBS, or a polyclonal rabbit serum against the recombinant P22U protein 171 from D. immitis (Frank et al., 1999), diluted 1:50 in blocking solution. Sections were washed 172 four times with 0.05% Tween 20 in PBS and once with PBS, and incubated with an anti-173 rabbit IgG marked with Alexa Fluor 594 and with phalloidin Alexa Fluor 488 (contrast 174 staining binding actin) at 1:50 in blocking solution for 1 hour at 37°C. The luminescent 175 reaction was studied and recorded with a confocal microscope.

176

177 **3. Results**

178 **3.1. Identified proteins.**

The proteomic analysis performed in this work allowed for the identification of 108 proteins in the somatic extract and 16 in the surface digestion of *D. immitis* adult worms, from which 11 were shared by both extracts. The percentage (mean) of the peptide mass peaks that could not be assigned in the searched databases was 46% for somatic extracts and 60% for surface extracts. The false discovery rate was 12.2% and 15.09% for somatic and surface extracts, respectively. Table 1 shows the relevant information of the identified
polypeptides, including their homology, score and their relative abundance or emPAI value.
Of the identified proteins, 13 proteins were represented by 2 to 8 isoforms (data not shown).
None of those proteins were from *Wolbachia*.

As shown in Figure 1, 11 proteins –major sperm protein, polyprotein antigen, GAPDH, P22U, tropomyosin, small heat shock protein 12.6, paramyosin, MFP3, heat shock protein 70, troponin T and intermediate filament protein - are present in the two extracts studied here, being the relative abundance of the major sperm protein, polyprotein antigen, GAPDH, P22U, HSP12.6, paramyosin, MFP3 and HSP70 higher in the surface compartment than in the somatic extract (Fig. 1).

194 Only twelve of the 108 proteins in the somatic extract (fructose-bisphosphate 195 aldolase, DiNCF, pepsin inhibitor Dit33, galectin, P22U, small heat shock protein p27, 196 glutathione peroxidase Di29, intermediate filament protein, calreticulin precursor, 197 peroxiredoxin, superoxide dismutase and polyprotein antigen) and two in the surface extract 198 (polyprotein antigen and P22U) were identified as homologous to D. immitis proteins 199 present in the databanks that were used to perform the searches. The remaining proteins 200 were identified by homology with sequences from other organisms, mainly from the filarial 201 nematodes Brugia malayi (23)/pahangi (2), Loa loa (24), Onchocerca volvulus (17)/O. 202 gibsoni (1), Wuchereria bancrofti (13) and other nematodes: Caenorhabditis elegans (12)/C. 203 briggsae (2) and Ascaris suum (10)/A. lumbricoides (2) (Table 1). Some other proteins that 204 were identified over more taxonomically distant invertebrate species were discarded because 205 scores were very low, probably indicating unreliable homologies (data not shown), with the 206 exception of the high-affinity octopamine transporter, identified on the homologous protein 207 from Lumbricus terrestris (Table 1). In the surface extract, half of the identifications were 208 done on the sequences from the lymph vessel residing parasite B. malayi (Table 1).

209 The majority of the identified proteins in both compartments are associated with 210 molecular binding processes, being the catalytic activity group best represented in somatic 211 extract, while the structural molecules were more abundant in the surface extract than in the 212 somatic proteins (Fig. 2). Regarding biological processes assigned by homology, the 213 identified proteins could be grouped into 9 families: structural-motility, energy-metabolism-214 redox processes, stress response, immune response, proteolysis, transcription-translation, 215 signalling, other functions and unknown. The representation of each family for each parasite 216 compartment is shown in Figure 3, indicating the relative percentage for each family. Those 217 molecules related with energy, metabolism and redox processes are the most abundant in the 218 somatic extract, while structural-motility proteins are dominant in the surface digestion 219 products (Fig. 3). In the "proteolysis" group, main differences were found between somatic 220 and surface extracts: while 3 out of 5 molecules in this group were identified as protease 221 inhibitors in the somatic extract, a proteolytic papain-like enzyme was the only 222 representative of this group in the surface extract and was not identified in the somatic 223 proteins.

224

3.2. The GAPDH and P22U proteins mainly localize in the cuticle of *D. immitis* adult worms.

Two of the proteins shared by the two parasite compartments analyzed here were localized in transverse sections of *D. immitis* adult worms after incubation with specific antisera using a confocal microscope. As Figure 4 shows, both proteins were predominantly present in the cuticle, although the P22U showed to be localized within the cuticle, while the anti-GAPDH serum sharply stained the outermost surface of the worm. Anti-GAPDH reactivity was also found inside the worm, although less abundantly than at the surface of the parasite. No reactivity was found in worm sections incubated with the preimmunenegative serum (Fig. 4).

235

236 **4. Discussion**.

237 The expansion of animal dirofilariasis to temperate and cold climate areas and the 238 rising in the number of human cases poses this disease as a globally emerging problem 239 (Simón et al., 2012). The proper application and use of preventive tools and treatment 240 alternatives better than those available to date are required (Fu et al., 2012). Nonetheless, the 241 identification of new targets in the parasite have been precluded due to the limited 242 information about D. immitis protein expression and, more importantly, the scarce 243 knowledge about D. immitis proteins interacting with the host and about the related 244 mechanisms of interaction.

The present study, together with that performed by Geary et al. (2012) on the 245 246 secretome of *D. immitis*, partially fills this gap for adult worms. Here, we have used the 247 LC/MS/MS technique to identify 108 and 16 proteins of the parasite in specific 248 compartments, some related with the pathology triggered after the sudden death of adult 249 worms -usually after treatment-, specifically the somatic components, and some others 250 associated with the host-parasite relationship during the chronic infection and putatively 251 found at the host-parasite interface (surface proteins). The recent release of a transcriptomic 252 database of the parasite (Fu et al., 2012) and the available data on the D. immitis genome 253 have facilitated the identification of proteins in this work, although due to the used approach 254 only the most abundant proteins in both parasite's compartments studied here have been 255 identified.

256 Somatic proteins represent those exported to the outside of the parasite, including 257 excreted/secreted and surface components, as well as those which are only exposed to the 258 host after parasite's death and destruction. When adult worms die spontaneously or by 259 adulticide treatments, a sudden release of somatic antigens and Wolbachia molecules to the 260 circulation occurs, triggering the most serious pathological effects of dirofilariosis. These 261 are mainly related with inflammatory processes that have been investigated on vascular 262 endothelial cells in vitro (Morchón et al., 2008; Simón et al., 2008) and in infected animals 263 (Oleaga et al., 2009; González-Miguel et al., 2010a, 2010b) by proteomic techniques. A 264 number of allergens found here in the somatic extract could contribute as well to the 265 inflammatory reaction after parasites death.

266 Here, the ten proteins with the highest relative abundance found in the somatic 267 extract are tropomyosin, major sperm protein, P22U, pepsin inhibitor Dit33, an ubiquitin 268 family member, the small heat shock protein 12.6, myosin regulatory light chain 1, DiNCF, 269 triose phosphate isomerase and acyl CoA binding protein. The DiNCF (IL8-like) molecule 270 could contribute to the proinflammatory reaction upon release from death parasites, due to 271 the potential of the IL8-like molecules to trigger inflammation. Remarkably, DiNCF has not 272 been found in the secretome of D. immitis or at the surface in the present work, thus it could 273 be usually not exposed to the host and only released after parasite's damage.

274 The fourth most abundant protein in the somatic extract is the pepsin inhibitor Dit33. 275 belonging to a family that has been also identified in the secretome of *D. immitis* (Av33; 276 Willenbücher et al., 1993). Two other peptidase inhibitors (serpin and cysteine protease 277 inhibitor) were also found in the somatic extract, being absent in the secretome and in the 278 surface extract. No protease inhibitor was found at the surface. Inside the proteolytic family, 279 the papain-like protease was found to be potentially associated to the surface of the worm. 280 This protease could be used to digest host antibodies and other blood components, and 281 certainly to regulate host immune responses, since it is well known that parasite cysteine

proteases are unusually immunogenic (Sajid and McKerrow, 2002) and potent allergens
(e.g., Rodríguez-Maíllo et al., 2007), situating those proteases at the host-parasite interface.

284 Of the ten most abundant proteins in the somatic extract, the tropomyosin, major 285 sperm protein, P22U and small heat shock protein 12.6 were also found in the surface 286 extract during our study. None of those four proteins have been found by Geary et al. (2012) 287 in the secretome of the parasite, although the P22U has been described as a component of 288 the excretory/secretory products of D. immitis by other authors (Frank et al., 1999; 289 González-Miguel et al., 2012) and characterized as a plasminogen-binding protein 290 (González-Miguel et al., 2012), thus potentially interacting with the host. Its presence at the 291 surface of *D. immitis* is confirmed here by immunolocalization, suggesting the re-association 292 of this molecule to the parasite surface after being excreted.

293 The presence of the other three above-mentioned molecules at the host-parasite 294 interface could also be inferred from former publications that have identified them as 295 protective antigens (Sereda et al., 2008; Gnanasekar et al., 2008; Dakshinamoorthy et al., 296 2012) or as diagnostic antigens (Park et al., 2008) for other filarial nematodes. It is important 297 mentioning that the majority of the proteins identified at the surface of worms in the present 298 work have been described as well as diagnostic or vaccine candidate antigens in 299 dirofilariasis and other nematode infections -polyprotein antigen (Poole et al., 1992, 1996; 300 Tekuza et al., 2002a, b; Vercauteren et al., 2004), paramvosin (Zhang et al., 2011), 301 intermediate filament protein (Cho-Ngwa et al., 2011), HSP70 (Ravi et al., 2004), and the 302 papain family cysteine protease (Rodriguez-Mahillo et al., 2007).

303 Of those shared with the somatic extract, the major sperm protein, the polyprotein 304 antigen and the P22U showed to rank among the 5 most abundant proteins in the surface 305 extract, together with the the papain-like cysteine proteinase and the GAPDH. The presence 306 of this glycolic enzyme in the surface of *D. immitis* adult worms, confirmed by

immunolocalization in the present work, could be related with the newly described function
of GAPDH in this and other helminth parasites as a plasminogen binding molecule at the
host-parasite interface (Erttmann et al., 2005; Ramajo-Hernández et al., 2007; GonzálezMiguel et al., 2012, 2013).

The remaining molecules identified here as potentially associated with the surface structures of *D. immitis* adult worms, either at the cuticle or at the intestinal tract, were not detected in the secretome of the parasite, with the exception of the HSP70. Some of them have been characterized as immunodominant antigens in other filarial nematodes (HSP70; Ravi et al., 2004) or as potential immunomodulators (JNK-associated leucine-zipper protein; Wang et al., 2013), although their presence at the host-parasite interface and related functions in dirofilariosis should be further investigated.

318 D. *immitis* contains an endosymbiont, Wolbachia, which is essential for the survival 319 and reproduction of the parasite. It has also been postulated that Wolbachia-derived products 320 may impact upon the host immune system (rev. in Simón et al., 2012). We therefore, 321 specifically searched with our spectra derived from somatic and surface extracts of D. 322 *immitis* for matches to the genome of Wolbachia wBm, but found none. Similarly, previous 323 proteomic studies on D. immitis failed to identify endosymbiont proteins in adult worm 324 extracts (González-Miguel et al., 2010a, b; 2012; 2013; Geary et al., 2012). This could be 325 attributed to a low representation of *Wolbachia* proteins in the extracts of *D. immitis*. It is, of 326 course, very likely that dying parasites would release Wolbachia proteins, and the relative 327 influence of parasite and endosymbiont products on host immunity in vivo remains to be 328 determined.

In summary, the present work has allowed the identification of 108 and 16 proteins expressed in the somatic and the surface compartments of *D. immitis* adult worms. This represents an extension of those parasite compartments already characterized by other

332	authors (secretome),	and opens	s the way	for further	studies on	the	functionality	and	the
333	participation of the id	lentified pr	oteins in tl	he host-para	site relation	ships	of dirofilaria	sis.	

334

335 **Conflict of interests**

- 336 No conflict of interests is declared.
- 337

338 Acknowledgements

We thank Dr. G. R. Frank (Heska Corporation) who provided us with a polyclonal rabbit serum against the recombinant P22U protein from *D. immitis*, and Dr. Luz Valero from the University of Valencia (Spain) for her assistance in MS analyses. This research was supported by Agencia de Desarrollo Económico de Castilla y León (cofinanced with FEDER funds), Junta de Castilla y León (grant SA090/A09), Spain.

344

345 **References**

346 Cho-Ngwa, F., Zhu, X., Metuge, J.A., Daggfeldt, A., Grönvik, K.O., Orlando, R., Atwood,

- J.A., Titanji, V.P., 2011. Identification of *in vivo* released products of *Onchocerca*with diagnostic potential, and characterization of a dominant member, the OV1CF
 intermediate filament. Infect. Genet. Evol. 11, 778-783.
- Dakshinamoorthy, G., Samykutty, A.K., Munirathinam, G., Shinde, G.B., Nutman, T.,
 Reddy, M.V., Kalyanasundaram, R., 2012. Biochemical characterization and
 evaluation of a *Brugia malayi* small heat shock protein as a vaccine against
 lymphatic filariasis. PLoS One 7, e34077.
- Erttmann, K.D., Kleensang, A., Schneider, E., Hammerschmidt, S., Büttner, D.W., Gallin,
 M., 2005. Cloning, characterization and DNA immunization of an *Onchocerca*

356 *volvulus* glyceraldehyde-3-phosphate dehydrogenase (Ov-GAPDH). Biochim
357 Biophys Acta. 1741, 85-94.

358 Foster, J., Ganatra, M., Kamal, I., Ware, J., Makarova, K., Ivanova, N., Bhattacharyya, A.,

- 359 Kapatral, V., Kumar, S., Posfai, J., Vincze, T., Ingram, J., Moran, L., Lapidus, A.,
- 360 Omelchenko, M., Kyrpides, N., Ghedin, E., Wang, S., Goltsman, E., Joukov, V.,
- 361 Ostrovskaya, O., Tsukerman, K., Mazur, M., Comb, D., Koonin, E., Slatko, B., 2005.
- 362 The *Wolbachia* genome of *Brugia malayi*: endosymbiont evolution within a human
 363 pathogenic nematode. PLoS Biol. 3, e121.
- 364 Frank, G.R., Wisnewski, N., Brandt, K.S., Carter, C.R., Jennings, N.S., Selkirk, M.E., 1999.
- Molecular cloning of the 22-24 kDa excretory-secretory 22U protein of *Dirofilaria immitis* and other filarial nematode parasites. Mol. Biochem. Parasitol. 98, 297-302.
- 367 Fu, Y., Lan, J., Zhang, Z., Hou, R., Wu, X., Yang, D., Zhang, R., Zheng, W., Nie, H., Xie,
- 368 Y., Yan, N., Yang, Z., Wang, C., Luo, L., Liu, L., Gu, X., Wang, S., Peng, X., Yang,
- 369 G., 2012. Novel insights into the transcriptome of *Dirofilaria immitis*. PLoS One. 7,
 370 e41639.
- Geary, J., Satti, M., Moreno, Y., Madrill, N., Whitten, D., Headley, S.A., Agnew, D., Geary,
 T., Mackenzie, C., 2012. First analysis of the secretome of the canine heartworm, *Dirofilaria immitis*. Parasite Vectors. 5, 140.
- Gnanasekar, M., Anandharaman, V., Anand, S.B., Nutman, T.B., Ramaswamy, K., 2008. A
 novel small heat shock protein 12.6 (HSP12.6) from *Brugia malayi* functions as a
 human IL-10 receptor binding protein. Mol. Biochem. Parasitol. 159, 98-103.
- 377 González-Miguel, J., Morchón, R., Siles-Lucas, M., Oleaga, A., Simón, F., 2010a.
- 378 Identification of *Dirofilaria immitis* immunoreactive proteins recognized by sera 379 from infected cats using two-dimensional electrophoresis and mass spectrometry.
- 380 Mol. Biochem. Parasitol. 174, 78-82.

381	González-Miguel, J., Rosario, L., Rota-Nodari, E., Morchón, R., Simón, F., 2010b.
382	Identification of immunoreactive proteins of Dirofilaria immitis and D. repens
383	recognized by sera from patients with pulmonary and subcutaneous dirofilariosis.
384	Parasitol. Int. 59, 248-256.
385	González-Miguel, J., Morchón, R., Mellado, I., Carretón, E., Montoya-Alonso, J.A., Simón,
386	F., 2012. Excretory/secretory antigens from Dirofilaria immitis adult worms interact
387	with the host fibrinolytic system involving the vascular endothelium. Mol. Biochem.
388	Parasitol. 181, 134-140.
389	González-Miguel, J., Morchón, R., Carretón, E., Montoya-Alonso, J.A., Simón, F., 2013.
390	Surface associated antigens of Dirofilaria immitis adult worms activate the host
391	fibrinolytic system. Vet. Parasitol. doi:pii: S0304-4017(13)00053-8.
392	10.1016/j.vetpar.2013.01.028. (Epub ahead of print)
393	Hernández-González, A., Valero, M.L., del Pino, M.S., Oleaga, A., Siles-Lucas, M., 2010.
394	Proteomic analysis of in vitro newly excysted juveniles from Fasciola hepatica. Mol
395	Biochem. Parasitol. 172, 121-128.
396	Kaiser, L., Spickard, R.C., Sparks, Jr.H.V., Williams, J.F. 1989. Dirofilaria immitis:
397	Alteration of endothelium-dependent relaxation in the "in vivo" canine femoral
398	artery. Exp. Parasitol. 69, 9-15.
399	McCall, J.W., Genchi, C., Kramer, L.H., Guerrero, J., Venco, L., 2008. Heartworm disease
400	in animals and humans. Adv Parasitol. 66, 193-285.
401	Morchón, R., Rodríguez-Barbero, A., Velasco, S., López-Belmonte, J., Simón, F., 2008.

- 401 Morchón, R., Rodríguez-Barbero, A., Velasco, S., López-Belmonte, J., Simón, F., 2008.
 402 Vascular endothelial cell activation by adult *Dirofilaria immitis* antigens. Parasitol.
 403 Int. 57, 441-446.
- 404 Morchón, R., González-Miguel, J., Mellado, I., Velasco, S., Rodríguez-Barbero, A., Simón,
 405 F., 2010. Adult *Dirofilaria immitis* excretory/secretory antigens upregulate the

406 production of prostaglandin E2 and downregulate monocyte transmigration in an *in*407 *vitro* model of vascular endothelial cell cultures. Vet. Parasitol. 170, 331-335.

- 408 Oleaga, A., Pérez-Sánchez, R., Pagés, E., Marcos-Atxutegi, C., Simón, F., 2009.
 409 Identification of immunoreactive proteins from the dog heartworm (*Dirofilaria*410 *immitis*) differentially recognized by the sera from dogs with patent or occult
 411 infections. Mol. Biochem. Parasitol. 166, 134-141.
- 412 Park, J., Dickerson, T.J., Janda, K.D., 2008. Major sperm protein as a diagnostic antigen for
 413 onchocerciasis. Bioorg. Med. Chem. 16, 7206-7209.
- 414 Poole, C.B., Grandea, A.G. 3rd, Maina, C.V., Jenkins, R.E., Selkirk, M.E., McReynolds,
 415 L.A., 1992. Cloning of a cuticular antigen that contains multiple tandem repeats from
 416 the filarial parasite *Dirofilaria immitis*. Proc. Natl. Acad. Sci. USA. 89, 5986-5990.
- 417 Poole, C.B., Hornstra, L.J., Benner, J.S., Fink, J.R., McReynolds, L.A., 1996. Carboxy418 terminal sequence divergence and processing of the polyprotein antigen from
 419 *Dirofilaria immitis*. Mol. Biochem. Parasitol. 82, 51-65.
- Ramajo-Hernández, A., Pérez-Sánchez, R., Ramajo-Martín, V., Oleaga, A., 2007. *Schistosoma bovis*: plasminogen binding in adults and the identification of
 plasminogen-binding proteins from the worm tegument. Exp. Parasitol. 115, 83-91.
- 423 Ravi, V., Kubofcik, J., Bandopathyaya, S., Geetha, M., Narayanan, R.B., Nutman, T.B.,
 424 Kaliraj, P., 2004. *Wuchereria bancrofti*: cloning and characterization of heat shock

425 protein 70 from the human lymphatic filarial parasite. Exp. Parasitol. 2004 106, 1-10.

- 426 Rodriguez-Mahillo, A.I., Gonzalez-Muñoz, M., Gomez-Aguado, F., Rodriguez-Perez, R.,
- 427 Corcuera, M.T., Caballero, M.L., Moneo, I., 2007. Cloning and characterisation of
 428 the *Anisakis simplex* allergen Ani s 4 as a cysteine-protease inhibitor. Int. J. Parasitol.
 429 37, 907-917.

- 430 Sajid, M., McKerrow, J.H., 2002. Cysteine proteases of parasitic organisms. Mol Biochem
 431 Parasitol. 120, 1-21.
- 432 Sereda, M.J., Hartmann, S., Lucius, R., 2008. Helminths and allergy: the example of
 433 tropomyosin. Trends Parasitol. 24, 272-278.
- 434 Simón, F., Morchón, R., Rodríguez-Barbero, A., López-Belmonte, J., Grandi, G., Genchi,
 435 C., 2008. *Dirofilaria immitis* and *Wolbachia*-derived antigens: its effect on
 436 endothelial mammal cells. Vet. Parasitol. 158, 223-231.
- 437 Simón, F., Siles-Lucas, M., Morchón, R., González-Miguel, J., Mellado, I., Carretón, E.,
 438 Montoya-Alonso, J.A., 2012. Human and animal dirofilariasis: the emergence of a
 439 zoonotic mosaic. Clin. Microbiol. Rev. 25, 507-544.
- 440 Tezuka, H., Imai, S., Tsukidate, S., Fujita, K., 2002a. A *Dirofilaria immitis* polyprotein up441 regulates nitric oxide production. Infect. Immun. 70, 5283-5286.
- 442 Tezuka, H., Imai, S., Muto, R., Furuhashi, Y., Fujita, K., 2002b. Recombinant *Dirofilaria*443 *immitis* polyprotein that stimulates murine B cells to produce nonspecific polyclonal
 444 immunoglobulin E antibody. Infect. Immun. 70, 1235-1244.
- 445 Venco, L. 2007. Heartworm (Dirofilaria immitis) disease in dogs. In: Genchi, C., Ronaldi,
- L., Cringoli, G. (Eds.), *Dirofilaria immitis* and *D. repens* in dog and cat and human
 infections, Rolando Editore, Italy, pp. 117-125.
- Vercauteren, I., Geldhof, P., Vercruysse, J., Peelaers, I., van den Broeck, W., Gevaert, K.,
 Claerebout, E., 2004. Vaccination with an *Ostertagia ostertagi* polyprotein allergen
 protects calves against homologous challenge infection. Infect. Immun. 72, 29953001.
- Wang, H., Zhao, C., Zhang, M., Lee, C.M., Reddy, E.P., Kung, S.K., 2013. A novel role of
 the scaffolding protein JLP in tuning CD40-induced activation of dendritic cells.
 Immunobiology. 218, 835-843.

455	Willenbücher, J., Höfle, W., Lucius, R., 1993. The filarial antigens Av33/Ov33-3 show
456	striking similarities to the major pepsin inhibitor from Ascaris suum. Mol. Biochem.
457	Parasitol. 57, 349-351.
458	Zhang, Z., Yang, J., Wei, J., Yang, Y., Chen, X., Zhao, X., Gu, Y., Cui, S., Zhu, X., 2011.

- *Trichinella spiralis* paramyosin binds to C8 and C9 and protects the tissue-dwelling
- 460 nematode from being attacked by host complement. PLoS Negl. Trop. Dis. 5, e1225.

462 **Table**

463 Table 1. Proteins of *D. immitis* somatic and surface adult worm extracts identified by LC-464 MS/MS.

465

466 Figure captions

467 Figure 1. Somatic and surface proteins identified in Dirofilaria immitis adult worms by LC-468 MS/MS. 108 and 16 proteins were identified in somatic (SO) and surface (SU) extracts, 469 respectively. From those, 11 were found in both compartments. The comparison of the 470 relative abundance of the 11 shared proteins in somatic and surface extracts is shown. Grey bars, somatic proteins; dotted bars, surface proteins. MSP, major sperm protein; PPA, 471 472 polyprotein antigen; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; TROPM, 473 tropomyosin; HSP12.6, small heat shock protein 12.6; PARAM, paramyosin; HSP70, heat 474 shock protein 70; TROPO, troponin T; IFP, intermediate filament protein.

475

Figure 2. Comparison of the relative abundance of the proteins indentified by LC-MS/MS in
somatic (grey bars) and surface (Dotted bars) extracts of *D. immitis* adult worms, classified
by their molecular function (GO).

479

480 Figure 3. Comparison of the relative abundance of the nine family groups of proteins (GO)
481 detected in *D. immitis* somatic (A) and surface (B) adult worm extracts.

482

Figure 4. Immunolocalization of the GAPDH (second file) and P22U (third file) proteins in *D. immitis* adult worms (transversal sections). The confocal microscope images $(4\times)$ are shown under normal light (C)) and green (A) or red fluorescence (B) after incubation with phalloidin plus an anti-GAPDH rabbit serum (second file), an anti-P22U rabbit serum (third

- 487 file) or the corresponding naïve serum (first file). Specific reactivity of actin is shown in
- 488 green and specific anti-GAPDH and P22U reactivity is shown in red.

PROTEINS OF D. immitis SOMATIC AND SURFACE ADULT WORM EXTRACTS IDENTIFIED BY LC-MS/MS						
Protein name	Database ID nb.	Species	Score	NP	emPAI	
SOMATIC PROTEINS						
Mesocentin	ADY39862	Ascaris suum	3987	32	0.12	
Myosin regulatory light chain 1	XM_003138853	Loa loa	2311	12	1.31	
Aminopeptidase ES-62 precursor	AF077194	Acanthocheilonema viteae	1769	38	0.91	
Polyprotein antigen	DIU52967	Dirofilaria immitis	1714	10	1.05	
Apolipophorin	ADY39826	Ascaris suum	1651	35	0.42	
Thrombospondin	AAB99830	Haemonchus contortus	1616	46	0.09	
Fructose-bisphosphate aldolase	JQ780094	Dirofilaria immitis	1245	22	0.70	
Tropomyosin	gi 154466686	Ascaris lumbricoides	1207	29	4.56	
Aspartic protease	OVU81605	Onchocerca volvulus	1120	66	0.30	
Dosage compensation protein dpy-30	EJW84023	Wuchereria bancrofti	893	51	0.64	
MFP3	XM_003137007	Loa loa	855	27	0.92	
Glycogen phosphorylase	XM_003141550	Loa loa	842	11	0.47	
Triosephosphate isomerase	XM_003145134	Loa loa	702	22	1.20	
DiNCF	gi 2160474	Dirofilaria immitis	679	18	1.26	
Heat shock protein 70	gi 7673686	Wuchereria bancrofti	639	10	0.58	
Calponin protein 3	XM_003148786	Loa loa	614	23	0.68	
Pepsin inhibitor Dit33	gi 31339942	Dirofilaria immitis	609	21	2.29	
ATP-dependent DNA helicase II	XM_001899708	Brugia malayi	497	22	0.27	
Actin	gi 6626	Caenorhabditis elegans	473	12	0.84	
Tumor D52 family protein	XM_003143389	Loa loa	438	7	0.37	
Adenine phosphoribosyltransferase	XM_001901344	Brugia malayi	425	11	0.61	
FKBP-type peptidyl-prolyl cis-trans isomerase-59	EJW82003	Wuchereria bancrofti	410	11	0.15	
Alpha tubulin	DQ010542	Onchocerca volvulus	397	9	0.11	
TTR-51 protein	XM_003145789	Loa loa	360	17	1.09	
Chaperonin HSP-60	EJD75295	Loa loa	354	10	0.90	
Calponin (Ov9M)	gi 1352090	Onchocerca volvulus	352	8	0.58	
Galectin	gi 7159326	Dirofilaria immitis	349	8	0.80	

P22U	gi 3253097	Dirofilaria immitis	337	47	2.78
Cytoplasmic intermediate filament protein	XP_001902854	Brugia malayi	333	10	0.29
Major sperm protein	gi 118137388	Ascaris suum	324	9	3.45
Immunodominant hypodermal antigen OV17	OV17_ONCVO	Onchocerca volvulus	309	21	0.61
14-3-3 family member (ftt-2)	gi 17568359	Caenorhabditis elegans	304	7	0.40
Small heat shock protein 12.6	gi 170591664	Brugia malayi	301	6	1.55
Octapeptide-repeat protein T2	XM_001900570	Brugia malayi	300	6	0.24
Heat shock protein 90	gi 3096951	Brugia pahangi	296	7	0.26
Adenylate kinase isoenzyme 1	XP_001894222	Brugia malayi	294	6	0.26
Annexin A5	gb ADY46116	Ascaris suum	285	11	0.15
Major antigen	EJD74046	Loa loa	271	8	0.04
Beta-galactoside-binding lectin	gi 433317	Onchocerca volvulus	269	7	0.35
Small heat shock protein p27	gi 1206025	Dirofilaria immitis	268	7	1.07
DS DNA-binding domain containing protein	XP_001902452	Brugia malayi	268	5	0.33
Serpin protein 6	XP_001900434	Brugia malayi	261	6	0.11
GAPDH	gi 1945477	Onchocerca volvulus	259	12	0.30
OV25 heat shock protein	gi 9777	Onchocerca volvulus	255	8	0.88
OV-16 antigen precursor	AAA29411	Onchocerca volvulus	251	11	0.47
Glycosyl hydrolase family 31 protein	EJW88543	Wuchereria bancrofti	249	11	0.14
Hypothetical protein	XP_003147689	Loa loa	247	5	0.18
Galectin	XP_003139211	Loa loa	245	8	0.34
Troponin-c	ABO84939	Brugia pahangi	228	11	0.21
Phosphoglycerate kinase 1	gi 17508823	Caenorhabditis elegans	221	4	0.34
Acyl CoA binding protein	XM_001895645	Brugia malayi	215	8	1.20
Glutathione peroxidase Di29	gi 1708061	Dirofilaria immitis	213	6	0.64
Enolase	gi 32440997	Onchocerca volvulus	206	3	0.22
Ubiquitin family member	gi 25151716	Caenorhabditis elegans	202	4	1.80
Thioredoxin	XP_001900803	Brugia malayi	196	14	1.10
Heat shock factor binding protein 1	XP_003145843	Loa loa	189	3	0.14

MCC	EJD75504	Loa loa	186	3	0.04
Troponin	gi 6065738	Anisakis simplex	183	5	0.65
ML domain-containing protein	XP_003136496	Loa loa	182	6	0.32
Muscle positioning family member	gi 17569083	Caenorhabditis elegans	181	4	0.23
Transthyretin-like family protein	XP_001892758	Brugia malayi	180	8	0.36
Transthyretin-like protein 46	ADY47514	Ascaris suum	172	4	0.29
Phosphofructokinase	XP_003136359	Loa loa	169	4	0.10
Oxidoreductase	EJW80846	Wuchereria bancrofti	169	3	0.16
Cysteine protease inhibitor	XP_003147913	Loa loa	168	7	0.68
Polyprotein	XP_001901258	Brugia malayi	168	2	0.08
SPARC family protein	EJW80102	Wuchereria bancrofti	165	7	0.18
Heat shock protein 10	EJW83482	Wuchereria bancrofti	167	4	0.24
Hypothetical protein	XM_003144363	Loa loa	162	4	0.27
Hypothetical protein CBG17351	gi 157768372	Caenorhabditis briggsae	162	4	0.25
Intermediate filament protein	gi 7159290	Dirofilaria immitis	159	4	0.11
HD domain-containing protein	EJW87016	Wuchereria bancrofti	157	8	0.11
Disorganized muscle protein 1	ADY45671	Ascaris suum	153	6	0.23
Putative fatty acid retinoid binding protein 2	ACT55269	Onchocerca volvulus	138	2	0.09
Hypothetical protein	XP_003145485	Loa loa	135	2	0.10
Hypothetical protein T22F3.3	gi 17564550	Caenorhabditis elegans	132	4	0.10
Calreticulin precursor	gi 4115903	Dirofilaria immitis	128	3	0.15
Small heat shock protein	gi 1518125	Brugia malayi	125	4	0.19
Translation elongation factor aEF-2	XP_003141031	Loa loa	123	3	0.22
Peroxiredoxin (thioredoxin peroxidase)	gi 2352262	Dirofilaria immitis	122	3	0.32
MFP2 sperm cell motility protein	XP_003144076	Loa loa	121	6	0.29
TB2/DP1 family protein	EJW82952	Wuchereria bancrofti	119	3	0.29
Glucose phosphate isomerase	XP_001900986	Brugia malayi	119	3	0.08
DJ-1 family protein	XP_003142071	Loa loa	117	2	0.09
Fumarase	gi 31580769	Ascaris suum	116	3	0.01

60S ribosomal protein L5	EJW84695	Wuchereria bancrofti	115	2	0.08
ATP synthase subunit beta	XP_003143628	Loa loa	114	3	0.08
Mitochondrial prohibitin complex protein 2	EJW83593	Wuchereria bancrofti	113	2	0.08
Antigen maltose binding protein	gi 558046	Onchocerca volvulus	112	2	0.53
Cell Division Cycle related family member	gi 17532375	Caenorhabditis elegans	103	3	0.04
Translationally controlled tumor protein	gi 2501147	Brugia malayi	100	2	0.35
S1 protein/Ov20	gi 1019801	Onchocerca volvulus	90	2	0.20
DnaK protein	EJW87493	Wuchereria bancrofti	90	2	0.06
Cyclophilin Ovcyp-2	AAC47233	Onchocerca volvulus	89	6	0.39
Hydrolase	EJW81476	Wuchereria bancrofti	87	6	0.07
Paramyosin	gi 126256672	Trichinella spiralis	85	1	0.03
CK1/WORM6 protein kinase	EJW80549	Wuchereria bancrofti	80	4	0.15
Microfilariae surface-associated protein	gi 45602845	Onchocerca volvulus	76	1	0.19
Profilin	EFO23797	Loa loa	74	2	0.24
Glutathione S-transferase 1	ADY45818	Ascaris suum	70	2	0.11
Lactate dehydrogenase	gi 17535107	Caenorhabditis elegans	69	1	0.09
Superoxide dismutase	gi 2209364	Dirofilaria immitis	67	1	0.21
Hypothetical protein CBG08063	gi 157766821	Caenorhabditis briggsae	65	1	0.26
As37 immunoglobulin-like family protein	gi 22036079	Ascaris suum	63	1	0.09
Ezrin/Radixin/Moesin family member	gi 17505420	Caenorhabditis elegans	63	1	0.05
SMC	gi 56758564	Schistosoma japonicum	60	2	0.07
Titin	gi 72000919	Caenorhabditis elegans	54	3	0.00
Ov87 (galectin)	gi 4100353	Onchocerca volvulus	53	1	0.09
Antigen	gi 170590552	Brugia malayi	52	2	-
Myosin heavy chain	gi 3941223	Schistosoma japonicum	51	3	-
Chromodomain protein family member	gi 17569817	Caenorhabditis elegans	50	1	0.02
	SURFACE PROTE	INS			
Polyprotein antigen	gi 1663728	Dirofilaria immitis	191	7	0.20
GAPDH	gi 1945477	Onchocerca volvulus	114	4	0.19

Paramyosin	gi 915306	Onchocerca gibsoni	80	2	0.06
Intermediate filament protein	gi 170596673	Brugia malayi	79	2	-
Tropomyosin	gi 42559553	Ascaris lumbricoides	79	5	0.10
Major sperm protein	gi 118137388	Ascaris suum	76	2	0.24
P22U	gi 3253097	Dirofilaria immitis	69	3	0.14
High-affinity octopamine transporter	gi 110816318	Lumbricus terrestris	63	1	0.04
Papain family cysteine protease	gi 170595047	Brugia malayi	59	1	0.11
NSF	gi 133901658	Caenorhabditis elegans	53	6	-
Troponin T	ADY43415.1	Ascaris suum	51	2	0.04
JNK-associated leucine-zipper protein	XM_001899700.1	Brugia malayi	47	2	0.02
MFP3	XM_003137007.1	Loa loa	45	2	0.05
Small heat shock protein 12.6	XM_001900555.1	Brugia malayi	37	2	0.07
Conserved hypothetical protein	XP_001901762.1	Brugia malayi	30	2	0.03
Heat shock 70 kDa protein	XM_001901744.1	Brugia malayi	27	10	0.04
RhoGEF domain containing protein	XM_001896860.1	Brugia malayi	24	2	0.04
DnaJ C terminal region family protein	XM_001900397.1	Brugia malayi	23	2	0.05

Table footnotes				
NP	Number of matching peptides			
MFP3	PP2A targeted MSP fiber protein 3			
DiNCF	Dirofilaria immitis neutrophil chemotactic factor			
GAPDH	Glyceraldehyde-3-phosphate dehydrogenase			
MCC	Macroglobulin complement component family protein			
ML	MD-2-related lipid-recognition domain			
SPARC	Secreted protein acidic and rich in cysteine			
MFP2	PP2A targeted MSP fiber protein 2			
SMC	Structural maintenance of chromosomes			
NSF	N-ethylmaleimide sensitive secretion factor			

Figure 4 Click here to download high resolution image

