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Abstract 26 

Palynological, sedimentological and geochemical analyses performed on the 27 

Villarquemado paleolake sequence (987 m a.s.l, 40º30’N; 1º18’W) reveal the vegetation 28 

dynamics and climate variability in continental Iberia over the last 13500 cal yr BP. The 29 

Lateglacial and early Holocene periods are characterized by arid conditions with a 30 

stable landscape dominated by pinewoods and steppe until ca. 7780 cal yr BP, despite 31 

sedimentological evidence for large paleohydrological fluctuations in the paleolake. The 32 

most humid phase occurred between ca. 7780-5000 cal yr BP and was characterized by 33 

the maximum spread of mesophytes (e.g., Betula, Corylus, Quercus faginea type), the 34 

expansion of a mixed Mediterranean oak woodland with evergreen Quercus as 35 

dominant forest communities and more frequent higher lake level periods. The return of 36 

a dense pinewood synchronous with the depletion of mesophytes characterizes the mid-37 

late Holocene transition (ca. 5000 cal yr BP) most likely as a consequence of an 38 

increasing aridity that coincides with the reappearance of a shallow, carbonate wetland 39 

environment. The paleohydrological and vegetation evolution shows similarities with 40 

other continental Mediterranean areas of Iberia and demonstrates a marked resilience of 41 

terrestrial vegetation and gradual responses to millennial-scale climate fluctuations. 42 

Human impact is negligible until the Ibero-Roman period (ca. 2500 cal yr BP) when a 43 

major deforestation occurred in the nearby pine forest. The last 1500 years are 44 

characterized by increasing landscape management, mainly associated with grazing 45 

practices shaping the current landscape. 46 

 47 
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1. Introduction 51 

The progressive increase in the number of well-dated, high-resolution Holocene climate 52 

records in both marine and continental areas (Hoek et al., 2008; Lowe et al., 2008) has 53 

demonstrated the existence of complex millennial-scale oscillations and rapid climate 54 

changes in response to both extraterrestrial forcings (e.g., orbital parameters, insolation, 55 

etc.) and internal mechanisms (e.g., changes in deep-ocean circulation, internal climate 56 

system variability) (Bond et al., 1997; Alley et al., 2003; Mayewski et al., 2004; Denton 57 

and Broecker, 2008; Wanner et al., 2008; Renssen et al., 2009). In particular, the 58 

western Mediterranean Basin, strategically located under the incursion of North-Atlantic 59 

storm tracks and the influence of a high pressure system in summer-months, is a 60 

fundamental region to understand the climate evolution and the vegetation response to 61 

abrupt changes and perturbations originated at high (Fletcher and Sánchez Goñi, 2008) 62 

and lower latitudes (Peyron et al., 2011). Indeed, several marine cores from the western 63 

Iberian margin demonstrate the impact of short-lived Holocene climatic events (e.g., 64 

Preboreal Oscillation, 8200 cal yr BP event, 4200 cal yr BP aridity crisis) on vegetation 65 

firstly identified in North Atlantic cores (Alley et al., 1997; Björck et al., 1997; 66 

Rasmussen et al., 2007) and then recorded in the Iberian Peninsula as dry spells and 67 

probably cool conditions (Cacho et al., 2001; Frigola et al., 2007; Combourieu Nebout 68 

et al., 2009; Fletcher et al., 2010). Iberian sedimentary sequences have reported similar 69 

Holocene oscillations, clearly documented by prominent peaks of xerophytes in pollen 70 

records (Muñoz Sobrino et al., 2005; González-Sampériz et al., 2006; Fletcher et al., 71 

2007; Moreno et al., 2011; Pérez-Sánz et al., 2013), by abrupt drops in lake water-levels 72 

(Carrión, 2002; González-Sampériz et al., 2008; Martín-Puertas et al., 2008; Morellón 73 

et al., 2009), and complex patterns of human adaptations (González-Sampériz et al., 74 

2009; Cortés-Sánchez et al., 2012).  75 
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Regarding ecosystem responses to climate change, recent reviews have highlighted the 76 

unidirectional response of the Iberian phytodiversity throughout the late Quaternary 77 

(Carrión et al., 2010a; González-Sampériz et al., 2010), where regional ecological 78 

dissimilarities, enhanced by particular orographic and edaphic features, have prevented 79 

the unraveling of common climatic patterns. Ecosystem inertia to Lateglacial and 80 

Holocene climate changes has been a clear example of the mentioned unidirectional 81 

trend (e.g., Carrión and van Geel, 1999; Franco-Múgica et al., 2001, 2005; García-82 

Antón et al. 2011; Morales-Molino et al., 2012), being long-term pinewood resilience 83 

the main distinctive aspect of wide areas of continental Iberia (Rubiales et al., 2010, and 84 

references therein). 85 

Despite the number of Lateglacial and Holocene palaeoenvironmental sequences in the 86 

Iberian Peninsula increased during the last decades (Carrión et al., 2010a and references 87 

therein), the continental lowlands of Iberia have hardly been investigated, leaving a 88 

palaeobiogeographical gap between inner continental mountains and coastal areas. 89 

Climatically located near the Ebro Basin, the Iberian Range borders the northernmost 90 

area of truly semi-arid climate in Europe, whose patchy and fragile steppe-like 91 

vegetation is strongly conditioned by an arid climate regime and edaphic constraints 92 

(Vicente-Serrano et al., 2012; Pueyo et al., 2013). Permanent lakes are absent in the 93 

region and therefore, most of the regional paleorecords have been obtained from large 94 

ephemeral or hypersaline lakes (Valero-Garcés et al., 2000a,b, 2004; Davis and 95 

Stevenson. 2007; Luzón et al., 2007; González-Sampériz et al., 2008; Sancho et al., 96 

2011; Gutiérrez et al., 2013), where recurrent hiatuses and complex geochemical 97 

processes often hamper chronological control and pollen preservation, preventing 98 

continuous high-resolution environmental reconstructions (González-Sampériz et al., 99 

2008). Further southwest from the Ebro Basin, studies providing detailed climatic 100 
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oscillations are available. These are derived mainly from lake level fluctuations and 101 

paleoflood frequency records, although they cover relatively short timescales spanning 102 

only the last three millennia (Moreno et al., 2008; Romero-Viana et al., 2011; López-103 

Blanco et al., 2012; Barreiro-Lostres et al., 2013). Additional paleoenvironmental 104 

information, somewhat fragmentary and influenced by local peculiarities, is provided by 105 

geomorphological (Valero-Garcés et al., 2008; Constante et al., 2011) and 106 

archaeological studies (González-Sampériz et al., 2009; Aura et al., 2011; Utrilla et al., 107 

2012). 108 

Based on a multiproxy approach, the well-dated and continuous sedimentary sequence 109 

obtained from the Villarquemado paleolake offers the possibility to reconstruct the 110 

postglacial palaeoenvironmental history of a poorly-studied, ecotonal and continental, 111 

Mediterranean area. The main goals of the current study are to: 112 

1) Understand both regional and local vegetation dynamics and hydrological response to 113 

the last ca. 13500 cal yr BP climate variability. 114 

2) Place the Villarquemado vegetation development in regional context through 115 

correlation with other well-dated pollen records.  116 

3) Explore the sensitivity of this and other ecotonal regions to detect Holocene abrupt 117 

climate changes, especially in areas where pinewoods have been the dominant 118 

communities. 119 

2. Regional Setting 120 

Villarquemado paleolake (40º30’N; 1º18’W, Figure 1) is located at about 1000 m a.s.l., 121 

in the Jiloca Basin (Iberian Range, NE Spain). This is a 60 km long, 6-10 km wide, N-S 122 

half-graben, bounded by NW-SE trending normal faults. The depression belongs to a 123 

series of intramontane basins developed in the Iberian Range during the second 124 

extensional episode that started in the Upper Pliocene (Simón-Gómez, 1989; Casas-125 
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Sainz and De Vicente, 2009). The change from endorheic to exorheic conditions in 126 

these depressions occurred during the Neogene and Plio-Quaternary through the capture 127 

of the basins by the external drainage network and headwater erosion (Gutiérrez and 128 

Gracia, 1997). The Jiloca river captured the Daroca half-graben and subsequently the 129 

next depression to the south, the Jiloca Depression (Gracia et al., 2003). However the 130 

south-central sector of this depression remained an endorheic basin until it was 131 

artificially drained in the 18
th

 century, when the maximum flooded area was 11.3 km
2 

132 

and the water depth up to 2.8 m (Rubio, 2004). 133 

The current climate of the region is continental Mediterranean, characterized by severe 134 

summer droughts, strong seasonal and diurnal temperature oscillations and by relatively 135 

low precipitation values (Figure 2B). The maximum absolute temperature is about 40 ºC 136 

in summer and the winter minimum can reach -15 ºC with frequent freezing days in the 137 

region. The mean annual precipitation in the area is about 380 mm (Figure 2B: Cella 138 

station, 1023 m a.s.l.), with large interannual variability and irregular distribution 139 

through the year, while higher elevations are influenced by more regular orographic 140 

precipitations (Figure 2C: Griegos station, 1604 m a.s.l.). Regional-scale rainfall 141 

dynamics is principally controlled by the westerly winds, associated with cold fronts in 142 

spring and high-intensity convective storms in autumn. During the summer, the 143 

subtropical Azores anticyclone blocks the moisture from the west and brings warm and 144 

dry air masses from the south, being the negative water balance associated to high 145 

evapotranspiration values (Figure 2C). 146 

The Villarquemado paleolake is located in the mesomediterranean bioclimatic belt, with 147 

Quercus ilex and Quercus faginea as principal tree species, along with other 148 

Mediterranean xerophytic shrubs (Rhamnus alaternus, Genista scorpius, Ephedra 149 

fragilis, Thymus spp.) and herbs (Artemisia assoana, A .campestris, Atriplex prostata, 150 
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Salicornia ramosissima) (Figure 2D). The calcareous soils in the area support Juniperus 151 

phoenicea and J. thurifera. The supramediterranean belt is characterized by Pinus 152 

sylvestris communities with Buxus sempervirens and Juniperus sabina. In red 153 

sandstones areas, Pinus pinaster woodlands, with dense Cistaceae and Ericaceae shrubs, 154 

prevail. The hydroseral community is dense, well developed and linked to seasonal 155 

water level fluctuations. The dominant species here are Phragmites australis, Juncus 156 

acutus, J. inflexus, J. maritimus and Scirpus holoschoenus; scattered trees of Salix 157 

fragilis and S. atrocinerea with a scrubland of Crataegus monogyna and some Populus 158 

canadensis cultivars. The natural wetland vegetation has been substantially modified by 159 

agriculture and grazing (Figure 2D).  160 

3. Material and methods 161 

A 74 m long sediment core (core VIL-05-1B) was retrieved in 2005 from the deepest 162 

area of the Villarquemado wetland, using a truck-mounted drilling system (Moreno et 163 

al., 2012a; Gónzalez-Sampériz et al., 2013). The extracted material was extruded, 164 

transported to IPE-CSIC laboratory and stored at 4ºC until required for analysis. The top 165 

61 cm were disturbed due to the coring system and were not considered for analysis. To 166 

complete the 0-61 cm gap, a parallel 247 cm long core (core VIL-05-1A) was taken 167 

with a modified 5 cm-diameter Livingstone piston corer, a coring system that allows 168 

recovering unaltered the uppermost part of the sequence.  169 

Correlation between cores VIL-05-1A and VIL-05-1B was achieved using sedimentary 170 

facies, radiocarbon dating and pollen stratigraphy (Figure 3A). Therefore, the composite 171 

sequence of the Villarquemado paleolake was built using the uppermost 40 cm of the 172 

shorter core VIL-05-1A and the core VIL-05-1B, excluding the first 61cm (Figure 3B). 173 

The cores were longitudinally opened and the sedimentary facies described according to 174 

Schnurrenberger et al. (2003). Geochemical data were obtained at 0.5 cm intervals by 175 



 8 

means of an XRF ITRAX Core scanner at the Large Lakes Observatory (University of 176 

Minnesota, USA). Total inorganic carbon (TIC) was analyzed every 2 cm with a LECO 177 

SC 144 DR elemental analyzer at the IPE-CSIC laboratory, after the organic matter had 178 

been removed. In addition, selected samples were analyzed by X-ray diffraction with a 179 

Philips PW1820 diffractometer and relative mineral abundance was determined using 180 

peak intensity to characterize the sedimentological facies. All the geochemical and 181 

elementary analyses were performed exclusively in core VIL-05-1B. 182 

Samples for pollen analysis were taken every 2-3 cm intervals in the core VIL-05-1B 183 

while in the core VIL-05-1A only 15 samples were retrieved to complete the uppermost 184 

part of the sequence. Pollen extraction followed the standard chemical procedure 185 

(Moore et al., 1991).  186 

Pollen identification was supported by the reference collection from IPE-CSIC, 187 

determination keys and photo atlases (Reille, 1992). Results are expressed as 188 

percentages, excluding hygrophytes, hydrophytes, Pteridophyta spores and other non 189 

pollen palynomorphs (NPP) from the pollen sum. The Psimpoll 4.27 software (Bennett, 190 

2009) was used to draw the pollen diagram. Major palynological changes in pollen 191 

composition as well as cluster analysis, CONISS (Grimm, 1987), were used as criteria 192 

to subdivide the results into pollen assemblage zones.  193 

The chronology of the core VIL-05-1B was established on the basis of five AMS 
14

C 194 

dates, obtained from bulk sediment samples. In addition, other three AMS 
14

C dates 195 

were retrieved from core VIL-05-1A. 
14

C data were calibrated using Calib 6.11 (Stuiver 196 

and Reimer, 1993) with IntCal09 calibration datasets (Reimer et al., 2009) (Table 1) and 197 

the composite age-depth model (lineal interpolation) was obtained using the Clam 198 

software package for age-depth modeling (Blaauw, 2010) (Figure 3B). The 199 
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chronological model shows a fairly constant accumulation rate, ca. 0.049 cm yr
-1

, which 200 

spans from ca. 13500 to ca. 470 cal yr BP (Figure 3B). 201 

4. Results 202 

4.1. The sedimentological sequence 203 

Visual description, smear slides microscopic observation, geochemical and 204 

mineralogical analyses allowed seven main sedimentary facies to be determined in 205 

Villarquemado paleolake sequence, later organized in three well-defined 206 

sedimentological units (Figure 4). 207 

The base of the sequence corresponds to UNIT-3 (311-233 cm depth, 13540-11240 cal 208 

yr BP), which is composed of medium, massive light grey carbonate silts (facies 1) 209 

grading upwards to coarser, dark grey carbonate silts (facies 2). Facies 1 and 2 are 210 

characterized by relatively high siliciclastic content, as shown by mineral composition 211 

(significant quartz content) and by the maximum values of Si, Ti and Fe (Figure 4). In 212 

particular, silicates (quartz and feldspars) in facies 2 range between 25-50 % versus 50-213 

75% calcite. Subunit SUB-3B (311-256 cm, 13540-12170 cal yr BP), is relatively more 214 

carbonate-rich, with TIC (total inorganic carbon) up to 6%, and subunit SUB-3A (256-215 

233 cm, 12170-11240 cal yr BP) has the highest silicate content of the whole sequence 216 

(only 3% TIC). The top of UNIT-3 is a sharp depositional surface in both 217 

Villarquemado cores (VIL-05-1A and VIL-05-1B) and it is located at approximately the 218 

same depth (ca. 230 cm). This transition from siliciclastic-rich to carbonate-rich 219 

sediments at the boundary between UNIT-3 and 2 is used as a correlation horizon (tie-220 

point 1, TP-1) (Figure 3A). 221 

UNIT-2 (233-61 cm depth, 11240-1940 cal yr BP) is an alternation of fine to medium, 222 

banded, creamy carbonate silts organized in dm-thick intervals (facies 3) and dark grey, 223 

mottled, massive, carbonate and organic-rich silts as cm-thick layers (facies 4). Facies 3 224 
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is made of endogenic carbonates precipitated in the palustrine and littoral lake 225 

subenvironments (e.g., Charophyceae, carbonate coatings) with maximum Ca values. 226 

Facies 4 has about 5% silicate content (clay minerals and quartz) marked by slight 227 

increases in the chemical elements associated to the siliciclastic fraction (Si, Fe, Ti). 228 

Both facies contain mm to cm-sized plant remains, suggesting a shallow depositional 229 

environment (littoral area). Mottled and soil textures (roots, bioturbation) are especially 230 

abundant in the grey silts indicating more frequent subaerial exposition.  231 

UNIT-2 has been divided into three subunits depending on sedimentary facies and 232 

geochemical composition: SUB-2C (233-192 cm) is composed by facies 3 creamy 233 

carbonate silts. SUB-2B (192-140 cm) is characterized by the predominance of facies 4 234 

with intercalations of more organic-rich facies (facies 6) and cm-thick coarse silt-fine 235 

sand carbonate-rich layers (facies 5). The presence of these organic-rich sediments in 236 

both sediment cores represents another correlation marker (TP-3) (Figure 3A). Finally 237 

SUB-2A (140-61 cm) represents the association of facies 3 and 4, with relatively higher 238 

carbonate content.  239 

UNIT-1 (61-0 cm depth, post 1940 cal yr BP) is composed of dark brown to dark grey, 240 

massive, coarse peaty silt, with abundant plant fragments (facies 7) in VIL-05-1B and 241 

facies 4 with two cm-thick intercalations of facies 3 in core VIL-05-1A. UNIT-1 is 242 

composed of unconsolidated material; therefore geochemical properties were not 243 

analysed. As a result, correlation between the uppermost sections of the two cores (VIL-244 

05-1A and VIL-05-1B) (TP-4) is based on the pollen composition (Figure 3A), as 245 

explained below. 246 

4.2. The pollen sequence 247 
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The preservation of pollen grains was generally good. Composite pollen diagrams are 248 

presented in the Figures 5 and 6 showing the analytic results of 99 samples. Six 249 

Villarquemado pollen assemblage zones (VIL) have been established. 250 

VIL-6 (311-233 cm depth; ca. 13540-11240 cal yr BP), Sedimentary UNIT-3 251 

Based on the variation of Cyperaceae, Typha/Sparganium type, hydrophyte-group and 252 

Pteridophytes, two subzones have been defined:  253 

VIL-6B (311-256 cm depth; ca. 13540-12170 cal yr BP) is characterized by relatively 254 

low, fluctuating arboreal pollen (AP). Pinus nigra/sylvestris type is dominant (Figure 255 

5). Other trees are less important, such as Juniperus amongst the conifers; both Quercus 256 

faginea type and evergreen Quercus are rare, as well as Betula, Salix, Ulmus and 257 

Fraxinus. Shrubs such as Tamarix, Ephedra fragilis and Ephedra distachya type show 258 

minor occurrences. Xerophytes are well represented, with Artemisia, Chenopodiaceae 259 

and Compositae as main contributors (Figures 6). Poaceae is relatively abundant and 260 

within the hygrophytic community, Cyperaceae show the highest percentages of the 261 

sequence, accompanied by high frequencies of Ranunculus, Juncaceae, 262 

Typha/Sparganium type and a significant presence of Myriophyllum and Potamogeton.  263 

VIL-6A (256-233 cm depth; ca. 12170-11240 cal yr BP) is defined by a drastic change 264 

in the hygrophyte community (Figure 6). Particularly, the transition from sedimentary 265 

subunit SUB-3B to SUB-3A corresponds to the replacement of the previous 266 

Cyperaceae-dominated environment (with abundant Juncaceae and Ranunculus) with a 267 

Typha/Sparganium type community. This hydrological change is also marked by the 268 

highest development of submerged aquatic plants (Myriophyllum and Potamogeton) and 269 

the maximum frequencies of Pteridophyta spores (Figure 6).  270 

VIL-5 (233-164 cm depth; ca. 11240-7780 cal yr BP), Sedimentary UNIT-2; SUB-271 

2C, SUB-2B 272 
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Oscillations in AP frequencies allow two subzones to be defined: 273 

During the VIL-5B (233-192 cm depth; ca. 11240-9140 cal yr BP) xerophytes, mainly 274 

Artemisia and Chenopodiaceae, rise considerably (Figure 6). AP values are still low. 275 

Pinus nigra/sylvestris type frequencies decrease, although Juniperus increases 276 

significantly (Figure 5). Broadleaved trees like Betula, and both Quercus types are 277 

recorded. Tamarix development is noticeable.  278 

VIL-5A (192-162 cm depth; ca. 9140-7780 cal yr BP) is defined by progressive 279 

increases of Betula, Corylus, and both Quercus (Figure 5). A progressive coeval 280 

decrease in Artemisia, Chenopodiaceae, hygrophytes and hydrophytes is noticed (Figure 281 

6).  282 

VIL-4 (164-112 cm depth; ca. 7780-5000 cal yr BP), Sedimentary UNIT-2; SUB-283 

2B, SUB-2A 284 

This zone is characterized by the maximum abundance of deciduous trees (Corylus, 285 

Quercus faginea type, Alnus, Salix, Ulmus, Fraxinus, Fagus and Tilia), a decline of the 286 

Pinus nigra/sylvestris type frequencies, and a decrease in xerophyte values. This is 287 

synchronous with an increase in thermophilous elements; evergreen Quercus is the most 288 

important arboreal element and its expansion parallels the maximum frequencies of 289 

Mediterranean shrubs (Pistacia, Rhamnus, Phillyrea, Buxus, Thymelaea) and the 290 

continuous presence of Ericaceae, Rosaceae, Fabaceae and Lamiaceae (Figures 5 and 291 

6). Continuous values of Juniperus and a significant presence of Artemisia are recorded. 292 

Poaceae diminishes significantly, while the hygro-hydrophytic component falls to its 293 

sequence minimum (Figure 6).  294 

VIL-3 (112-71 cm depth; ca. 5000-2530 cal yr BP), Sedimentary UNIT-2; SUB-2A 295 

During VIL-3, both Pinus nigra/sylvestris type and Pinus pinaster/hapensis type show 296 

important increases. Overall, mesophytes are decreasing, which affects especially to 297 
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Corylus, while Betula and Tilia disappears. This zone also shows fluctuating evergreen 298 

Quercus. Although scant along previous zones, Olea occurs continuously showing a 299 

gradual increasing trend (Figure 5). During this period, pollen grains of Cedrus are 300 

recorded at 116, 103 and 99 cm depth (ca. 5230, 4490 and 4260 cal yr BP respectively). 301 

Hygrophyte and hydrophyte pollen grains occur in low abundances, similarly to the 302 

previous zone (Figure 6).  303 

VIL-2 (71-62 cm depth; ca. 2530-1940 cal yr BP), Sedimentary UNIT-2; SUB-2A 304 

A major change in forest structure is the main feature of this zone. Pinus reaches a 305 

minimum, and Quercus faginea and evergreen Quercus show significant expansions 306 

(Figure 5 and 6).  307 

VIL-1 (61-32 cm depth; ca. 1940-470 cal yr BP), Sedimentary UNIT-1 308 

Pinus nigra/sylvestris type values partially rise while both Quercus faginea type and 309 

evergreen Quercus decline. AP is low (Figure 5) while the herb component 310 

(Compositae, Chenopodiaceae, Artemisia, Lamiaceae and Fabaceae) exhibits a large 311 

increase. Coprophilous fungal spores, dominated by Sordariales peak while a maximum 312 

in Glomus chlamydospores is seen (Figure 6).  313 

5. Discussion 314 

5.1. Climate, vegetation and hydrological variability during the last 13500 cal yr BP 315 

5.1.1. The Last Glacial-Interglacial transition (LGIT): resilient vegetation and 316 

hydrological variability (13540-11270 cal yr BP) 317 

Last Glacial-Interglacial transition (LGIT) at Villarquemado was characterized by 318 

deposition of sediments with high siliciclastic content compared with the Holocene 319 

interval (Figure 4). The vegetation cover was composed by a relatively high amount of 320 

xerophytes (Figures 5 and 6) and the dominance of Pinus nigra/sylvestris type among 321 

the AP, with values around 40%. These percentages suggest the presence of some tree 322 
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patches in an open landscape around the lake or a montane pinewood at higher altitudes, 323 

similarly to the present-day situation. Deciduous elements were poorly represented and 324 

probably were confined to riverbanks (e.g., Ulmus, Salix, Fraxinus) or in particular 325 

humid shelters of the Albarracín Range (Figure 5). The lack of a mesophyte vegetation 326 

expansion in response to the Allerød interstadial (GI-1a) period (Björck et al., 1997), 327 

corresponding to VIL-6B pollen zone according to our chronological model, differs 328 

from other Iberian areas where a broadleaf forest expansion has been recognized (Pons 329 

and Reille, 1988; Peñalba, 1994; Pérez-Obiol and Julià, 1994; Gil-García et al. 2002; 330 

González-Sampériz et al. 2006; Muñoz Sobrino et al., 2013). The lagged vegetation 331 

response to the GI-1a climate signal is attributable to the resilience of the continental 332 

ecosystems to increased moisture availability, although vegetation dynamics may be 333 

partly masked by the low sample resolution of this interval (Figures 7 and 8). The 334 

resilient behaviour of the vegetation continues during the Younger Dryas (GS-1) 335 

chronozone (Björck et al., 1997) when no major changes in the forest physiognomy are 336 

recorded (Figures 5 and 8). Nevertheless, the increase in Pinus between 13200 and 337 

12200 cal yr BP (VIL-6B) may partially reflect an altitudinal migration of the of the 338 

pinewood treeline associated with the onset of cooler conditions at higher elevations. 339 

Unfortunately, this hypothesis cannot be tested through correlation due to the lack of 340 

Lateglacial paleoecological records at higher altitudes in our study area. In addition, the 341 

Younger Dryas is not always clearly documented in the eastern Iberian sequences 342 

(Carrión et al., 2010a and references therein), suggesting a low impact of this event in 343 

pine woodlands. 344 

Therefore, although no important changes in the regional vegetation during the LGIT 345 

are clearly recorded, local aquatic taxa and sedimentological indicators point to 346 

relatively high water levels and sediment delivery. In fact, hydrophytes reach their 347 
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maximum values during this period, especially in the VIL-6A interval (12170-11230 cal 348 

yr BP), showing a remarkable shift from Cyperaceae-rich to a Typha-rich ecosystem 349 

with large amounts of Myriophyllum and Potamogeton (Figures 6 and 8). These 350 

coincide with the high proportions of Ti and the siliciclastic composition of UNIT-3, 351 

particularly in SUB-3A, which indicate a lacustrine environment dominated by detrital 352 

supply to the basin (Figure 4). Such a situation would be related to an increase in the 353 

creeks/local rivers activity in the catchment as a response of (1) more intense rainfall 354 

events and/or (2) colder conditions in an open landscape. Both situations would favor 355 

erosion and the accumulation of detrital particles in the lake. The synchronous increase 356 

in aquatic pollen during the LGIT, indicating higher lake level, supports this hypothesis. 357 

The high lake level postulated for GS-1 would probably benefit from the decrease of 358 

evaporation rates as a consequence of the reduced annual temperatures in a global-scale 359 

cold period (Cacho et al., 2001; Moreno et al., 2010; Shakun and Carlson, 2010).  360 

5.1.2. The early Holocene: vegetation and hydrological response to marked 361 

seasonality (11270-7780 cal yr BP) 362 

The early phase of the Holocene in the region was still dominated by a steppe landscape 363 

(VIL-5B), although a progressive development of more water-demanding temperate 364 

taxa (e.g., Betula, Corylus and Quercus faginea type) occurred from ca. 9140 cal yr BP 365 

(VIL-5A), suggesting increased temperature and humidity (Figure 5). In agreement with 366 

other Mediterranean sequences from the north-eastern sector of the Iberian Peninsula, 367 

inner continental regions like the Villarquemado paleolake area were characterized by 368 

the prevalence of cool and arid conditions at the beginning of the Holocene (e.g., Lake 369 

Estanya, Morellón et al., 2009; Vegas-Vilarrúbia et al., 2013) with a remarkable 370 

persistence of Lateglacial xeric communities and pinewoods in the vegetation cover 371 

(González-Sampériz et al., 2005, and references therein). In particular, at Las Pardillas 372 
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Lake (Figure 1), steppe-like vegetation composed by Juniperus, Artemisia and Poaceae 373 

was well represented prior to ca. 10500 cal yr BP (Sánchez Goñi and Hannon, 1999) 374 

while at the nearby Ojos del Tremedal, situated in the Albarracín Range (Figure 1), a 375 

treeless environment persisted until ca. 9600 cal yr BP (Stevenson, 2000). The limited 376 

spread of mesic and thermophilous vegetation in Fuentillejo Maar (Vegas et al., 2010), 377 

inner continental Iberia (Figure 1), was also associated with a dry and probably cold 378 

climate regime during the first stages of the Holocene.  379 

In southern and south-eastern Iberian intra-montane valleys and mid-altitude elevations, 380 

the same environmental conditions of the inner continental areas are clearly visible 381 

during this period. Thus, Navarrés (Carrión and van Geel, 1999), Villaverde (Carrión et 382 

al., 2001) and Siles (Carrión, 2002) exhibit a similar pattern of conifer prevalence 383 

during the first millennium of the Holocene as these communities are highly resilient 384 

and their fluctuations present a more inertial character (Figure 7). In a recent review, 385 

Rubiales et al. (2010) proposed that pinewoods spread in the Iberian mountains since 386 

the LGM until ca. 8000 yr BP, suggesting that empty ecological niches available after 387 

full-glacial climate conditions may have favoured the early colonization of Pinus in a 388 

still dry climatic scenario. Consequently, not only during Lateglacial times but also 389 

during the early Holocene, pinewoods would have been better adapted, climatically 390 

favoured and easily dispersed from multiple stands with respect to broadleaved species 391 

in medium altitude continental areas. Our data are coherent with the hypothesis by 392 

Rubiales et al. (2010) which points to a regional dominance of Pinus until 7780 cal yr 393 

BP in the lowlands of the Albarracín Range (Figures 5 and 7).  394 

Model simulations for Eurasia confirmed that increased summertime insolation in the 395 

Northern Hemisphere at the Holocene onset caused an increase in summer temperatures 396 

(Rimbu et al., 2003; Kim et al., 2004). Paleoecological data in central and northern 397 
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Europe have showed an almost immediate response of terrestrial ecosystems to the rise 398 

in temperature during the early Holocene, visible by major fluctuations in the alpine 399 

timberline (Ali et al., 2003; Tinner and Kaltenrieder, 2005) and by the expansion of 400 

broadleaved trees reaching northern areas, even above the modern distributional range 401 

limit (Kullman, 2013, and references therein). Reduced winter insolation also implied 402 

minimum winter temperatures and extreme continentality due to the maximum 403 

amplitude of solar forcing. Thus, the persistence of steppe communities in the inner 404 

continental areas of Iberia may be associated with a reduced effective humidity, keeping 405 

moisture levels below the tolerance threshold for tree growth (Tzedakis, 2007). Further 406 

evidence comes from North-African palaeonvironmental studies (Lamb et al., 1989), 407 

where a strengthened monsoonal circulation has been considered as the main triggering 408 

factor promoting the persistence of a regional high pressure circulation mode (Cheddadi 409 

et al., 1998). In this mode, atmospheric stability and high summer temperatures may 410 

have led to higher evaporation rates and a consequent reduction of water tables in many 411 

continental Mediterranean areas. This mechanism may explain the prevalence of 412 

reduced water levels in Iberian lakes during the early Holocene, i.e., in Lake Estanya 413 

(ca. 11600-9400 cal yr BP) (Figure 8), (Morellón et al., 2009; Vegas-Vilarrúbia et al., 414 

2013). In continental Iberian sites like Salines (Roca and Julià, 1997) or Laguna de 415 

Medina (Reed et al., 2001), in south-eastern Spain (Figure 1), recurrent water level 416 

oscillations are revelaed suggesting alternating permanent and ephemeral lake 417 

environments. In Villarquemado the reduction in Pteridophytes and aquatic plants 418 

(Figure 5), and the sharp decrease in siliciclastic elements (Ti, Si, Fe) contemporaneous 419 

to the substantial increase in freshwater gastropoda and charophyceae-rich facies, 420 

suggest an oscillation towards a shallower, carbonate-rich wetland, around 11240 cal yr 421 

BP (Figure 4 and 8). The increase in Mn with respect to the LGIT values also supports 422 
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the existence of shallow environments where oxidation processes were more frequent. 423 

The extent of the wetland was drastically reduced, as indicated by the progressive 424 

decline in hygrophyte communities (Figure 6). Nevertheless, the continuous record of 425 

Tamarix, along with the scattered presence of Myriophyllum and Potamogeton, indicate 426 

the persistence of some unstable and seasonal ponds, probably in the lowest areas of the 427 

basin. At the same time, the increase in Chenopodiaceae and Artemisia pollen may 428 

reflect their local presence near the core site, in a climatic scenario with cold winter 429 

temperatures hindering the development of regional meso-thermophilous vegetation 430 

(Figure 6).  431 

5.1.3. Mixed oak woodland expansion during the mid Holocene (7780-5000 cal yr 432 

BP)  433 

The mid Holocene in Villarquemado was characterized by the expansion of mesophytes 434 

and Mediterranean taxa whereas Pinus nigra/sylvestris forests and the herbaceous 435 

understory decreased (VIL-4), indicating both higher temperatures and moister 436 

conditions than in the previous phase (Figure 5). Favorable conditions for forest 437 

development are indicated by the dominance of Quercus faginea type and evergreen 438 

Quercus, followed by the spread of broadleaved taxa, reaching their maximum values in 439 

this period (Figures 5 and 8). From a regional perspective, sequences located in both 440 

north (Peñalba, 1994; Sánchez Goñi and Hannon, 1999; Gil-García et al., 2002) and 441 

southern slopes of the Iberian Range (Stevenson, 2000) reported similar vegetation 442 

successions, where Betula, and to a lesser extent deciduous Quercus, were the most 443 

widespread deciduous elements. This pattern was also found in other north-eastern 444 

high-altitude localities (e.g., González-Sampériz et al. 2006; Pérez-Obiol et al. 2012; 445 

Pérez-Sanz et al., 2013), reflecting an upland tree colonization associated with the 446 

upward shift of the supramediterranean vegetation belt. The continuous record of Betula 447 
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pollen in Villarquemado between 10200 and 8460 cal yr BP, a taxon currently absent in 448 

the area, may reflect the progressive birch colonization in the Albarracín Range as 449 

highlighted by Stevenson (2000). Corylus, whose modern distribution in the Iberian 450 

Peninsula is mainly related to the humid Eurosiberian region (Blanco-Castro et al., 451 

1997), was continuously recorded from ca. 9540 cal yr BP in Villarquemado, although 452 

its maximum spread took place ca. 7450 cal yr BP (Figure 5), similarly to other 453 

continental Iberian locations (e.g., Siles, Carrión, 2002 ca. 7270 cal yr BP; Ojos del 454 

Tremedal, Stevenson, 2000 ca. 7500 cal yr BP).  455 

The Villarquemado paleolake lowlands were most likely characterized by open 456 

evergreen oak formations accompanied by scattered juniper communities in dry slopes, 457 

with monospecific Pinus pinaster stands in redstones and an ericaceous understory 458 

(Figure 5). Maximum frequencies of riparian taxa (Alnus, Salix, Ulmus, Fraxinus, Tilia) 459 

reflect increased fluvial activity.  460 

Significant Artemisia proportions, reaching ca. 20% despite the moister conditions, 461 

could be associated with the particular geomorphological features of the basin, mainly 462 

characterized by a massive spread of alluvial fans (Figure 2A), where an unstable 463 

substrate might be colonized by Artemisia as this taxon does nowadays (Figure 2D). 464 

Beyond local peculiarities, the present study matches the general hydrological model 465 

established for Mediterranean Iberia, suggesting the highest lake levels ocurred in the 466 

8000-5500 cal yr BP period (Carrión, 2002; Morellón et al., 2009; García-Alix et al., 467 

2012) (Figure 8). Although a carbonate-producing wetland-shallow lake was established 468 

in Villarquemado through most of the Holocene sequence, dark, organic-rich silt facies 469 

with slight increases in Ti and Si occurred during the mid Holocene. Sedimentological 470 

and geochemical proxies underline increased water availability during this time (Figure 471 

4). Furthermore, regional-scale evidence for this wet-phase comes from tufa deposits 472 
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development at the Mijares River Canyon between 10000 and 5000 yr BP (Peña et al., 473 

2000), from the Guadalaviar River Basin at 7300-6800 yr BP (Sancho et al., 1997) and 474 

from the headwaters of Las Parras River since 10100 cal yr BP (Rico et al., 2013) 475 

(Figure 1). The increase in temperature and moisture availability recorded during this 476 

period (7780-5000 cal yr BP) may be related to increased prevalence of westerlies in the 477 

continental areas of the Iberian Peninsula (Benito et al., 2003), probably linked to a 478 

weaker influence of the Hadley circulation system in the western Mediterranean Basin 479 

(Tzedakis, 2007; Vannière et al., 2011). 480 

A secondary change in the forest composition was observed at ca. 6800-5800 cal yr BP, 481 

(VIL-4) (Figure 5). Although competition between Quercus faginea and evergreen 482 

Quercus cannot be ruled out as a factor for vegetation change, the general decline of 483 

mesophytes and the following increase in evergreen elements (evergreen Quercus, Olea, 484 

Ericaceae) as well as the significant presence of Pinus, suggest a reduction of summer 485 

precipitation and/or an increase of temperatures. In fact, estimates of δ
13

C in mid 486 

Holocene archaeobotanical remains located in the nearby Valencia Region confirm a 487 

progressive reduction in July precipitation between 6000 and 5000 yr BP (Aguilera et 488 

al., 2012). On the other hand, the reduced seasonal thermal contrast of the mid Holocene 489 

caused warmer winters and milder summers, and consequently an increase in mean 490 

annual temperatures allowing the spread of more thermophilous, frost-sensitive 491 

elements (e.g., Olea, Pistacia, Thymelaea) (Figures 5 and 7) even in the inner areas of 492 

the Iberian Peninsula (Badal et al., 1994; Carrión et al., 2010). 493 

Regionally, the same vegetation shift from deciduous to evergreen vegetation 494 

formations is reported from different continental sequences (Figure 7). At Siles, the 495 

maximum expansion of the Mediterranean forest-scrub was recorded at ca. 5900 cal yr 496 

BP (Carrión, 2002). At Navarrés, the colonization of sclerophyllous Quercus in 497 
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pinewoods took place around 6000 cal yr BP, possibly triggered by human-induced fires 498 

under dry climate conditions (Carrión and van Geel, 1999). At Villaverde, the main 499 

change towards a dominance of evergreen Quercus is recorded ca. 5300 cal yr BP, 500 

several centuries later than other discussed records (Carrión et al., 2001) (Figure 7). 501 

Anthracological data published by Allué et al., (2009) from Cova de la Guineu confirm 502 

this regional-scale pattern, reporting a change from humid to sub-humid Mediterranean 503 

climate, suggested by increasing abundance of evergreen Quercus, Erica and 504 

Rhamnus/Phillyrea in the charcoal record. Although a steady increase in summer dry 505 

conditions is recorded, the relatively high amount of deciduous elements especially 506 

between 5800 and 5000 cal yr BP, suggests a favourable mean annual precipitation, 507 

although with a more pronounced seasonality. 508 

Sedimentological indicators reflect a slight decrease in lake levels with a dominance of 509 

more ephemeral depositional environment that persisted through the remaining UNIT-2. 510 

The change from carbonate-lake environment (SUB-2B) into shallower carbonate 511 

wetland (SUB-2A) is also shown by the inverse relationship between siliciclastic 512 

elements and Ca (Figure 4). This pattern towards drier conditions in continental Iberia 513 

(Carrión et al., 2010a) and elsewhere in the Mediterranean Basin (Jalut et al., 2009), 514 

likely represents the hydrological and vegetational response to the end of the orbitally-515 

driven African Humid Period (deMenocal et al., 2000). 516 

5.1.4. Increase in the aridity trend from the mid to late Holocene (5000-2530 cal yr 517 

BP) 518 

Between 5000 and 2530 cal yr BP a mixed evergreen Quercus-Pinus forest developed 519 

while Corylus and other mesic trees (e.g., Fraxinus, Salix, Ulmus), which were probably 520 

confined in riverbanks and humid gorges, reduced significantly (VIL-3) (Figure 5). 521 

More contrasted continental and drier climate conditions could have favoured the 522 
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expansion of a Pinus-dominated landscape at the expense of mesophytes (Carrión et al., 523 

2010a, and references therein) (Figure 5). Palynological data from areas within the 524 

thermo- and mesomediterranean areas reported woodland cover reductions after ca. 525 

5200 cal yr BP (Jalut et al., 2000; Pantaleón-Cano et al., 2003; Carrión, 2002; Carrión et 526 

al., 2001, 2004; Fletcher et al., 2007) (Figure 8). During this period, an increase in fire 527 

activity, probably enhanced by arid climate conditions, may have played a crucial role 528 

in favoring the spread of sclerophyte and fire-prone communities (Carrión and van 529 

Geel, 1999; Carrión et al., 2003; Gil-Romera et al., 2010a), even at high elevations 530 

(Carrión et al., 2007; Anderson et al., 2011; Jiménez-Moreno and Anderson, 2012; 531 

Jiménez-Moreno et al., 2013). In addition, marked changes in several lake sequences 532 

took place approximately at 5100 cal yr BP. (Carrión et al., 2003; Anderson et al., 2011; 533 

García-Alix et al., 2012) (Figure 8). In Villarquemado, deposition in ephemeral lake 534 

conditions continued without major changes in the geochemical signature (SUB 2-A), 535 

except for a significant increase in Mn that might reflect higher occurrence of oxidation 536 

processes in a shallow environment (Figure 4).  537 

Other pollen-independent studies reach similar conclusions: at Laguna de Medina, Reed 538 

et al. (2001) suggest a clear decrease in lake levels after 5530 cal yr BP, while at Siles 539 

phases of dramatic lake dessication around 5200 and 4100 cal yr BP are identified 540 

(Carrión, 2002) (Figure 8). An arid interval was recorded in Lake Estanya between 541 

4800-4000 cal yr BP (Morellón et al., 2009), while the sequences at Lake Zoñar 542 

(Martín-Puertas et al., 2008) and Laguna de la Mula sequences (Jiménez-Moreno et al., 543 

2013) start with low lake levels at ca. 4000 cal yr BP (Figure 8). Further evidence 544 

towards dry environments in continental areas of Iberia are confirmed by enhanced 545 

erosive phases in the Trabaque Canyon tufa deposits (Domínguez-Villar et al., 2012), 546 

and by the reduced water availability along with the consequent decline in the tufa 547 
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deposition in the Añavieja River system (Luzón et al., 2011). At a broader scale, the 548 

spread of aridity in the southern Peninsula has been correlated with millennial and 549 

submillennial-scale arid intervals in North Africa as recorded in Tigalmamine Lake 550 

between 5010-4860 cal yr BP (Lamb and van der Kaars, 1995), Lake Sidi Ali at 6000-551 

5000 cal yr BP (Lamb et al., 1999) and Dar Fatma (Ben Tiba and Reille, 1982). Single 552 

grains of Cedrus recorded in Villarquemado at the 5160-4240 cal yr BP interval suggest 553 

an enhanced influence of air masses reaching northern Mediterranean areas from North 554 

Africa (Magri and Parra, 2002; Di Rita and Magri, 2009). 555 

5.1.5. Clearance of pine woodlands during Iberian-Roman times (2530-1940 cal yr 556 

BP) 557 

The continuous Pinus frequencies (both Pinus sylvestris/nigra and Pinus 558 

pinaster/halepensis types) recorded in Villarquemado during the Lateglacial and the 559 

Holocene until 1950 cal yr BP (Figure 5) confirm the native character of pinewoods in 560 

the inner continental areas of Iberia, as shown by numerous studies (Franco-Múgica et 561 

al., 2001, 2005; Carrión et al., 2004; Figueiral and Carcaillet, 2005; Rubiales et al., 562 

2009, 2011; López-Sáez et al., 2010; García-Antón et al., 2011; Morales-Molino et al., 563 

2012). Pinus pinaster/halepensis type is recorded throughout the record without major 564 

changes, probably reflecting a long-term persistence of Mediterranean pinewoods in 565 

sandy substrates of the southern Iberian Range, a region already defined by Carrión et 566 

al., (2000) and recently confirmed by chloroplast microsatellite markers (Gómez et al., 567 

2005; Bucci et al., 2007), as an important source area for cluster pine during pre- and 568 

postglacial times.  569 

Despite the persistence of Pinus in our sequence, an abrupt pinewood decrease occurred 570 

about ca. 2530-1940 cal yr BP, suggesting an anthropogenic disturbance (Figure 5). 571 

Archaeological data and historical sources reveal that both the Celtiberian (Lorrio and 572 
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Ruiz-Zapatero, 2005) and Roman civilizations (Vicente-Redón, 2002) were present 573 

locally, significantly altering the environment by grazing practices and building 574 

structures for water management and river regulation (Rubio, 2004; Arenillas, 2007). In 575 

fact, during Roman times, the Albarracín-Cella aqueduct was constructed, a magnificent 576 

25 km long hydraulic infrastructure built to transfer water from the Guadalaviar River to 577 

the Cella village (Almagro Gorbea, 2002) (Figure 1). Although some authors consider 578 

that the aqueduct was designed by Muslim engineers (Sebastián López, 1989), the 579 

discovery of high density of terra sigillata hispanica pottery fragments, indicates that at 580 

least some parts of the infrastructure were completed before I-II A.D and therefore 581 

Roman culture was present (Almagro Gorbea, 2002; Rubio, 2004). Calibrated 582 

radiocarbon dates in this part of the Villarquemado sequence confirm that a major 583 

change in the forest composition occurred during the Iberian-Roman Period (Figure 5). 584 

Pollen evidences that the deforestation was particularly intense in the pine forest, in 585 

contrast to the oak woodland (both Quercus faginea type and evergreen Quercus) that 586 

surprisingly reached the highest values of the whole sequence (Figure 5). Although, 587 

chronologically well-constrained, multiproxy studies have recognized the existence of a 588 

moister phase between 2600 and 1600 cal yr BP, named as the Iberian-Roman Humid 589 

Period (Gil-García et al., 2007; Martín-Puertas et al., 2009; Jiménez-Moreno et al., 590 

2013), the abrupt change recorded in the Pinus values in just 3 cm (<130 years) is 591 

unlikely to be explained by climate change only. Problems linked to taphonomical 592 

processes might not be relevant since the same trend is repeated in different cores from 593 

Villarquemado paleolake (Figure 3A). 594 

Deforestation has often been related to the intensification of agro-pastoral activities 595 

(Carrión et al., 2007; López-Merino et al., 2010; Pèlachs et al., 2009a; Bal et al., 2011), 596 

or mineral extraction and metallurgy (Pèlachs et al., 2009b). However, in the 597 
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Villarquemado sequence no agricultural intensification has been recorded during this 598 

period (Figures 5 and 6) since only isolated presence of Cerealia type is recorded, 599 

without any noticeable proportions of ruderals (e.g., Plantago, Rumex, Polygonaceae) or 600 

cultivated trees (e.g., Olea, Castanea, Juglans and Vitis).  601 

In addition, a preference of conifers for construction purposes compared to Quercus and 602 

other mesophyte species has been postulated in many ethnobotanical studies (Rubiales 603 

et al., 2011; Ntinou et al., 2012). Pinus nigra and Pinus sylvestris are more suitable for 604 

construction as they produce straighter trunks in comparison with Quercus ilex which is 605 

more suitable for fuelwood (Rubiales et al., 2011). Therefore, we propose that the 606 

pinewood clearance recorded in Villarquemado was to obtain building material to 607 

construct the Albarracín-Cella aqueduct, following the Roman economic and social 608 

expansion in the area.  609 

At a European scale, the climate during the Roman period (2600-1600 cal yr BP) was 610 

characterized by increased humidity (van Geel et al., 1996), affecting particularly the 611 

southern latitudes (Zanchetta et al., 2007). Pollen-based studies across the Iberian 612 

Peninsula, especially in those regions where the human impact was substaintially 613 

negligible, revealed noticeable changes in the vegetation composition, with the spread 614 

of deciduous elements, as recorded in Basa de la Mora (Pérez-Sanz et al., 2013), in 615 

Estany de Burg (Bal et al., 2011) and Laguna de la Mula (Jiménez-Moreno et al., 2013) 616 

among others. High lake productivity and the maximum diversity of the aquatic pollen 617 

characterizes the Tablas de Daimiel sequence during this period (Gil-García et al., 2007) 618 

coeval to the deposition of varves related to higher lake levels in Zoñar Lake (Martín-619 

Puertas et al., 2009). Although the possible forcings and the detailed chronological 620 

delimitation of the mentioned period remain still unclear, the atmospheric circulation 621 

pattern has been pressumably related to a persistent negative NAO mode, with North 622 
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Atlantic origin storm tracks affecting with particular intensity south-western 623 

Mediterranean areas (Martín-Puertas et al., 2012).  624 

Deposition in Lake Villarquemado during the late Holocene is characterized by the co-625 

existence of carbonate wetland environments with peatbog areas. Sedimentological 626 

proxies reveal a sharp change from a carbonate wetland (SUB-2A) to a peat (UNIT-1) at 627 

ca. 1940 cal yr BP (Figure 4) in core VIL05-1B. However, it does not appear clearly in 628 

VIL05-1A (Figure 3A), underlying the depositional spatial variability in a shallow 629 

lacustrine system such as the Villarquemado paleolake. 630 

5.1.6. Increased landscape management during the last 1500 years (1940-470 cal yr 631 

BP) 632 

The time period between 1940-470 cal yr BP was characterized by the increase in 633 

anthropogenic pressure shaping the current patched landscape in the Jiloca Basin. 634 

Pinewoods partially recovered at high altitudes, while in the lowlands, covered by 635 

evergreen and deciduous oak communities, pine reduced noticeably (VIL-1) (Figure 5). 636 

Slash and burn practices were probably frequent (Figure 6) and during this period 637 

livestock became an important economic activity in the area, evidenced by an 638 

exponential increase in coprophilous fungi of Sordariales-group. Also, nitrophilous 639 

elements like Compositae, Chenopodiaceae, Rumex or Apiaceae increased substantially, 640 

reflecting a major change towards an open and degraded environment. Similarly, 641 

Glomus chlamydospores increased (Figure 6) suggesting enhanced soil erosion due to 642 

grazing practices.  643 

The relatively poor pollen resolution for this period together with the lack of detailed 644 

geochemical analyses from the core VIL-05-1A do not allow a detailed definition of 645 

climate evolution from our proxies, although it is well-known that the last two millennia 646 

in the Iberian Peninsula were characterized by a marked climate variability with the 647 
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alternation of warm/dry and cool/moist periods (Morellón et al., 2012; Moreno et al., 648 

2012b). In general terms, deforestation ceased and pines spread in the highlands after 649 

the decline of the Roman Empire (Figure 5), possibly in a drier climate context. 650 

Similarly, in the nearby Albarracín Range, pinewood colonized the previous deciduous 651 

woodland at 1840 cal yr BP and remained dominant until ca. 440 cal yr BP (Stevenson, 652 

2000). Nevertheless, water levels seem to have remained low in the Villarquemado 653 

paleolake with a patchy distribution of shallow carbonate lakes and wetlands since, no 654 

major evidence of recovery is inferred from the sedimentological sequence (Figure 4) or 655 

from the expansion of hygro- and hydrophyte communities (Figure 6). 656 

In the 18
th

 century, Villarquemado paleolake was artificially desiccated in order to 657 

achieve new land for cultivation and/or to reduce malarial-ridden swampy areas (Rubio, 658 

2004). This transition has been dated in the sedimentary sequence of Villarquemado 659 

paleolake at 430±30 (470 cal yr BP) radiocarbon data.  660 

5.2. Vegetation resilience to abrupt climate changes 661 

It is now well-established that the Lateglacial and Holocene periods have been 662 

characterized by sharp climate changes occurring at millennial-scale (Bond et al., 1997). 663 

Pollen data from central Europe have revealed an immediate response of terrestrial 664 

ecosystems showing a widespread decline of drought-sensitive species such Corylus 665 

that retreated in response to increased cool, dry and windy conditions (Tinner and 666 

Lotter, 2001; Kofler et al., 2005). Similarly, the sensitivity of the Iberian vegetation to 667 

global-scale climate changes has been widely reported, although it was mainly found in 668 

Atlantic-influenced sequences where the vegetation succesion was characterized by a 669 

broadleaved vegetation expansion at the Holocene onset, shaped by short-lived peaks of 670 

xerophytes, and by the progressive increase in drought tolerant taxa in reponse to more-671 

seasonal conditions from the mid-Holocene onwards (Carrión et al., 2010a and 672 
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references therein). Examples of this vegetation succession have been well-defined in 673 

the Pyrenees by records such as El Portalet (González-Sampériz et al., 2006), 674 

Tramacastilla (Montserrat-Martí, 1992) or by the recently published Basa de La Mora 675 

(Pérez-Sánz et al., 2013), recording marked climate shifts towards arid conditions at ca. 676 

9300 and 8300 cal yr BP. Similarly, pollen data obtained from sequences located in the 677 

Cantabrian Mountains (Moreno et al., 2011), in north-western Iberia (Muñoz-Sobrino et 678 

al., 2005; López-Merino et al., 2012) or from coastal areas of Portugal (Fletcher et al., 679 

2007) have reported a similar vegetation succession characterized by forest opening and 680 

coeval increase in steppe elements. 681 

In contrast, based on a palynological approach, continental areas of the Iberian 682 

Peninsula do not clearly reflect these centennial-scale climate events, even when the 683 

chronological models are well-established, without apparent hiatuses and abrupt 684 

changes in the sedimentation rates (e.g, Carrión and van Geel, 1999; Sánchez Goñi and 685 

Hannon, 1999; Stevenson, 2000; Carrión, 2002; Carrión et al., 2007; García-Antón et 686 

al., 2011) while resolution in most these cases is high enough to detect those oscillations 687 

(e.g. Sánchez Goñi and Hannon, 1999; Franco-Múgica et al., 2001; Carrión, 2002; 688 

Carrión et al., 2007). In Villarquemado paleolake, the depth-age model reflects a lineal, 689 

continuous and relatively high sediment accumulation rate for the Lateglacial (0.030 cm 690 

yr
-1

), decreasing slightly to 0.049 cm yr
-1 

during the early Holocene (Figure 3B). 691 

Global-scale abrupt climate reversals such as the Preboreal Oscillation (Fisher et al., 692 

2002), the 8200 cal yr BP event (Alley et al., 2003), and the 4200 cal yr BP aridity crisis 693 

(Cullen et al., 2000) have been chronologically well-constrained by means of 694 

radiocarbon dates reporting results centered at 9820±50 (11250 cal yr BP), 7460±50 695 

(8280 cal yr BP) and 3750±40 (4110 cal yr BP) respectively (Table 1). Nevertheless, no 696 

major changes in the pollen sequence have been observed compared to the previous 697 
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trend (Figure 8). In addition, pollen analysis performed for comparison in Core VIL-05-698 

1A (not shown in this work) around the radiocarbon date 7460±40 (8275 cal yr BP) 699 

(Table 1) show a vegetation landscape similar to VIL-05-1B sequence, without a clear 700 

evidence of forest opening around 8200 cal yr BP. 701 

Considering that peculiarities related to depth-age model or sampling resolution are not 702 

the main factors explaining the lack of vegetation response to abrupt events in the 703 

Villarquemado paleolake, the stable character of the continental forest communities 704 

could be partially explained by its optimal ecological niche, including the lack of 705 

successional competitors during harsh climatic periods. Modern ecophysiological 706 

studies have demonstrated that conifers are better adapted to water-stress induced by 707 

drought in comparison to broadleaved trees (Lloret et al., 2007). Then, the ecosystem’s 708 

inertia would also play a role on buffering climate perturbations. This persistence is 709 

supported by the complex interactions of the postglacial pinewoods with the newly 710 

established junipers and oak forests during the recorded period. These interactions are 711 

usually difficult to establish but once they are created, they hamper perturbations in 712 

well-developed and mature communities (Gil-Romera et al., 2009, 2010b; Carrión et al, 713 

2010b). Moreover, since aridity is an intrinsic driver of the Villarquemado landscape 714 

without any clear marker of regional forest contractions during the Lateglacial and early 715 

Holocene, short-lived arid spells in a drought-tolerant environment are likely to be 716 

substantially negligible. This model may be extrapolated to many Iberian records that 717 

see similar signals of vegetation inertia (e.g., Carrión and van Geel, 1999; Sánchez Goñi 718 

and Hannon, 1999; Stevenson, 2000; Franco-Mugica et al., 2001, 2005; Carrión, 2002; 719 

García-Antón et al., 2011). Instead, in Atlantic-influenced sequences the well-720 

established deciduous vegetation seems more vulnerable to arid events as the forest 721 

responds showing a sharp opening or treeline experiences major shifts at high altitudes 722 
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that result easier to detect than in continental sequences (e.g., Muñoz-Sobrino et al., 723 

2005; González-Sampériz et al., 2006; Moreno et al., 2011; López-Merino et al., 2012; 724 

Pérez-Sánz et al., 2013). In many cases, these abrupt forest depletions are evidenced by 725 

increased Pinus pollen frequencies indicating its xeric behaviour (e.g., González-726 

Sampériz et al., 2006; Pérez-Sánz et al., 2013).  727 

6.- Conclusions 728 

High-resolution multiproxy analyses of the Villarquemado paleolake allow the 729 

reconstruction of both meso- and supramediterranean vegetation dynamics, climate and 730 

hydrological changes in the southeastern Iberian Range during the last ca. 13500 cal yr 731 

BP. Most of the studied period has been characterized by a marked resilience of 732 

terrestrial vegetation and gradual responses to millennial-scale climate fluctuations. The 733 

main vegetation and hydrological responses to global climate variability have been 734 

identified using palynological, sedimentological and geochemical indicators, enabling 735 

correlations with other continental Iberian paleoenvironmental sequences. In general 736 

terms, six phases occurred between ca. 13500 and 450 cal yr BP as follows: 737 

1) Regional cool conditions are inferred for the LGIT (13540-11270 cal yr BP) with 738 

conifers and steppe elements as main landscape elements. In addition, the well-739 

developed hygro-hydrophyte pollen assemblages and the sedimentary facies 740 

associations reveal high water levels, probably as a consequence of reduced 741 

evapotranspiration rates and/or higher intensity of precipitation events.  742 

2) Prevalence of dry conditions in response to increased seasonality is the main feature 743 

for the early Holocene (11270-7780 cal yr BP), when conifer forests and 744 

xerophytes spread regionally. Hydrologically, this phase corresponds with an 745 

abrupt change towards a shallow carbonate-wetland with both littoral and aquatic 746 

communities experiencing a marked decrease.  747 
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3) Moister conditions characterize the beginning of the mid Holocene (7780-5000 cal 748 

yr BP) in coherence with the regional pattern, showing the expansion of meso-749 

thermophilous taxa with both Quercus faginea and evergreen Quercus as main 750 

woodland components. Local hydrological conditions suggest increased water 751 

availability in a carbonate-wetland system.  752 

4) The progressive increase in arid conditions during the late Holocene (5000-2530 cal 753 

yr BP) enabled the expansion of a mixed Pinus-evergreen Quercus forest. The 754 

carbonate-lake environment persisted during this period. 755 

5) During Ibero-Roman times, pinewood forest clearance (2530-1940 cal yr BP) 756 

represents the most important deforestation phase as a consequence of 757 

anthropogenic disturbance. Carbonate shallow lakes and wetlands dominated 758 

during this period and peat formation could have been favored during some 759 

intervals. 760 

6) Between 1940 and 470 cal yr BP increased landscape management associated to 761 

grazing pressure shaped a patchy forest landscape without clear evidence of 762 

agricultural intensification. 763 

 764 

765 
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Figures and tables caption 1450 

 1451 

 1452 
Figure 1. Location of the Villarquemado paleolake in the Iberian Peninsula. The sites 1453 

cited in the discussion and in Figures 7 and 8 are also included; 1) Las Pardillas Lake 1454 

(Sánchez-Goñi and Hannon, 1999); 2) Lake Estanya (Morellón et al., 2009; Vegas-1455 

Vilarrúbia et al., 2013); 3) Añavieja River system (Luzón et al., 2011); 4) Cova de la 1456 
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Guineu (Allué et al., 2009); 5) Las Parras River system (Rico et al., 2013); 6) Trabaque 1457 

Canyon (Domínguez-Villar et al., 2012); 7) Ojos del Tremedal (Stevenson, 2000); 8) 1458 

Guadalaviar River system (Sáncho et al., 1997); 9) Mijares River system (Peña et al., 1459 

2000); 10) Fuentillejo Maar (Vegas et al., 2010); 11) Navarrés (Carrión and van Geel, 1460 

1999); 12) Villaverde (Carrión et al., 2001); 13) Siles (Carrión, 2002); 14) Salines 1461 

(Roca and Julià, 1997); 15) El Sabinar (Carrión et al., 2004); 16) Guadiana Estuary, 1462 

Core CM5 (Fletcher et al., 2007); 17) Lake Zoñar (Martín-Puertas et al., 2008); 18) 1463 

Laguna de Medina (Reed et al., 2001); 19) Baza  (Carrión et al., 2007); 20) San Rafael 1464 

(Pantaleón-Cano et al., 2003); 21) Laguna de la Mula (Jiménez-Moreno et al., 2013); 1465 

22) Borreguiles de la Virgen (Jiménez-Moreno and Anderson, 2012; García-Alix et al., 1466 

2012); 23) Laguna del Río Seco (Andersón et al., 2011). 1467 

 1468 

Figure 2. (A) Main geological, (B and C) climatic and (D) vegetational features of the 1469 

Jiloca Basin.  1470 
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1471 
Figure 3. (A) Correlation of VIL-05-1A and VIL-05-1B cores based on 1472 

sedimentological markers, 
14

C dates and main palynological changes. (B) Composite 1473 

depth-age model for the Villarquemado paleolake based on lineal interpolation of 
14

C 1474 

data (Table 1), obtained using the Clam software (Blaauw, 2010). The grey envelope 1475 

shows the 95% confidence interval. 1476 
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 1477 

Figure 4. Sedimentary facies and sedimentological units, XRF analyses and TIC results 1478 

for the Villarquemado sequence. XRF intensities are expressed in counts per second 1479 

(cps) and TIC values in percentages. The facies description is supported by X-ray 1480 

diffraction and visual inspection of relative mineral abundances on smear slides.  1481 
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 1482 

Figure 5. Pollen diagram from Villarquemado sequence for trees and shrubs. 1483 

Mesophytes-group comprises Betula, Corylus, Alnus, Salix, Ulmus, Fraxinus, Fagus, 1484 

Tilia, Juglans, Castanea, deciduous Quercus and Quercus faginea type; Mediterranean 1485 

taxa-group is composed by Evergreen Quercus, Quercus suber type, Pistacia, Rhamnus, 1486 

Buxus, Thymelaea, Phillyrea, Olea, Oleaceae and Arbutus; Xerophytes-group is formed 1487 

by Juniperus, Helianthemum, Ephedra distachya, E. fragilis, Hippophae, Artemisia, 1488 

Compositae and Chenopodiaceae; Other herbs-group includes Rubiaceae, Gentiana, 1489 

Boraginaceae, Plumbaginaceae, Armeria, Primulaceae, Papaver, Geraniaceae, 1490 

Malvaceae, Violaceae, Polygonaceae, Crocus, Cytisus, Asphodelus, Galium, 1491 

Valerianaceae, Dipsacaceae, Aristolochia and Cannabis/Humulus type. Dots represent 1492 

percentages <0.5%. Sedimentological units defined in Figure 4 are also reported to 1493 

facilitate readability.  1494 
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 1495 

Figure 6. Pollen diagram from Villarquemado sequence for herbs, hygrophytes, 1496 

hydrophytes, Pteridophytes and NPPs. Hygrophytes-group is composed by Ranunculus, 1497 

Juncaceae, Cyperaceae, Typha/Sparganium type and Thalictrum. Hydrophytes-group 1498 

includes Myriophyllum, Potamogeton, Utricularia, Nuphar, Nymphaea and Callitriche. 1499 

Dots represent percentages <0.5%. Sedimentological units defined in Figure 4 are also 1500 

reported to facilitate 1501 
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readability.1502 

 1503 

Figure 7. Main vegetation trends in the Villarquemado sequence and correlation with 1504 

other Mediterranean continental records. Pollen-based ecological groups for 1505 

Villarquemado are defined in Figure 5 caption. Pollen data for Navarrés, Villaverde and 1506 

Siles have been obtained from Carrión and van Geel (1999), Carrión et al. (2001) and 1507 

Carrión (2002), respectively. 1508 
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 1509 

Figure 8. Comparison of the Villarquemado sequence (pollen-based ecological groups, 1510 

top; aquatic taxa and geochemical composition, center) with selected records from 1511 
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continental Iberia for the Lateglacial and Holocene derived from various approaches. 1512 

Winter and summer insolation values for 40ºN are calculated by means of PAST 1513 

software (Hammer et al., 2001) and GISP2 isotope values obtained from Stuiver et al., 1514 

(1995). Pollen data have been acquired from 1) Navarrés (Carrión and van Geel, 1999); 1515 

2) Siles (Carrión, 2002); 3) Villaverde (Carrión et al., 2001); 4) El Sabinar (Carrión et 1516 

al., 2004); 5) Core CM5 (Fletcher et al., 2007); 6) San Rafael (Pantaleón-Cano et al., 1517 

2003); 7) Baza (Carrión et al., 2007); 8) Borreguiles de la Virgen (Jiménez-Moreno and 1518 

Anderson, 2012) and 9) Laguna del Río Seco (Anderson et al., 2011). The main lake 1519 

level phases are derived from 10) Lake Estanya (Morellón et al., 2009); 11) Siles 1520 

(Carrión, 2002); 12) Lake Zoñar (Martín-Puertas et al., 2008); and 13) Borreguiles de la 1521 

Virgen (García-Alix et al., 2012). Pollen-based ecological groups for Villarquemado 1522 

defined in the caption of Figures 5 and 6 and lake level reconstructions have been 1523 

summarized by integrating sedimentological, geochemical and hygro-hydrophyte pollen 1524 

assemblages. 1525 

Table 1. Radiocarbon dates (AMS) for the Villarquemado sequence obtained from bulk 1526 

sediment. 1527 

 1528 

Core Lab. number Depth (cm) 
Radiocarbon date 

(
14

C AMS yr BP) 

Age error 

(yr BP) 

Calibrated age (2σ) 

(cal. yr BP) 

VIL-05-1A Beta-332033 11 430 30 529-431 

VIL-05-1A Beta-332034 132 7460 40 8365-8190 

VIL-05-1A Poz-16073 220 11950 70 13997-13617 

VIL-05-1B Beta-319544 62.5 2020 30 2084-1898 

VIL-05-1B Poz-18451 96.5 3750 40 4232-3990 

VIL-05-1B Poz-18509 173.5 7460 50 8373-8185 

VIL-05-1B Poz-18453 233 9820 50 11339-11192 

VIL-05-1B Poz-15943 307 11620 60 13645-13306 
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