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Avenue Ibn Batouta B.P: 1014, Agdal Rabat (MOROCCO).
(Dated: November 24, 2009)

In this paper, we study the role of coherent states in the realm of quantum cosmology, both in a
second-quantized single universe and in a third-quantized quantum multiverse. In particular, most
emphasis will be paid to the quantum description of multiverses made of accelerated universes. We
have shown that the quantum states involved at a quantum mechanical multiverse whose single
universes are accelerated are given by squeezed states having no classical analogs.

PACS numbers: 98.80.Qc, 03.65.Fd.

I. INTRODUCTION

Coherent states have been always considered as
rather mathematical objects with application in quan-
tum physics, and they can also represent a solid basis
for the quantum description of a particular system [1].
Therefore, obtaining coherent states in quantum cosmol-
ogy will allow us both: i) to enhance the analogy be-
tween usual quantum mechanics and cosmology, and ii)
to prepare the mechanics to describe the universe further,
potentially generalizable developments.

On the other hand, coherent states can be constructed
from the algebras lying behind their definition. More
precisely, in the literature Heisenberg algebras are usu-
ally used to obtain them. Nevertheless, in some works
[2] coherent states defined for given quantum systems
are constructed from the so-called Generalized Heisen-
berg Algebras (GHA). These allow us to construct co-
herent states without specifying any formal expressions
for the annihilation operator. Such algebras will be spe-
cially useful to describe the case of a universe in second
quantization.

Furthermore, second-quantization of the universe can
provide us with the quantum state of a single universe
by means of a wavefunction [3], when given by a pure
state, or through a density matrix [4] if, instead, it is
more generally given in terms of a mixed state. However,
in any of the above representations one cannot account
for any topology changes [5], i. e. the creation or an-
nihilation of universes. Therefore, a third-quantization
procedure is needed to quantum mechanically describe a
many-universe system [6]. Then, it can represent either:
i) a multiverse of parent universes in case that the nu-
cleated universes are inflating, or ii) a spacetime foam of
continuously creating and annihilating baby universes.

We outline this paper as follows. In sec. II, we derive
the expression for coherent states of a second-quantized
universe using the generalized Heisenberg algebras for-
malism. In sec. III, coherent states are computed in
quantum cosmology by using a third-quantization de-
scription. In section IV, we conclude and add further

comments.

II. COHERENT STATES IN THE

SECOND-QUANTIZED MULTIVERSE

In Ref. [7], a model was considered which provided the
second quantization for a Friedman-Lemaitre-Robertson-
Walker (FLRW) spacetime, filled with an homogeneous
and isotropic fluid. The classical Hamiltonian for that
universe is given by,

H = −2πG

3
a2p2

a + ρ0a
3(1−w), (1)

where a is the scale factor, pa is its conjugate momenta,
G is the gravitational constant, ρ0 is the energy density of
the fluid at a given time [7], and w is the proportionality
constant of the equation of state of the fluid, p = wρ,
p and ρ being the pressure and the energy density of
the fluid, respectively. In Eq. (1), a gauge N = a3 has
been used, with N being the lapse function. Then, a set
of Hamiltonian eigenfunctions can be obtained. In the
configuration space, they can be written as

φn(a) = NnJn(λaq), (2)

in which Nn is a normalization constant, Jn is the Bessel
function of the first kind and order n, and,

q =
3

2
(1 − w) , λ =

1

~q

√

3

2πG
ρ0. (3)

The normalization constants are given by, Nn =
√

2qn,
for n > 0. For the zero mode a regularization procedure is

needed, and then [7],
N2

0

q
ln 2

λl
q
p

= 1, with lp some minimal

cut-off. Then, the functions given by Eq. (2) correspond
to the following eigenvalue problem,

Ĥφn(a) = µnφn(a); µn = q2n2, (4)

and they are normalized with respect to the scalar prod-
uct defined by,

< f |g >=

∫ ∞

0

da
1

a
f(a)g(a), (5)
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where 1
a

is a weight factor.
In the case of a dark energy dominated universe, the

boundary conditions that the wavefunctions have to sat-
isfy are [7]: i) they have to be regular everywhere, even
when the metric degenerates, a → 0, and ii) they have
to vanish at the big rip singularity when a → ∞, in the
phantom energy dominated regime. The wavefunctions
given by Eq. (2) obey these boundary conditions [7], van-
ishing as a→ 0, so satisfying the no boundary condition
of Hartle and Hawking [3].

Then, a well-defined Hilbert space can be considered,
where the Hamiltonian eigenstates, |n〉, are those states
represented in the configuration space by the wavefunc-
tions given in Eq. (2), i.e., 〈n|a〉 = 〈a|n〉 = φn(a), as the
wavefunctions considered so far are real functions. The
orthogonality relations for the Hamiltonian eigenstates
can be written then as [7, 8],

〈n|n〉 = 1 , ∀n,

〈n|m〉 = 0 , |n−m| even,

〈n|m〉 = 4
π

√
n m

n2−m2 , |n−m| odd.

(6)

Furthermore, the Hamiltonian eigenfunctions represent
valid semiclassical approximations, i.e., they can be taken
to represent classical universes in the sense that in the
semiclassical limit, ~ → 0, they turn out to be quasi-
oscillatory wavefunctions whose argument are essentially
given by the classical action (Sc = λaq). So, the corre-
lations between the classical variables are satisfied, i.e,
pa = ∂Sc

∂a
is the classical equation of motion; and they

satisfy also the Hartle criterion [7, 9].
Now, we can apply the formalism of generalized

Heisenberg algebras (GHA), such as it is described in
Ref. [10], to construct coherent states for the model being
considered. Although coherent states are usually defined
as the eigenstates of the annihilation operator, the GHA
procedure allows us to find the coherent states without
knowing the explicit expression of that annihilation oper-
ator. Thus, let us start with a generalized algebra given
by,

H0A
† = A†f(H0) (7)

AH0 = f(H0)A (8)
[

A†, A
]

= H0 − f(H0), (9)

where A, A† and H0 are the generators of the algebra,
and f(x) is called the characteristic function of the sys-
tem. H0 is the Hamiltonian of the physical system under
consideration, with eigenstates given by

H0|m〉 = µm|m〉, (10)

and A† and A are the generalized creation and annihila-
tion operators,

A†|m〉 = Nm|m+ 1〉 (11)

A|m〉 = Nm−1|m− 1〉, (12)

where in our case N2
m = µm+1 = q2(m + 1)2. The use

of a generalized algebra adds a parametrization through
the characteristic function, f(H0), that allows us to have
a systematic covering of distinct potentials for the given
system. The customary Heisenberg algebra is recovered
in the limiting value f(x) = 1 + x [10].

Then, the coherent states are defined to be the eigen-
states of the generalized annihilation operator,

A|z〉 = z|z〉, (13)

where z is a generally complex number.
Since we have a Hamiltonian spectrum for the model of

a dark energy dominated universe, (see Eq. (4)), we can
now find the characteristic function, f(x), which satisfies
µn+1 = f(µn) [11]. In the present case, we have

µn+1 = (
√
µn + q)2 ≡ f(µn). (14)

The spectrum is formally similar to the spectrum for a
free particle in a square well potential [10], and the com-
putation to follow can be done in a parallel way. There-
fore, the coherent states are finally given by,

|z〉 = N(z)

∞
∑

n=0

zn

Nn−1!
|n〉, (15)

where N(z) is a normalization function of z, and

Nn−1! = qnn!, (16)

with, for consistency, N−1! ≡ 1. The coherent states can
then be written as,

|z〉 = N(z)
∞
∑

n=0

zn

qnn!
|n〉 = D(A†)|0〉, (17)

where the displacement operator, D(A†), is formally
given by

D(A†) = N(z)I0



2

√

zA†

q2



 , (18)

I0 being the modified Bessel function of the first kind of
order zero. In the configuration space, the wavefunctions
corresponding to the coherent states given by Eq. (17)
can be expressed in terms of the scale factor, a, and the
variable z, in the form,

〈a|z〉 = ϕz(a) ≡ ϕ(a, z) = N(z)

∞
∑

n=0

|z|n
n!

φn(a), (19)

where the function ϕ(a, z) has to be interpreted as a func-
tional of paths for the scale factor, a(t), and the variable
z, which has been re-scaled so that, z

q
→ z.

In order to obtain normalized coherent states, it is
easier to use an orthonormal basis for the Hilbert space
spanned by the Hamiltonian eigenfunctions. This can be
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done by splitting the space in two parts, corresponding
to even and odd modes, respectively, embedding both in
a larger Hilbert space [8]. In that case, the normalization
functions N(z) can be found, being

|z〉 = (I0 (2|z|))−
1

2

∞
∑

n=0

|z|n
n!

φn(a), (20)

and, then, they satisfy the conditions needed to be a set
of Klauder’s coherent states [10] (KCS): i) normalization,
ii) continuity in the label z, and iii) completeness [8].

On the other hand, these coherent wavefunctions sat-
isfy the boundary conditions imposed above because they
are satisfied by the Hamiltonian eigenfunctions. When
the scale factor degenerates in the limit a → 0, by using
the asymptotic expansions for the Bessel functions, we
can have for the coherent wavefunctions,

ϕ(z, a) ≈ 1
√

I0(2|z|)

∞
∑

n=0

|z|n
n!

(λaq)
n

2nn!
=
I0

(

√

2λ|z|aq

)

√

I0(2|z|)
,

(21)

which are regular functions, satisfying the Vilenkin’s tun-
neling condition [12] as it took on a constant value in this
limit.

In the opposite limit, for large values of the scale factor,
the introduced boundary condition is also obeyed. The
limit of large values of the scale factor is equivalent to
the semiclassical limit, where ~ → 0. In both cases, the
asymptotic expansions of Bessel’s functions are the same,
and the Hamiltonian eigenfunctions go as,

φn(a) ≈
√

2

πλaq
cos
(

λaq − π

2
n− π

4

)

. (22)

Then, the coherent states can be written as,

ϕ(z, a) ≈ 1
√

I0(2|z|)

√

2

πλaq

∞
∑

n=0

|z|n
n!

cos
(

λaq − π

2
n− π

4

)

=
cos(|z| − λaq) − sin(|z| − λaq)

√

πλaqI0(2|z|)
→ 0, (23)

for large values of the scale factor. Since in this model
the classical action is Sc = λaq, it turns out that the
functional ϕ(z, a) can be also expressed as,

ϕ(z, a) ≈ cos(|z| − Sc(a)) − sin(|z| − Sc(a))
√

πSc(a)I0(2|z|)
→ 0 (a→ ∞).

(24)
Therefore, we have obtained expressions for normalized
coherent states in the configuration space. They satisfy
the imposed boundary conditions, both, in the limit of
large values of the scale factor and when it degenerates.
The same limit for large values of the scale factor runs
for the semiclassical limit, in which the coherent states
should represent, by the Hartle criterion [7, 9], valid semi-
classical approximations. That is the case because, for
any value of the parameter |z|, Eqs. (23) and (24) are
oscillatory functions of the classical action with a prefac-
tor which goes to zero as the scale factor grows up.

III. COHERENT STATES IN THE

THIRD-QUANTIZED MULTIVERSE

Second quantized wavefunctions can describe the quan-
tum state of a single universe. Furthermore, different
Hamiltonian eigenstates having valid semiclassical ap-
proximations can also be considered to describe the state

of parent universes and, in this way, they can be envis-
aged as a proper representation of the multiverse. How-
ever, the second-quantized theory is physically restricted
as it cannot describe the topological changes associated
with the creation or annihilation of universes. This can
be made by using a third-quantization procedure [6], in
which a many-universe system can be represented quan-
tum mechanically. Such a many-universe system can de-
scribe either a multiverse made up of parent universes or
a spacetime foam formed by popping baby universes.

In order to apply the third-quantization procedure to
the case of a set of universes which are dominated by dark
energy, let us start with the second-quantized Hamilto-
nian given by Eq. (25). We will first show that the states
of the multiverse obtained from different gauge choices
of the lapse function are related to each other by unitary
transformations; so, for simplicity, let us start with the
conformal gauge, i.e., N = 3

4πG
a. The Hamiltonian then

reads,

H = −1

2
p2

a +
1

2
λ2

0 a
2(q−1). (25)

The momentum conjugated to the scale factor is now
given by, pa = −ȧ, and the action becomes,

S = −
∫

dt

(

1

2
ȧ2 + λ2

0 a
2(q−1)

)

. (26)
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The wavefunction of the universe or ground state wave-
function must satisfy the Hamiltonian constraint, Hφ0 =
0, or if a canonical quantization is used the Wheeler-
DeWitt equation,

1

2
φ̈0 +

1

2
ω2(a)φ0(a) = 0, (27)

where ω(a) = λ0a
q−1 for the case being considered.

To third-quantize this second-quantized field theory, we
then write an action which is a functional of the second-
quantized wavefunction φ(a) and reads,

(3)S =
1

2

∫

da φH φ =
1

2

∫

da
(

φ̇2 − ω2(a)φ2
)

. (28)

Variation of Eq. (28) with respect to φ leads directly
to the Wheeler-DeWitt equation (27), and therefore this
equation must be assumed to contain all the information
of the second-quantized theory, with the two formulations
being therefore equivalent [6]. Now, we can proceed as
usual by defining the conjugated momentum, pφ ≡ δL

δφ̇
.

The third-quantized Hamiltonian turns out to be then
given by,

H =
1

2
p2

φ +
ω2(a)

2
φ2, (29)

which is the Hamiltonian for the harmonic oscillator with
time-dependent frequency ω(a). The time variable is now
the scale factor, a, and therefore the wavefunction of the
multiverse has to satisfy a third-quantized Schrodinger
equation [6],

H|Ψ〉 = i~
∂

∂a
|Ψ〉, (30)

where H is the Hamiltonian of the third-quantized ac-
tion, Eq. (29). The meaning of this wavefunction is the
following [6]: we can decompose |Ψ〉 at some moment a,
then

|Ψ〉 =
∑

N

ΨN(a)|N >, (31)

where ΨN (a) is then the probability amplitude for N
universes at time a, or the probability amplitude for N
universes with scale factor a.

However, Eq. (30) is the Schrdinger equation for
an harmonic oscillator with time-dependent frequency.
Harmonic oscillators with time-dependent mass and fre-
quency have been largely studied in the past [13, 14]. The

wavefunctions can be obtained in terms of the eigenfunc-
tions of the harmonic oscillator with constant frequency
(i.e., at a given time, a0), because there is a unitary trans-
formation, Uω, which in this case turns out to be a time
reparametrization or a reparametrization in the scale fac-
tor, that transforms the harmonic Hamiltonian with time
dependent mass and frequency into the static case [13].
Furthermore, the usual creation and annihilation opera-
tors for the harmonic oscillator, b0 =

√

ω0

2~
(φ+ i

ω0
pφ) and

b
†
0 =

√

ω0

2~
(φ− i

ω0

pφ), can be interpreted as the creation

and annihilation operators for the universes, N0 = b
†
0b0

being the number operator of universes in the multiverse.

In our case, the unitary transformation Uω is given by,

Uω(φ, a) = e−
i
2~

ρ̇

ρ
φ2

, (32)

where,

ρ ≡ ρ(a) =
√

φ2
1(a) + φ2

2(a), (33)

with,

φ1(a) =

√

πa

2q
J 1

2q
(λ0a

q) , φ2(a) =

√

πa

2q
Y 1

2q
(λ0a

q) ,

(34)
two independent solutions of Eq. (27), with Jn(x) and
Yn(x) the Bessel functions of first and second kind of
order n. In that case,

H = U †
ω H0 Uω, (35)

where, H0 = 1
2 (p2

ϕ + ϕ2), is the Hamiltonian for an
harmonic oscillator with constant mass and frequency
(m = ω0 = 1). In obtaining Eq. (35) the change of vari-

able ϕ = φ
ρ

has been done. Therefore, the probability

amplitudes for the scale factor-dependent wavefunctions
(31), are given by

ΨN (a) ≡ ΨN (φn, a) =
1

√

ρ(a)
U †

ω ψN (ϕ) |ϕ=φ, (36)

where 1√
ρ(a)

is a normalization factor, and the ψN (ϕ) are

the eigenfunctions of an harmonic oscillator with con-
stant mass and frequency, i.e., H0ψN = ~(N + 1

2 )ψN .
Thus, any solution of the Schrodinger equation (30) can
be written as,

Ψ(φ, a) =
∑

N

CN eiαN (a)

(

1√
π~2NN !ρ

)
1

2

e
i
2~

( ρ̇

ρ
+ i

ρ2
)φ2

HN (
φ

ρ
√

~
) (37)
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where

αN (a) = −(N +
1

2
)

∫ a

0

da′

ρ2(a′)
. (38)

The wavefunction given by Eq. (37) quantum mechan-
ically represents a general state for a multiverse made
up of flat universes filled with a given homogeneous and
isotropic fluid. The precise kind of such a fluid is en-
coded in the potential term of the second-quantized ac-
tion through the value taken by the parameter w, and
hence in the frequency ω(a) which appears in the third-
quantized action, given by Eq. (28). The functional form
of the frequency depends thus on the type of fluid which
is considered, i.e., on the type of energy-matter which
fills each universe. However, different solutions for dif-
ferent frequencies of an harmonic oscillator are related
by unitary transformations. In that sense, the state of
the multiverse is invariant to each other under the kind
of matter-energy filling each universe, because they are
states which belong to the same ray in the multiverse.

Therefore, more general potentials could be considered
as well as closed and open geometries for the spacetime.
It is thereby more difficult to compute the solutions of
Eq. (27) to obtain the function ρ(a). Nevertheless, the
reasoning used above can be once again applied in a simi-
lar way to the variety of potentials, because the solutions
obtained from different potentials are eventually related
by unitary transformations to those given by Eq. (37).
Therefore, the general state for a multiverse made up of
different kind of universes can be written as,

|Ψ̃〉 =
∑

~N

C ~N
|N1ω1

N2ω2
· · · 〉, (39)

where Niωi
is the number of universes of type i which cor-

respond to potentials derived from the frequencies, ωi(a).
Furthermore, a conformal time was considered at the

beginning of this section in order to obtain the state of
the multiverse. As we noticed before, other gauge choices
could be considered as well. For a general value of the
lapse function, N ≡ N(a), the second-quantized action
in fact reads,

S = −
∫

dtN

(

aȧ2

2N2
+ λ2

0 a
2q−3

)

, (40)

and the corresponding Wheeler-DeWitt equation (27)
turns out to be,

N

a
φ̈0(a) + λ2

0Na
2q−3φ0(a) = 0. (41)

The lapse function, N , enters therefore as a mass term
into the equation of motion of the third-quantized har-
monic oscillator because Eq. (41) corresponds to the
equation of a damped harmonic oscillator, i.e.

∂2
uuφ(u) − m′

m
∂uφ(u) + ω2(u)φ(u) = 0, (42)

where,

ω2(u) =
(

λ2
0Na

2q−3
)

|a=a(u)
, (43)

m(u) =

(
√

N

a

)

|a=a(u)

, (44)

u ≡ u(a) being a new variable given by the change,
du =

√

a
N
da, and m′ ≡ ∂um, as given in Eq. (42). The

third quantized Hamiltonian corresponds then to that
of a harmonic oscillator with mass and frequency terms
both depending on the scale factor, i.e.

H =
1

2m
p2

φ +
mω2

2
φ2. (45)

However, under the following canonical transformation,

ξ =
√
mφ, (46)

pξ =
1√
m

(

pφ − m′

2
φ

)

, (47)

the Hamiltonian given by Eq. (45) transforms into

H̃ =
1

2
p2

ξ +
Ω2(u)

2
ξ2, (48)

and we recover the massless Hamiltonian given by Eq.
(29), for a new value of the frequency given by Ω(u) =
Ω(a)|a=a(u), with

Ω2(a) = ω2(a) +
1

4
∂am

2(a). (49)

In conformal time, N = a in Eqs. (43) and (44), and
therefore we recover the previous result, i.e. m = 1 and
Ω(a) = ω(a) = λ0a

q−1. However, in terms of our proper
time, for whichN = 1, the new frequency turns out to be,
Ω2(a) = ω2(a) − 1

4a2 , with ω2 = λ2
0a

2q−3 and therefore
the frequency of the harmonic oscillator, Ω(a), diverges
when the scale factor degenerates to zero, a result which
is just a consequence from the chosen gauge.

Thus, quantum harmonic oscillators with time depen-
dent mass can therefore be eventually related to the solu-
tions of the case of constant mass and frequency by uni-
tary transformations. Therefore, the state of the many-
universe system is also invariant under the choice of the
lapse function, i.e. under time reparametrizations inside
one of the universes, as it should be expected.

Now, coherent states for the quantum multiverse can
be easily found in the usual way. For the system de-
scribed by the Hamiltonian (29), the coherent states,
|α, a〉 read [14]

|α, a〉 = e−
|α|2

2

∞
∑

N=0

αN

√
N !
eiαN (a)|N, a〉, (50)

where, |N, a〉 and αN (a) are given by Eqs. (36) and (38),
respectively. They are the eigenstates of the annihilation
operator, b(a), i.e.,

b(a)|α, a〉 = α(a)|α, a〉, (51)
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FIG. 1: (∆φ)2, (∆pφ)2 and ∆φ∆pφ, for a value w = −1
(vacuum dominated universes).

where, α(a) = e2iα0(a). The scale-factor dependent anni-
hilation and creation operators are then given by,

b(a) = µ(a)b0 + ν(a)b†0, (52)

b†(a) = µ∗(a)b†0 + ν∗(a)b0, (53)

where b0 and b†0 are the annihilation and creation opera-
tors of constant mass and frequency ( say, m = ω0 = 1),
and [14]

µ(a) =
1

2

(

1

ρ(a)
+ ρ(a) − iρ̇(a)

)

, (54)

ν(a) =
1

2

(

1

ρ(a)
− ρ(a) − iρ̇(a)

)

, (55)

with, |µ|2 − |ν|2 = 1. It follows that coherent states
in the multiverse turn out to actually be describable as
squeezed states [15]. The uncertainty in the wavefunction
of a single universe and its conjugated momentum are in
fact given by,

(∆φ)2 =
~

2ω0
|µ− ν|2, (56)

(∆pφ)2 =
~ω0

2
|µ+ ν|2. (57)

The evolution of such uncertainties are depicted in
Figs. 1 - 3 for different values of the parameter w.
The squeezing effect becomes larger as the value of w
goes away from 1

3 (i.e., from a radiation dominated uni-
verse), at which point the squeezing effect disappears,
i.e., (∆φ)2 = (∆pφ)2 = ∆φ∆pφ = 1

2 . Therefore, the
squeezing effect becomes quite more apparent as one is
entering in the accelerated regime of the universe.

IV. CONCLUSIONS AND FURTHER

COMMENTS

We have obtained a set of Klauder coherent states for a
dark energy dominated universe. They satisfy the bound-

FIG. 2: (∆φ)2, (∆pφ)2 and ∆φ∆pφ, for a value w = 0 (matter
dominated universes).

FIG. 3: (∆φ)2, (∆pφ)2 and ∆φ∆pφ, for a value w = 0.3
(radiation dominated universes; for a value, w = 1

3
, then,

(∆φ)2 = (∆pφ)2 = ∆φ∆pφ = 1

2
, and no squeezing effect is

present).

ary conditions and can lead to valid semiclassical approx-
imations. Coherent states represent then a continuous
set of states ascribable to the more classical of probable
quantum universes, which are in this way interpretable
as a multiverse. The different universes residing in such
a multiverse differ from one another in a smooth way by
the value taken on by the parameter z.

Furthermore, in a quantum multiverse scenario in
which topological changes are allowed to occur, a third-
quantization program has been applied. The state of the
multiverse is then obtained in terms of the eigenstates
of an harmonic oscillator with mass and frequency which
depend on the scale factor. The state of the multiverse
is invariant under the energy-matter content of the uni-
verses which form up the whole set, and it is also invariant
under time reparametrizations, as it should be expected.

In the third-quantized description of the multiverse,
coherent states turn out to be converted into squeezed
states, the squeezing effect being larger for accelerated
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universes. Squeezed states entail deeper quantum fea-
tures which have no classical analogs in the sense that
[16] they are described by non-classical distributions and
can violate the Bell’s inequalities, being related therefore
with the highly non-local features of the quantum the-
ory. However, in the context of the quantum multiverse
in which the concept of locality and non-locality can no
longer be applied, these quantum features would rather
be related with the whole universal (independence or
non-independence(?)) mutual interrelation of the quan-
tum states of single universes. Therefore, it might well
be that accelerated universes, which are described in the
third quantization formalism by squeezed states, could

not be considered as isolated systems but as really mutu-
ally correlated ones within the whole context of the multi-
verse, whether or not their quantum states had valid clas-
sical approximations in the semiclassical regime where
~ → 0.
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