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Abstract This work is focused on the problem of

performing multi robot patrolling for infrastructure

security applications in order to protect a known

environment at critical facilities. Thus, given a set of

robots and a set of points of interest, the patrolling

task consists of constantly visiting these points at

irregular time intervals for security purposes. Current

existing solutions for these types of applications are

predictable and inflexible. Moreover, most of the

previous work has tackled the patrolling problem with

centralized and deterministic solutions and only few

efforts have been made to integrate dynamic methods.

Therefore, one of the main contributions of this work is

the development of new dynamic and decentralized

collaborative approaches in order to solve the

aforementioned problem by implementing learning

models from Game Theory. The model selected in this

work that includes belief based and reinforcement

models as special cases is called Experience Weighted

Attraction. The problem has been defined using

concepts of Graph Theory to represent the environment

in order to work with such Game Theory techniques.

Finally, the proposed methods have been evaluated

experimentally by using a patrolling simulator. The

results obtained have been compared with previous

available approaches.

Keywords Multi Robot Patrolling, Game Theory,

Experience Weighted Attraction, Security Application

1. Introduction

Domains, where distributed surveillance, inspection or

control are required, are candidates for being secured by

performing patrolling tasks, usually by walking

throughout at regular intervals (Abate, 1996), (Almeida et

al., 2004). Currently, security system solutions are mostly

predictable and inflexible. Additionally, since they are

controlled by human operators, their performance can

be affected by limitations such as boredom, distraction,

or fatigue. Furthermore, in some environments, people

must deal with hazardous conditions. As a consequence,

it is important to improve the security elements used in

these types of systems, which assist human beings in

dangerous scenarios such as mine clearing or search and

rescue operations. They are then able to perform other

type of high level tasks, i.e., monitoring the system from

a safe location (Oates et al., 2009). Recently, new

research efforts have arisen trying to solve some

challenges related to security tasks automation by using

mobile robots (Everett, 2003). Thus, mobile robots aim to

perform some useful task that a human either cannot, or
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would prefer not to do. Moreover, the robot should

hopefully do it better, cheaper, safer, and more reliably.

Security systems that utilize mobile robots in these

types of applications have a great deal of advantages,

i.e., they do not experience human limitations.

However, some tasks are too complex that a single robot

cannot achieve good results, especially in the presence of

uncertainties, incomplete information, distributed

control, and so forth. To overcome these challenges,

Multi Robot Systems can be used. They are characterized

as a set of homogeneous or heterogeneous robots

operating in the same environment using cooperative

behaviors (Farinelli et al., 2004).

In this paper, new collaborative multi robot approaches for

infrastructure security applications at critical facilities are

explored. The work is focused on area patrol, i.e., the

activity of going throughout an area. Thus, given a set of

robots and a set of points of interest, the patrolling problem

consists of constantly visiting these points at irregular time

intervals for security purposes. This problem has been

formulated using concepts of Graph Theory to represent an

environment where nodes stand for specific location of

interest and edges for possible paths. By using this

representation, each path has a cost that represents the time

required to go from one node to another. The main

advantage of this representation is its application. It can be

easily used in other domains, i.e., computer networks,

distributed coverage, and so forth. Additionally, there is a

wide variety of problems that may be reformulated as

particular patrolling task such as cleaning or surveillance.

Since the patrolling problem seeks to maximize the number

of visits to each node in a given environment, a good

patrolling strategy must reduce the time lag between two

visits to the same location (Chevaleyre, 2004).

The main contributions of this work are summarized as

follows: An analysis of the behavior of game theory

models in the multi robot patrolling problem context is

presented. A dynamic and distributed solution has been

developed in order to solve the aforementioned problem.

A novel decision making rule has been defined. This

rule attempts to allow robot dispersion, i.e., at each

point of interest, each robot chooses a different

available set of actions. A demonstration of how

multiple robot interaction arises with the definition of

multiple games at each point of interest has been defied.

Finally, a detailed study of the behavior of the

implementedmodel parameters has been described.

The rest of this paper is organized as follows. Section 2

briefly describes related work. Section 3 gives

definitions of game theory and introduces the problem.

Section 4 shows the implemented models in order to

solve the patrolling problem. Section 5 presents the

evaluation and experimental results. Finally, section 6

summarizes the obtained results.

2. Related work

The multi robot patrolling problem has received much

attention in recent years, specially in works that

develop algorithms to coordinate decision making

among robots, (Portugal and Rocha, 2011). These

works have implemented different principles such as

reinforcement learning (Santana et al., 2004);

negotiations methods (Hwang, 2009); swarm

optimization (Glad and Buffet, 2009); cycle and

partitioning strategies (Chevaleyre, 2004); and

adaptive solutions (Sempé and Drogoul, 2003). A

description of all of them can be found on a recent

survey by (Portugal and Rocha, 2011). Beyond this

survey, the multi robot patrolling problem was tackled

in (Ahmadi and Stone, 2006). In that work, the

problem was called Continuous Area Sweeping, which is

solved with a partitioning area method. Moreover, in

(Aguirre et al., 2011), the multi robot patrolling is

applied to patrol national borders. In that work,

elements of game theory as well as Monte Carlo

simulation are used to solve the problem via genetic

algorithms. Another work that utilizes game theory

principles is described in (An et al., 2012). In that

work, solutions to solve competitive or zero sum

games for the protection of critical infrastructure via

Stackelberg Games are presented.

Among all these works, three of them are directly related

with this work. The pioneer work in the multi robot

patrolling problem was carried out by (Machado et al.,

2003). In that work, authors defined an evaluation

criterion based on idleness. Idleness is the time that a

place remains unvisited. Thus, Total Idleness is defined as

the average of the idleness of all places of a given

environment. Since this criterion is widely used in

literature, it was used to measure the performance of the

methods proposed in this work. Moreover, the problem

of generating a patrol path inside a target area was

tackled in (Elmaliach et al., 2007). The algorithm applied

to generate this patrol path is called Cycle and it

guarantees that each point is covered with the same

optimal frequency. The solution presented in that work

uses Spanning Tree Coverage method to find a minimal

Hamilton path of minimal costs. Once a path is obtained,

robots are uniformly distributed along this path and

follow the same patrol route over and over. Thus,

uniform frequency of the multi robot patrolling task is

achieved as long as one robot continues working

properly. Moreover, authors present criteria based on

frequency optimization in order to evaluate multi robot

patrolling algorithms. Finally, in (Portugal and Rocha,

2010) is presented an algorithm called MPS. Such an

algorithm divides the environment into regions with the

same dimension by using a balanced graph partitioning

approach. Each of these regions is assigned to a robot

that follows a local patrolling route. The procedure to
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obtain this patrolling route mainly seeks Euler and

Hamilton circuits and paths. However, if such circuits

and paths do not exist, the procedure seeks longest paths

and Non Hamiltonian cycles. Non Hamiltonian cycles

are selected only when they have at least half of the

vertices of a graph; if not, the patrolling route remains the

longest path. Since the longest path and the Non

Hamiltonian cycle do not contain all vertices of the

graph, the procedure includes such vertices to complete

the patrolling route. Then, ultimately inverse path

procedure is used to return to the starting vertex of the

route when is required.

Previous literature has demonstrated the effectiveness of

methods that implement solutions based on cycles and

paths (Chevaleyre, 2004). The good performance of these

approaches could be explained by their centralized and

explicit coordinator scheme, (Almeida et al., 2004).

However, a centralized solution has several

disadvantages such as lack of scalability in the number of

places to protect and susceptibility to single point failure,

due to its unique, and hence vulnerable, control point. In

addition, these approaches are deterministic, and therefore

not suitable for security purposes due to their

predictability.

The present work differs from others on the manner in

which the patrolling problem was solved by

implementing learning models from Game Theory. The

theory of learning in games defines equilibrium as the

result of dynamic adjustment processes in which

players interact for optimality over time in repeated

normal form games. Thus, they compute their myopic

best response based on the accumulated experience

achieved by tracking previous plays history of other

players. The learning model selected in this work to

patrol throughout an environment was proposed by

Camerer and is called Experience Weighted Attraction

(Camerer, 1999). Implementing such adaptive models

allows developing dynamic and distributed solutions

similar to (Santana et al., 2004) in contrast to several

literature works.

3. Concepts from game theory

A brief overview of concepts as well as some definitions

of game theory (Fudenberg, 1998) are given in order to

clarify the description in the following sections. In this

work, an abstract representation of the environment as an

undirected weighted graphG has been adopted. This

graph is an ordered pair consisting of a setE G of

edges and a setN G of nodes. Each node is a special

point of interest that needs to be observed in search of

intruders, but it is assumed that such observation is

instantaneous. Each edge represents a path by using a

number corresponding to the cost proportional to its

length.

Thus, given such graph and a set of robots, the

patrolling task consists of visiting at each time step as

many nodes as possible in order to minimize the time

lag between two visits at the same node. Therefore,

each node not only is an environment point of interest

to be inspected, but also a point where interaction

among agents arises, i.e., each robot in graph node

n N G must select, based on other robots selections,

an appropriate action in order to choose the next node

to visit. Taking into account this interaction, normal

form games at each graph node n N G have been

defined.

Definition 1 (Normal Form Game) Formally, a finite n

robot normal formgame is made of:

 A finite setM of robots i 1, ,n.

 A finite set 1 nA A A ,where 1 k
i i iA a , ,a is a

finite set of actions for robot i 1, ,n. Each vector

1 nj j
1 n 1, ,na a , ,a A j 1, ,k is called action

profile for the game .Each action is related to an

edge e E G .

 A finite set 1 nS S S , where 1 k
i i iS s , ,s is a

finite set of strategies for robot i 1, ,n. Each vector

1 nj j
1 n 1, ,ns s , ,s S j 1, ,k is called strategy

profile for the game .A strategy is the criterion taken

into account to determine the action to be selected.

 A payoff function i s for robot i 1, ,n,

where S is the set of strategy profiles.

 Therefore, i s is the payoff of robot i when strategy

profile s is chosen.

In this implementation, each node n N G has a fixed

number of normal form games which depends on the

edges connected to it. At time step zero, the robots are

randomly positioned on the setN G .

Thus, at every time step, the robot i M reaches a node

n N G and plays its corresponding normal form game

.As a consequence, the robot chooses its individual

strategy ij
i is S considering the strategies selected by all

other robots. The action related to the strategy chosen

leads the robot to the next node. Finally, the interaction

among robots arises when each robot sends a message

indicating the strategy selected. A robot can select an

action with probability one or by randomizing over the

set of available actions according to some probability

distribution. Such strategies are called pure and mixed,

respectively.
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Definition 2 (Pure Strategy) Given a set of available

actions 1 k
i i iA a , ,a for robot i 1, ,n, a pure strategy

i 1l j
i 1 i is a j 1, ,k ,l 1, ,k . Thus, given a game ,

a pure strategy profile 1 nj j
1 n 1, ,ns s , ,s j 1, ,k for

the game is the joint strategies selection where nj
ns is the

choice of strategy nj by robot n M

Definition 3 (Mixed Strategy) A mixed strategy i for

robot i 1, ,n is a probability distribution over the set

of available actions 1 k
i i iA a , ,a for such robot; i.e., a

mixed strategy has the form 1 1 k k
i i i i ip a p a where

ij
i ip 0 j 1, ,k and i

i

jk
j 1 ip 1. Thus, robot i M

selects ij
ia with probability ij

ip . If ij
ip 0, j 1, ,k

except for one, say il
i ip 1,l 1, ,k , then is a pure

strategy. Thus, given a game , a mixed strategy profile

1 n, , for the game is the joint selection of

strategieswhere i is the strategy selected by robot i M.

A manner to represent a game is through the use of a

n × n matrix payoff game in which each cell of this matrix

indicates a strategy profile and contains the outcome or

mixed strategy payoffs of the game when such profile is

selected. Such outcome take the form

1 nC x,y , , ,x,y 1, ,n where the entry i is

the payoff of robot i M

Definition 4 (Expected payoff of a mixed strategy) Given

a normal form game , the expected payoff for robot

i M playing the strategy profile for the game
1 nj j
1 n 1, ,ns s , ,s , j 1, ,k is defined as

i

n
j

i i i i
a A i 1

s a Pr a j 1, ,k (1)

where ij
iPr a is the probability that action ij will be

played by robot i M.

Thus, the robots that interact in these types of games

choose an action that maximize its expected payoff

considering the actions selected by all other robots. This is

called best response and it leads to the central solution

concept of game theory, the Nash equilibrium. From now

on, the robots other than robot i M are specified by

i 1, ,i 1,i 1, ,n M .Moreover, the strategy

profile without the strategy of robot i M is defined by

1 i 1 i 1 nj j j j
1 1 i 1 i 1 n i 1, ,i 1,i 1, ,ns s , ,s ,s , ,s S j 1, ,k .

Definition 5 (Best Response) The best response of robot

i M to the strategy profile 1s is a strategy i is S such

that ij
i i i i i i is ,s s ,s , j 1, ,k for all strategies

ij
i is S .

Definition 6 (Nash equilibrium) A strategy profile

1 nj j
1 n 1, ,ns s , ,s j 1, ,k for the game is a Nash

Equilibrium if, for all robots ij
ii M,s is a best response to

is .

In the games played in this implementation, the robots

do not have conflicting interests and their sole challenge

is to coordinate on actions that are maximally beneficial to

all. These types of games are called team games.

Finally, in order to visit as many nodes of a graph as

possible, a set of robots must disperse throughout the

environment. Based on this requirement, the payoffs are

defined as follow: let j
i is be the times that robots

other than robot i M select the strategy j 1, ,k ,

where j j j j j
i 1 i 1 i 1 ns s , ,s ,s , ,s . Thus, the payoff for

robot i M playing such strategy is defined as

j j j
i i i i is ,s M s . Therefore, the payoff is low when

several robots choose the same strategy. Henceforth, at

each time step that a robot i M reaches a node

n N G , plays a normal form game against i M,

chooses an available action of its set of actions iA and

goes to the next node n N G .

4. Experience weightedattraction learningmodel

In the Experience Weighted Attraction or EWA learning

model each strategy ij
i is S has a numerical value called

attraction, which specifies the probability of choosing that

strategy. Each attraction has an initial value, which is

updated each period through the use of two rules that

update two variables. The first variable ij
i t , correspond

to the level of attraction of the robot i M by the strategy
ij
i is S after period t. The second variable t represents

the amount of experience and indicates the number of

observation equivalents of past experience. These

variables begin with some prior values, 0 and ij
i 0 .

Thus, the first rule updates the level of attraction

according to

i i i

i

j j j
i i i i ij

i

t 1 t 1 1 S ,s t s t ,s
t

t
(2)

The decay rate depreciates previous attraction ij
i t 1

and represents a combination of forgetting and level of

knowledge about the adaptation of other robots. When
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is lower, old attractions are decayed more quickly,

whereas the most recent attractions are more important.

Moreover, the parameter weights hypothetical payoffs

that unchosen strategies would have earned, whereas

1 weights payoffs received from the chosen strategy
ij
is t . Finally, the indicator function ij

i iS ,s t is equal

to 1 when the strategy selected ij
is t at period t is equal to

some strategy of the set of strategies iS .This indicator

function is utilized in all the models of this section.

The second rule updates the amount of experience

according to

t 1 t 1 1,t 1 (3)

where 1 is the rate of decay for experience, which

measures the impact of previous experience. Moreover,

the parameter specifies how quickly robot i M lock in

to a strategy. When 0, attractions are weighted

averages of past attractions and payoffs. Past attractions

are weighted by
t 1 1

,
t 1 1

whereas payoffs are

weighted by
1

.
t 1 1

When 1 the attractions

cumulate because t becomes one.

The initial attraction level of each strategy ij
i is S is

denoted by ij
i i

i

1
0 , j 1, ,k,

S
while the initial value

for the number of observation equivalents 0 1.

Thus, an EWA robot i M using these rules shapes a

set of attractions which specify preference for a specific

strategy ij
i is S . Such preference is given as a choice

probability ij
iP in time step t 1 through a logistic

stochastic response function defined by

ji
i

i
ji
i

i

t
j
i

tk
j 1

e
P t 1

e
(4) 

where is the response sensitivity. With 0 the choice

is stochastic while is best response.

Beyond these rules, specific values of 0 , and reduce

this general model to special cases such as reinforcement

and belief basedmodels.

4.1 ReinforcementModel

In the reinforcement model of EWA, every time step

that a robot i M reaches a graph node n N G , it

performs three steps. In the first step, the robot selects

one of the strategies available at such node. This

selection is based on a logistic stochastic response

function defined by

ji
i

i
ji
i

i

R t
j
i

R tk
j 1

e
P t 1

e
(5) 

where is the response sensitivity. With 0 the choice is

stochastic, whereas is best response. The response

function ij
iP specifies the selection probability of the

strategy ij
is

Each strategy ij
is is related to a reinforcement value ij

iR .

When this reinforcement value is updated, its related

strategy is reinforced. Thus, in the second step, once a

strategy is selected, only this strategy is reinforced by

previous received payoffs according to

i i i ij j j j
i i i i i i iR t R t 1 S ,s t s t ,s (6)

As can be seen, this rule is the result of setting in the EWA

model 0, 1, and 0 1, therefore t 1. This is

the simplest form of cumulative reinforcement. When

0, 0 and 1
0 ,

1
EWA model becomes a

form of averaged reinforcement governed by

i i i ij j j j
i i i i i i iR t R t 1 1 S ,s t s t ,s (7) 

where reinforcements are averages of previous

attractions and incremental reinforcement. The initial

reinforcement value of the strategies available at each

node is defined by ij
i i

i

1
R 0 , j 1, ,k.

S

Finally, in the last step, the robot i M communicates the

strategy selected to the other robots, so that they update the

reinforcement value of the strategy selected by the robot

i M in the node n N G . Thus, similar to the behavior of

attractions in EWA model, in the reinforcement case, each

robot shapes the reinforcement of each strategy by utilizing

the aforementioned rules. The Algorithm 1 describe the

three steps accomplished in this model.

3

5

6 

7

j

j

j

: M,N

1 n N G

2 j 1, ,k

1
R 0

S

4

(1) Select a strategy based onP ;

8 (2) Reinforce the strategy selected throughR ;

9 (3) Communicate the strategy selected to the

Data

forall do

forall do

end

end

while  dotrue

other robots i M;

10 end

Algorithm 1. Algorithm of the reinforcementmodel
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4.2 Belief Based Model

Belief based models start with the premise that each robot

i M identifies that it is playing a game with other

robots, and it forms beliefs about what these robots will

play in the future based on its past observation. Then, it

attempts to define dynamic processes that lead to a Nash

Equilibrium by choosing a best response strategy that

maximizes its expected payoff to its beliefs.

There are different iterative learning rules to form

beliefs. One widely used model of learning is the

process of Weighted Fictitious Play and its variants, such as

Cournot Best Response Dynamics, which looks back only

one play, as opposed to Fictitious Play which looks back

the tmost recent plays, (Brown, 1951). At each time step

in the model of Weighted Fictitious Play, each robot i M

chooses its strategies to maximize its expected payoff

given its prediction about the distribution over strategies

of other robots at that time step. Therefore, Weighted

Fictitious Play is an instance of model based learning in

which a robot maintains beliefs t
i iB s about the

strategies of other robots i is S . In the prediction of this

learning rule, the initial prior belief that robot i M

assigns to strategies is of robots i M is governed by

i i

0
i i0

i i 0
s S i i

Y s
B s

Y s
(8)

where 0
i i iY s : S is an exogenous initial weight

function, which assigns a real value to each strategy of

the robots other than robot i M. This value is assigned

according to i i0
i i i

i

S j 1
Y s : , j 1, ,k,

S

where

iS represents the cardinality of the set
iS . Later, every

time step that the strategy
is is played, its weight is

updated according to

t 1
t t 1 i i
i i i i t 1

i i

1 if s s
Y s Y s

0 if s s
(9) 

The initial weight assigned is different for each strategy.

This assignation permits that the updates performed by 9

do not lead to weights with the same value, which

allows to avoid selection problems.

The belief that robot i M assigns to the robots i M

playing is at time step t is given by

i i

t
i it

i i t
s S i i

Y s
B s

Y s
(10) 

The updating rule formulated by 10 can be defined in

terms of previous period beliefs by

i i

i i

t 1
t t 1 i i

s S i i i i t 1
i it

i i t
s S i i

1 if s s
Y s B s

0 if s s
B s

Y s 1
(11)

In 11, t
i iB s is expressed in terms of previous period

beliefs, similar to EWA model with previous period

attractions and reinforcementmodel with previous period

reinforcements.

Following this updating rule, most recent and previous

period beliefs are updated times. When 0Weighted

Fictitious Play becomes Cournot Best Response Dynamics,

and when 1 it becomes Fictitious Play. Once beliefs are

updated, expected payoff of robot i M in period ijt
i it,E s

is defined according to

i i

i i

j jt t
i i i i i i

s S

E s s t ,s B s (12)

As in the case of beliefs, expected payoffs can be

expressed as a function of previous period expected

payoffs which yields

i i

i ii

i i

j jt t 1
s S i i i i i ijt

i i t 1
s S i i

Y s E s s t ,s
E s

Y s 1
(13) 

Finally, the best response of the robot i M in Weighted

Fictitious Play is given by

i

i

jt t
i i i

j

BR argmaxE s (14)
 

5. Experiments and result

In order to evaluate and compare this implementation

with other methods, a patrolling simulator developed

from pioneers works (Machado et al., 2003) has been used.

Thus, the first experiments aim at analyzing the behavior of

these models with different values of their parameters,

namely, for EWA model , and , for reinforcement

model and , and for belief based model . In order to

do so, the map shown in figure 1(a) was used. Where

unfilled small circles stand for nodes or points of interest,

lines stand for edges of a graph or paths that robots use to

move throughout the map. Filled big circles stand for

robots patrolling such map. In this set of experiments, a

group of 20 robots started at node number 22 and patrol

until each node had been visited 256 times.
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Figure 1. Maps used in order to evaluate performance of each algorithm

Figure 2. Performance of the models evaluated utilizing the map of figure 1(a).

Figure 2 shows the performance of the models

evaluated. At each plot, color intensity, coordinates, and

box plots represent the total idleness. Thus, figure 2(a)

shows the behavior of EWAmodel using six slice planes at

the axis through a volumetric data created with values

of 0 , , 1.0.As it can be seen, the best behavior was

obtained with the slice at 0.2. In this slice, the

volumetric data shows that the idleness is, in general,

approximately 2.5. The region around the points 0.7

and 0.9 presents the lowest idleness, whereas the

idleness value hardly ever reaches values of 2.55. Figure

2(b) shows a surface expressing the behavior of the

reinforcement model for values of 0 , , 1.0. It

shows that the bigger the value of and the lower the

value of , the better the performance of the model.

Indeed, the surface has a minimum at coordinate

0.9, 0.3 . In general, 0.9 achieves the best

behavior, which indicates that the form of cumulative

reinforcement performs better than the average

reinforcement. In the form of cumulative reinforcement,

each strategy has a level of reinforcement, which is

incremented cumulatively by received payoffs. Finally,

figure 2(c) shows the performance of the belief based

model for values of 0.0 1.0 by means of using box

plots. The size of each box represents the spread of the

data, whereas the symbols “+”, called outliers, are values

distant from the rest of the data. For security purpose,

it is not suitable to have several outliers because they

represent nodes with high idleness, which indicates

points of weakness. In general, the nature of the belief

based model is almost the same in all cases. When

0.1 the median, 2.29, of the data is the smallest. Even

though, the smallest median does not mean better

performance, the size of the box when 0.1 is lower

than the other options. This size indicates that the total

idleness of all nodes is similar. Moreover, there are only

two outliers, at nodes 28 and 40 with total idleness of 5.22

and 5.61, respectively. Although, there are options with

two or less outliers, their values are bigger. Based on this

information, values of 0.2, 0.9 and 0.7 for EWA

model; 0.9 and 0.3 for reinforcement model, and

0.1 for belief model model were selected.

Once all parameters of the models were determined, the

next experiments aimed at evaluating the models in

comparison to other methods available in the Patrolling

Simulator, namely, the Cycle algorithm and the MPS

algorithm, which were described in section 2. For these

experiments, all the maps of figure 1 were used. For each

map, sets M of 6, 8, 10, 15, 20, 25, 30 robots were evaluated.

This combination generates 21 cases of study to

experiment. Each experiment consists of visiting all

nodes 256 times. At time t 0, each robot was placed

randomly at one node of the map.

Table 1 shows the results of these experiments for

Strongly Connected, Maze and Grid maps. In these results,

the lower the size of , the better the performance of the

algorithm and the lower the value of , the lower the

variance. As it can be observed, if the value ofM

increases, the performance of all of the algorithms is

better. Although this behavior seems obvious, if the

coordination among robots is not appropriate, bigger

values ofMwill not lead to better performance of the

algorithms. Therefore, this nature is due to the suitable

coordination.
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Cycle MPS Belief Based Reinforcement EWA

Map M
Total Idleness

S
tr
o
n
g
ly

C
o
n
n
ec
te
d

30 1.711 0.829 1.663 0.649 1.647 0.614 1.674 0.673

25 2.006 0.974 1.904 0.655 2.086 1.109 1.979 0.876

20 2.471 1.195 2.445 1.151 2.460 1.173 2.453 1.101

15 2.981 3.805 3.066 2.672 2.372 2.923 3.598 4.981

10 5.119 6.534 3.941 5.090 3.148 2.640 5.587 5.165

8 4.225 3.662 5.889 5.287 4.912 4.095 4.443 4.714 5.130 4.714

6 8.139 10.81 6.783 6.689 8.474 9.503 8.078 10.47 6.746 6.477

Maze

30 3.304 1.604 3.114 1.490 3.240 1.720 3.264 1.639

25 3.904 1.895 3.605 1.760 3.884 2.055 3.940 1.996

20 4.877 2.361 4.477 2.251 4.689 2.446 4.931 2.489

15 4.844 4.101 4.259 4.270 7.153 7.168 6.896 7.019

10 7.674 7.737 8.203 7.404 6.865 5.571 6.008 9.869

8 9.963 8.524 5.909 6.165 9.437 9.746 9.926 10.24

6 13.58 11.56 10.30 7.604 19.72 19.53 18.64 27.91

Grid

30 0.921 0.415 0.881 0.155 0.919 0.274 0.900 0.230

25 1.064 0.478 1.034 0.286 1.016 0.231 1.000 0.234

20 1.319 0.594 1.218 0.252 1.235 0.299 1.226 0.290

15 1.279 3.114 1.649 1.335 1.892 1.312 1.242 0.961

10 2.080 3.326 2.027 1.967 1.753 1.705 1.989 1.682

8 2.514 1.826 2.110 1.936 2.020 2.087 2.604 1.743 2.015 1.998

6 2.883 5.238 2.947 2.513 1.843 1.471 3.517 2.479 2.852 2.397

Table 1. Performance of the algorithmswith a different size ofM

in each map

Apart from having a more suitable architecture for

security purposes, in as many as 95% of cases one of the

methods presented in this work improves Cycle

algorithm. The only case where Cycle algorithm

performed better was in Strongly Connected map with

M 8.Most notably, these results indicate that

regardless of which map is used, in all cases, at least

one of the methods presented in this work improvesMSP

algorithm. Taking into account that both Cycle and MPS

algorithms use a centralized and explicit coordinator

scheme, this improvement in performance is significant.

Finally, in 80% of cases MPS algorithm does not work

due to partitioning problems. Portugal and Rocha (2010)

describe the reasons of these problems. It is worth noting

that the proposed solution does not have these problems.

6. Conclusions

Several dynamic and distributed collaborative multi

robot approaches for security applications at critical

facilities have been developed. Thus, a team of robots

endowed with patrolling behaviors based on learning

models from game theory as well as a thorough study of

such models in the context of the patrolling problem has

been presented. As shown in section 5, a significant

improvement in performance was obtained by using the

proposed methods with respect to Cycle and MPS

algorithms. Moreover, the distributed characteristics of

these models offer solutions with several advantages,

such as scalability, modularity, and incremental

expandability. Furthermore, the behavior of the robots

patrolling that are using the techniques of this work is

non deterministic, which is suitable for security

applications due to the fact that intelligent intruders can

learn patrolling paths, and based on this information,

perform attacks to the protected system. The evaluation

to support this claim is not part of the scope of this work.

However, results in (Sak and Wainer, 2008) demonstrate

that system protection based on not static solutions is less

susceptible to be attacked.

Despite the good performance achieved with the models

implemented, there are significant remaining questions

for future research. Firstly, interference among robots

arises when more than one robot utilizes the same edge.

In order to avoid this interference, it is necessary to

evaluate if the edge selected is used or not by other

robots. Future research consisting of studying the

behavior of these methods including such aspect is

necessary. Secondly, the metric of the patrolling simulator

to evaluate the performance of the algorithms only

includes the idleness of each node, however it does not

take into account if one edge connected to such node (in

the case that it has more than one) is used or not. Thus, an

interesting future research consisting of evaluating the

behavior of the algorithms including such a restriction

because it allows to have a more secure system. Finally,

even though the expected payoff matrix defined has

achieved suitable results, new definition matrices should

be explored.
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