brought to you by D CORE

L. Rubio-Lago¹, G. Gitzinger^{1,2}, M. E. Corrales¹, V. Loriot^{1,2}, J. González-Vázquez^{1,2}, A. García-Vela³, P. S. Shternin⁴, O. S. Vasyutinskii⁴, R. de Nalda² and L. Bañares¹

¹Departamento de Química Física I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain ²Instituto de Química Física Rocasolano, CSIC, C/Serrano, 119, 28006 Madrid, Spain

(1)

³Instituto de Física Fundamental, CSIC, C/Serrano, 123, 28006 Madrid, Spain ⁴ loffe Institute, Russian Academy of Sciences, Polytechnicheskaya 26, 194021 St. Petersburg, Russia

ABSTRACT: We report experimental and theoretical studies of the alignment effects produced in femtosecond time-resolved CH₃I predissociation in the B band at 201.2 nm. The

experiment was of the pump-and-resonant probe type, coupled with velocity map ion imaging of the produced CH₃(v) and I*(2P_{1/2}) photofragments. The measurements provide a detailed picture of the real-time B-band predissociation of CH₃I [1]. The experiments demonstrated highly-anisotropic time-dependent photofragment angular distributions which were satisfactory fitted by the expression:

 $I(t) = I_0(t)[1 + \beta_2(t)\mathsf{P}_2(\cos\theta) + \beta_4(t)\mathsf{P}_4(\cos\theta)]$

The experimental values of the total signal intensity $I_0(t)$ and the anisotropy parameters $\beta_2(t)$ and $\beta_4(t)$ are shown in Fig. 1 for the case of CH₃ fragments. The obtained time-dependent anisotropy of the fragment distribution has been interpreted in terms of the theory describing the angular momentum alignment in photodissociation of rotating molecules [2]. The analysis made allowed for determination of the set of the anisotropy-transforming coefficients [3] which contain all information on the predissociation dynamics and give a new insight into the photolysis of CH₂I via the B-band.

should be contrasted with a more complete theory where the depolarization depends on two angles: the angle of precession of the molecular axis around the total angular momentum J and the angle of self-rotation of the molecule around its symmetry axis. We have determined the explicit expressions for the rotational angular momentum depolarization of an anisotropy transforming $\mathbf{C}_{k_d q}^{\mathsf{K}}$ coefficients as function of the include (Work in program) involved. (Work in progress)

References

- [1] G. Gitzinger et al., J. Chem. Phys. 132, 234313 (2010).
- [2] P. S. Shternin and O. S. Vasyutinskii, J. Chem. Phys. 128, 194314 (2008).
- [3] R. N. Zare, Angular Momentum, Willey, New York, 1988