View metadata, citation and sin	nilar papers at <u>core.ac.uk</u>
---------------------------------	-----------------------------------

Flowering phenology of invasive alien plant species compared to native species in three mediterranean-type ecosystems Oscar Godov^{*1,4}, David M. Richardson², Fernando Valladares^{1,3} & Pilar Castro-Díez⁴ ¹ Laboratorio Internacional de Cambio Global (Linc-Global). Instituto de los Recursos Naturales, Centro de Ciencias Medioambientales. CSIC. Serrano 115 dpdo E-28006 Madrid Spain. ² Centre for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa. ³ Departamento de Biología y Geología. Área de Biodiversidad & Conservación, Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain. ⁴ Departamento Interuniversitario de Ecología. Sección de Alcalá. Edificio de Ciencias. Universidad de Alcalá, E-28871, Alcalá de Henares, Madrid, Spain. *Correspondence author: ogodoy@ccma.csic.es

Fenología de floración de las especies de plantas exóticas invasoras en
 tres ecosistemas mediterráneos en comparación con las especies
 nativas.

4

5 Resumen

Antecedentes y Objetivos: La fenología de floración es un componente esencial
 del éxito de las especies invasoras, ya que una elevada fecundidad incrementa su
 potencial invasor. Por tanto, estudiamos la relación existente entre los patrones
 de floración de las especies invasoras y nativas en tres regiones con clima
 mediterráneo: California, España y la Región Sudafricana de El Cabo

11 • *Métodos*: 227 pares de especies invasoras-nativas fueron utilizados

12 Resultados clave: Las especies invasoras tienen diferentes patrones de floración • 13 en comparación con las especies nativas en las tres regiones. Las especies invasoras florecen antes, al mismo tiempo y después que las nativas en función 14 15 del clima al que pertenezcan y de la proporción de los distintos tipos de climas 16 que compongan la flora. Las especies invasoras que invaden al menos dos de las 17 regiones estudiadas muestran el mismo patrón de floración, indicando que la 18 fenología de floración es un rasgo conservativo. Las especies invasoras con 19 rangos nativos templados florecen antes que las especies nativas, aquellas 20 provenientes de clima mediterráneo al mismo tiempo mientras que las tropicales 21 florecen más tardíamente. En California, donde la proporción de especies 22 invasoras provenientes de clima mediterráneo es alta, el patrón de floración no 23 difirió entre especies invasoras y nativas, mientras que en España como la 24 proporción de especie de clima tropical es elevada, las especies invasoras florecieron más tarde que las nativas. Por ultimo, en la región sudafricana del 25

Cabo las especies invasoras florecieron antes que las nativas debido a que
 provenían de climas templados

- Conclusiones: Los patrones observados son debidos a la unión por factores humanos de especies con diferentes historias evolutivas en regiones climáticas diferentes. La severidad del principal filtro abiótico impuesto en la región invadida (sequía estival) no ha sido lo suficientemente fuerte (todavía) como para modificar el patrón de floración de las especies invasoras hacía el que las nativas muestran. Sin embargo, sí que determina la longitud total de la floración y el tipo de hábitat que invaden aquellas invasoras con floración estival. Los resultados sugieren diferentes implicaciones evolutivas entre las tres regiones.

Palabras clave: Invasiones biológicas, Fenología de floración, Inercia genética, Región
Florística del Cabo, California, España, Ecosistemas Mediterráneos, Disponibilidad
hídrica, Origen climático.

∩ 4

1 Abstract

Background and Aims Flowering phenology is a potential important component
 of success of alien species, since elevated fecundity may enhance invasiveness.
 We studied the flowering patterns of invasive alien plant species and related
 natives in three regions with mediterranean-type climate: California, Spain and
 South Africa's Cape region.

7 • *Method* 227 invasive-native pairs were compared.

8 Key Results Invasive alien plant species have different patterns of flowering ٠ 9 phenology to native species in the three regions. Whether the alien species 10 flower earlier, later, or at the same time as natives depends on the climatic 11 regime in the native range of the aliens and the proportion of the invasive floras 12 originating from different regions. Species invading at least two of the regions 13 displayed the same flowering pattern, showing that flowering phenology is a 14 conservative trait. Invasive species with native ranges in temperate climates 15 flower earlier than natives, those from mediterranean-type climates at the same 16 time, and species from tropical climates flower later. In California, where the 17 proportion of invaders from the Mediterranean Basin is high, the flowering 18 pattern did not differ between invasive and native species, whereas in Spain the 19 high proportion of tropical species results in a later flowering than natives and 20 the Cape region early flowering than natives was the result of a high proportion 21 of temperate invaders.

Conclusions Observed patterns are due to the human-induced sympatry of
 species with different evolutionary histories whose flowering phenology evolved
 under different climatic regimes. The severity of the main abiotic filters imposed
 by the invaded regions (e.g. summer drought) has not been strong enough (yet)

4

to shift the flowering pattern of invasive species to correspond with that of native relatives. It does, however, determine the length of the flowering season and the type of habitat invaded by summer-flowering aliens. Results suggest different implications for impacts at evolutionary time scales among the three regions. Key words: biological invasions, flowering phenology, genetic inertia, Cape Floristic Region, California, Spain, Mediterranean-type ecosystems, water availability, climatic origin.

24 INTRODUCTION

1 The timing of sexual reproduction is a critically important determinant of plant 2 reproductive success. Flowering at the optimum time ensures fecundity and good 3 development of seeds and fruits (Mazer, 1987). Flowering phenology is mediated by the 4 interaction of internal factors (Murfet, 1977; Putterill et al., 2004) with external 5 environmental signals such as temperature (Hollister *et al.*, 2005), day length (Imaizumi 6 and Kay, 2006), or drought (Fox, 1990a). In general, plant species in their native ranges 7 have coupled the sensitive flowering period to the optimal climatic conditions through 8 natural selection, thus maximising their reproductive success. The main selective factors 9 acting upon flowering phenology differ between ecosystems. In mediterranean-type 10 ecosystems (MTEs), which occur in five widely separated regions of the world 11 (Cowling et al., 1996), summer drought and rainfall variability (Cowling et al., 2005) 12 modulate the flowering plant response. Drought is one of the most limiting factors for 13 vegetative growth and flower development (Mitrakos, 1980; Roche et al., 1997). 14 Flowering is concentrated in spring and autumn in most native plants in MTEs, which 15 can be interpreted with reference to avoidance of summer water-stress (Johnson, 1993; 16 Orshan, 1989; Castro-Díez and Montserrat-Martí, 1998; Perez-Latorre and Cabezudo, 17 2002).

18 Rainfall variability plays an important role on the start and length of flowering 19 phenology in these ecosystems. Less predictable regimes select for a largely plastic 20 response of flowering start to cope with the uncertain moisture conditions of spring; this 21 also occurs in other seasonally-dry ecosystems (Borchert et al., 2004). Climate-change 22 studies focused on responses of wide-ranging plant species occurring along latitudinal gradients corroborate the idea of high phenological plasticity in fluctuating 23 24 environments (Arft et al., 1999; Parmesan, 2006). However, phylogenetic and genetic 25 inertia of flowering phenology imposes limits to this plasticity (Herrera, 1992; Rathcke and Lacey, 1985). Consequently, plasticity of flowering, measured as the length of
temporal internal plant sensitivity to flower development, is a conservative trait, since it
has a genetic base (Ausin *et al.*, 2005), and plant species may be unable to shift their
timing of flowering when they are introduced into a new region.

5 Widespread introductions of plant species to areas outside their natural ranges 6 gives us the opportunity to gain new insights on the importance of flowering phenology 7 as a component of success of alien species in a new region, since enhanced fecundity 8 appears to be an important trait associated with invasiveness (Pyšek and Richardson, 9 2007). To be a successful invader, introduced plants must first cope with the abiotic 10 filters imposed by the new region and then reproduce (Richardson et al., 2000); this 11 requires them to flower at the appropriate time of year according to plant requirements. 12 Flowering phenology has been shown to be fairly flexible in within-alien comparisons. 13 For example, successful invaders generally display early flowering or long blooming 14 periods (Goodwin et al., 1999; Pyšek et al., 2003), since the chance of acquiring 15 improved fitness via effective pollination visits is increased. On the other hand, late, 16 short flowering gives insufficient time for completion of the life cycle or results in a 17 shorter time for pollination, reducing opportunities for fruit and seed development 18 (Roche et al., 1997). In the case of alien-native comparisons, many authors have found 19 that invasive alien species flower earlier than natives (Cadotte and Lovett-Doust, 2001; 20 Lake and Leishman, 2004). Others have found that alien species that flower later than 21 natives are more abundant (Celesti-Grapow et al., 2003; Lloret et al., 2005). Exhibiting 22 a different flowering pattern compared to native species may be more frequent in those 23 alien species which have evolved under climatic conditions markedly different to that of 24 the invaded region. This premise is based on the following argument: If plant species 25 maintain their genetic inertia of timing of flowering when they are introduced in a new

ecosystem, different flowering phenology between invasive and native species may
 occur as a direct result of different strategies of reproduction selected by evolution. On
 the contrary, invasive species with the same climatic conditions between their native
 range and the invaded ecosystems will not show any difference related to natives.

5 MTEs probably provide the best opportunity to test this hypothesis, since they 6 have been severely affected by invasions of introduced (alien) plant species (Groves and 7 di Castri, 1991). Many studies have sought reasons for differential success of different 8 alien plant species in the different MTE regions (see Lloret et al., 2005 for the 9 Mediterranean Basin, Rejmánek, Randall, 1994 for California, Jimenez et al., 2008 and 10 Sax, 2002 for California and central Chile; and Richardson and Cowling 1992 and 11 Richardson et al., 1992 for the Cape region of South Africa). The fate of introduced 12 species has clearly been influenced by many factors, including numerous inherent 13 features of the different regions and differences in cultural links between the regions 14 and colonial powers, which shaped the magnitude, timing and nature of early 15 introductions and dissemination within regions. In addition, recent socio-economic 16 developments and human-mediated modification of landscapes have also driven further 17 introductions and their dissemination within the regions (Wilson et al., 2007).

This paper examines the flowering phenology of invasive alien species in three different regions with mediterranean-type climate. We addressed the following questions: 1) Does the flowering phenology of invasive alien species differ from that of native species? 2) Are there differences between regions? 3) Is the flowering phenology of invasive alien species explained by the climate in their regions of origin?

23

24 MATERIALS AND METHODS

25 Climatic characteristic of selected regions

1 Three mediterranean-type ecosystems regions were selected to represent a gradient of 2 summer drought and rainfall reliability severity among regions of the world with this 3 climatic regime (Cowling et al., 2005). The California region has the lowest summer 4 precipitation (San Francisco (SF)= 4.9mm, San Diego (SD)= 4.8mm) and a high water 5 deficit in this season (SF= -296.4mm, SD= -298.5mm), the Cape region has a relative 6 high summer precipitation (Cape Town (CT)= 47mm, Port Elizabeth (PE)=110 mm) 7 and the lowest water deficit (CT= -96.0mm, PE= -13.7mm) (Fig. 1). The Spanish 8 mediterranean region falls somewhere in between these two regions, although with a 9 remarkable variability in summer rainfall along latitudinal and coast-inland gradients. 10 Water deficit was calculated as the difference between the precipitation and the 11 potential evapotranspiration in each month. In this sense, potential evapotranspiration 12 was calculated by the Jensen's method (Jensen et al., 1990). This method is considered 13 the most accurate from latitudes 0° to 60°. It takes into account latitude of the studied 14 region, mean of the maximum and minimum temperatures, mean altitude and total 15 irradiance considering the number of hours of sun. Climatic data for a 30-year period 16 were used; for California and data for the Cape region were obtained from NOAA 17 (1961-1990), and Spanish data were obtained from the national meteorological institute 18 for the same period (INM 1971-2000).

19

20 Species selection and data compilation

To standardise between regions, our data set comprised introduced plant species that were clearly invasive (sensu Pyšek *et al.*, 2004), with clear impact on the native ecosystems (transformer species, *sensu* Richardson *et al.*, 2000). Three major sources were used to compile the lists of invaders: Invasive plants of the California's Wildlands (Bossard *et al.*, 2000), Atlas de las Plantas Alóctonas Invasoras en España (Sanz Elorza

1 et al., 2004) and The Complete Guide to Declared Weeds and Invaders in South Africa 2 (Henderson, 2001). For California, all species listed by Bossard et al., (2000) were 3 included, since the criteria used by these authors for inclusion of species in their book 4 match ours. For Spain, all listed species were selected, except those alien plants that are 5 invasive only in the Canary Islands (non-mediterranean climate) and those that are 6 naturalized but not invasive sensu (Pyšek et al., 2004). For South Africa, all species 7 listed by Henderson (2001) with mapped occurrence in the Cape Floristic Region were 8 included. A total of 227 alien species were selected [Supplementary information].

9 Each of the selected species was coded for 7 characters (Table 1), using 10 primarily information from the sources mentioned above. Climatic origin of the 11 invasive species in their former native range was considered important since plants have 12 a genetic inertia on flowering development due to climatic conditions under which they 13 evolved (Herrera, 1992; Rathcke and Lacey, 1985). Four main habitats that are 14 representative of invaded habitats across the regions were selected, as differences in 15 timing of flowering are sometimes explained by habitat conditions rather than different 16 flowering strategies (Thies and Kalko, 2004). Growth form was selected because 17 environmental variables that affect flowering differ for woody and herbaceous plants 18 (Arft et al., 1999; Post and Stenseth, 1999). Pollination type was considered important 19 because different flowering strategies have been documented for animal- and wind-20 pollinated plants (Rathcke and Lacey, 1985). Finally start, end and length of flowering 21 phenology were also compiled.

To compare characters of invasive species with those of native plants having similar ecological requirements, we paired each invasive species with one closely related native species based on four criteria: (1) within each pair, the native must be recorded in the region where the alien species is invasive; (2) native and invasive alien

10

1 species must share the same habitat type - to be potential competitors; (3) the two 2 species must belong to the same growth form and pollination type and finally (4) the 3 two species must belong to the same genus or family, to get phylogenetic independent 4 contrasts (Ackerly, 2000). Native species with small range of distributions or under a 5 threaten category were excluded. In the case of the fourth criteria mention above, this 6 was only possible for the case of California and the Cape region, as in Spain, few 7 species met the four conditions due to the big phylogenetic differences between 8 invasive and native flora. Thus, phylogenetic relatedness was taken into account a 9 posteriori in Spain. In this case, we collected total phylogenetic distances for each 10 species through the angiosperm plant phylogenetic supertree described by Soltis et al., 11 (2000) and their modifications of Bremer et al., (2003). Currently, these studies are the 12 most highly resolved and strongly supported topology obtained for angiosperms. Next, 13 we tested if the differences in the start and the end of flowering between invasive and 14 native species were influenced by phylogenetic relationship between each pair species. 15 ANCOVA analysis testing for differences in flowering time, demonstrated no 16 phylogenetic effects on the results due to the native species selection for the ecological pairs construction (start of flowering: F=0.23 p=0.632, end of flowering: F= 1.21 17 18 p=0.274). In this sense, the phylogenetic relationship of the Spanish pairs was the 19 covariable calculated as the mean of phylogenetic distance to the first common ancestor 20 of both pair species.

21 Characteristics of Californian native species as well as their flowering 22 phenology were collected based on the Online Interchange for California Floristics 23 (2007), based the Jepson Manual Higher Plants of California (Hickman, 1993). For 24 Spain, native plant characters were collated from the Iberian Flora (Castroviejo, 1986-25 2005). Unfortunately, accounts of some Spanish native species are yet to be published

11

1 in the Iberian Flora. Characters for these species were compiled from regional floras 2 such as Flora of Western Andalucia (Valdés et al., 1987) and Flora of Catalonia (Bolòs 3 and Vigo, 1984-2001). Because the information was obtained from three different 4 sources, we tested differences in flowering onset and cessation in 31 species common 5 among floras with a one-way ANOVA. No differences were found either in the start 6 (F=7.7E-4, p=0.978) or in the end of flowering time (F=0.723, p=0.402). Finally, 7 Goldblatt, Manning, (2000) provided us with the best reference on the required 8 information for the native plants of the Cape region.

9

10 Statistical analyses

11 Chi-square tests were applied to test for differences between the exotic floras of the 12 three regions in the spectra of climatic origin, life form and type of invaded habitat. An 13 orthogonal general lineal model (GLM) for unbalanced designs was used to test for 14 significant variables affecting differences in the start, end and length of flowering 15 between native and invasive species. Categorical predictors were the invaded 16 mediterranean regions plus those used to create invasive-native pairs (growth form, 17 pollination type and invaded habitat). Pairwise Watson-William F-tests for dependent 18 samples in circular statistic were performed to test for differences in flowering 19 phenology between: 1) all invasive alien and native species pairs in the three regions; 2) 20 those species pairs in each region where the alien invasive species shared the same 21 climatic origin or pollination type; 3) those species pairs that are animal-pollinated and 22 for which the invaders share the same climatic origin; and 4) differences in flowering 23 phenology between invasive alien species present in at least in two different regions. 24 These analyses were performed with the ORIANA package (Kovach Computing 25 Services (Kovach, 1994). In all circular analyses, flowering phenology data followed a Von Mises distribution (circular version of normal distribution) so no transformation
 was needed. T-tests for paired samples were performed to test for differences in the
 length of flowering between invasive alien and native species. SPSS 12.0 (SPSS, Inc)
 was used for non circular statistic analysis.

5

6 **RESULTS**

7 Characteristic of invaders

8 Invasive species in the three mediterranean-type ecosystems showed different patterns 9 of climatic origin, growth form, and invaded habitats (Fig. 2). The invasive flora of 10 California had the smallest proportion of tropical species and a high proportion of invaders with Mediterranean and temperate origin. Spain and the Cape region had 11 12 almost the same proportion of Mediterranean invaders (around 15% of species). 13 However, the alien flora of the Cape region showed a higher proportion of temperate 14 species while in Spain tropical species were more abundant. Herbaceous plants were the 15 principal growth form in the invasive floras of California and Spain, and disturbed areas 16 had the highest percentages of invasive species. However, a higher proportion of the 17 invasive flora in Cape region was made up of woody plants and invaded habitats were 18 mostly natural shrubland. The proportion of climbers is similarly low in the three 19 MTEs.

20

21 Differences in flowering phenology between invasive and native species

Differences in the start of flowering between invasive and native species were significantly influenced by the invaded region and by the interaction between region and pollination type (Table 2). These differences in the start were generally lower in California than Spain and the Cape region. In addition, wind-pollinated species had higher differences than animal-pollinated species in California, whereas in the Cape region the pattern was the opposite. Differences in the end of flowering were significantly influenced by the interaction between region and growth form (Table 2). In this sense, only invasive climbers in California had lower differences in the end of flowering compared to the invasive climbers in Spain and the Cape Region. Finally, differences in the length of flowering varied significantly depending of the invaded region, being shorter in California (Table 2 and Table 3).

8

9 Variation of flowering phenology of invasive species between regions

10 The flowering length of invaders was positively correlated with the climatic conditions of the three regions. Invasive species flower for longer periods where the summer 11 12 precipitation is higher. Thus, invasive alien plants in the Cape region bloom over 5.2 13 months, in Spain over 4.8 months and in California 4.1 months on average. Overall, we 14 found no differences in flowering length between invasive-native pairs, except in the 15 Cape region where invasive species flower for longer than natives (Table 3). When 16 considering the climatic origins of invasive species, only tropical plants showed 17 different patterns between the invaded region and the length of flowering. In Spain, 18 tropical invaders flowered over a shorter period than the natives, whereas invaders of 19 tropical origin in the Cape region flowered for longer than the natives (Table 3).

For different regions, invasive species flowered earlier, later or at the same time as co-occurring natives. In California, the start and the end of the flowering period was similar for invasive alien and native species. However, when the comparison only included those pairs where the invasive had Mediterranean origin, invaders started flowering one month earlier and finished one month earlier than natives. By contrast, in Spain invasive species started and ended flowering later than native species. This result

14

1 was true for those species pairs where the alien has either tropical or temperate origin, 2 but not for the Mediterranean group (Table 3). Timing of flowering of tropical invasive 3 species in Spain and California showed the same pattern. This suggests that a 4 displacement of flowering phenology may also occur in the latter region. However, no 5 significant differences were found, probably due to the small sample size. In the Cape 6 region, invasive species flowered earlier than natives, due to the early onset of 7 flowering of invaders of temperate origin (Table 3). Tropical species ended flowering 8 later than their native pairs but no differences were found when the comparison was 9 conducted with the full set of native species. Although native species showed a big 10 variation in their spring onset of flowering, the flower development corresponded with 11 those months with a mean temperature of 18°C and with relatively low water deficits 12 (Fig. 1, Table 3).

Finally, the 28 species that are invasive in at least two regions showed no displacement of flowering phenologies, either for the initiation (F= 0.11 p=0.745) or cessation of flowering (F=0.22 p=0.638). Overall these results suggest that the differences in flowering phenology of invasive species are due to the differences in climatic origin of invaders rather than the particular species composition of the invasive flora.

19

20 Animal-pollinated species and climatic origin

Animal-pollinated invasive species displayed the same pattern as for the entire invasivenative comparison (Table 3, Fig. 3). This means that in California they had the same flowering phenology as native species, in Spain they started and finished their flowering later, and in the Cape region they started their flowering earlier, while invasive and native species finished at the same time. When comparing between regions, different

1 climatic origins of animal-pollinated invaders showed differences in the onset of 2 flowering. In California, Mediterranean invaders started flowering earlier than 3 temperate invaders (Julian day Mediterranean sps= 89, Julian day Temperate sps=127, 4 F=4.65 p<0.05). In Spain, tropical invaders started later than temperate invaders but 5 these differences were not significant (Julian day Temperate sps=132, Julian day 6 Tropical sps=162, F=3.56 p=0.065). In the Cape region, tropical invasive species started 7 significantly later than temperate ones (Julian day Temperate sps=233, Julian day 8 Tropical sps=307, F=20.65 p<0.001) and also than Mediterranean ones (Julian day 9 Mediterranean sps=232, Julian day Tropical sps=307, F= 7.2 p<0.01).

10 Invasive alien species had a different end of flowering in relation to their 11 climatic origin. In California, tropical invaders finished flowering later than invaders 12 from the Mediterranean (Julian day Mediterranean sps=181, Julian day Tropical 13 sps=285, F = 4.6 p < 0.05). In Spain, no differences between groups were found for the 14 offset of flowering. Lastly, in the Cape region temperate invaders finished flowering 15 earlier than tropical (Julian day Temperate sps=338, Julian day Tropical sps=76, F=27.1 16 p<0.001) or Mediterranean ones (Julian day Temperate sps=338, Julian day 17 Mediterranean sps=72, F=7.1 p<0.01)

In summary, these differences suggest that a segregation of timing of flowering is occurring depending of the climatic origin of invasive species. Temperate invaders start flowering first, followed by the mediterranean invaders and then the tropical invaders.

22

23 **DISCUSSION**

The three mediterranean-climate regions dealt with here occur along a gradient of summer drought severity, and their invasive floras differ in terms of the proportion of

1 growth forms, their climatic origins, and the habitats most invaded. Depending on the 2 region selected, invasive species flowered earlier, later, or at the same time as natives. 3 Thus, different flowering phenology pattern between groups is context dependent. It 4 must to be taken into account that, for a different timing of flowering between invasive 5 and native species, two events must co-occur: 1) a small proportion of invasive species 6 have to belong to the same climatic origin as the invaded region, i.e. Mediterranean 7 climate; and 2) Climatic and habitat conditions must minimise summer drought to allow 8 invasive plants to survive. Related to the former premise, species tend to show a genetic 9 inertia for the time of flowering because flowering phenology is an adaptive trait 10 selected to avoid unfavourable climatic conditions in the regions where the plants 11 evolved (Fox, 1990b; Herrera, 1992; Johnson, 1993). In this sense, invasive species 12 maintain the same flowering phenology when they are introduced to regions with the 13 same climatic characteristics. Twenty-eight invasive species shared between at least two regions showed the same flowering phenology in both invaded regions, providing 14 15 support for this idea. In general, invasive species from the Mediterranean flowered 16 predominantly in spring, whereas tropical invaders continued flowering further into 17 summer. On the other hand, temperate aliens flowered in early spring (in the Cape 18 region) or in summer (in Spain) depending on whether they are woody or herbaceous 19 species.

Recent studies have highlighted the importance of studying historical factors (e.g. the links between regions and colonial powers or human-mediated modifications to landscapes) as these factors are thought to shape the composition and magnitude of introductions (Lockwood *et al.*, 2007; Wilson *et al.*, 2007). Such anthropogenic factors may also influence the biotic interactions between invasive and native species as can occur with animal-pollinated plants. For example, no difference was noted in flowering

17

1 phenology between invasive and native species in California, because the proportion of 2 invaders from the Mediterranean Basin is high. This is due to the California's historical 3 links with Europe and especially with Spain as a colonial power (Bancroft, 1890). As 4 both groups flower at the same time, they may compete for pollinators (Lopezaraiza-5 Mikel *et al.*, 2007). Competition for pollinators is thought to be an important form of 6 disruption of plant-animal interactions caused by invasive species (Traveset and 7 Richardson, 2006). However in the Cape region and in Spain flowering phenology of 8 invaders was different to that of natives, since the proportion of invaders from 9 mediterranean-climate regions is small. A high proportion of invaders of temperate and tropical origin in the Cape region are attributable to two events. From the 17th to the 19th 10 11 century the current South Africa and thus the Cape region was a European colony. The 12 influence and trade with countries such as The Netherlands and specially the United 13 Kingdom increased the rate of deliberate introductions (Henderson, 2001). Temperate 14 alien species were introduced from Europe or other European colonies such as Australia 15 (e.g. Hypericum perforatum from Europe, Acacia species from Australia). On the other 16 hand, more recently, tropical species (e.g. Araujia sericifera, Passiflora caerulea) have 17 been also deliberately introduced for horticulture (Henderson, 2001). Although the 18 introductions of alien species in both historical situations were for different reasons, the 19 ecological result is convergent. Invasive species flower at a different time to the natives, 20 filling an empty temporal niche. Flowering at a different time compared to natives may 21 be an advantage for invasive species. It increases sexual fitness due to avoidance of 22 pollen limitation and competition for pollinators with natives (Sargent and Ackerly, 23 2008). In contrast to the situation in the Cape region, most of invasive plants in Spain 24 were introduced accidentally with the trade of plants for agricultural purposes (Lloret et

- *al.*, 2005). Tropical summer weeds invading croplands and disturbed areas highlight the
 importance of the Spanish past linked to their American colonies.

3 The reason for some invaders flowering in summer (the least favourable period 4 for flower development in MTEs) is due to the type of habitat they invade. Disturbed 5 areas are generally the most susceptible to invasion (Cadotte et al., 2006; Lake and 6 Leishman, 2004). Some disturbed habitats such as irrigated summer croplands and 7 riparian habitats seldom experience water stress, allowing invasive plants to survive the 8 summer drought in mediterranean-type climates (Lake and Leishman, 2004). The 9 importance of disturbed areas as a microenvironment for avoiding abiotic filters of the 10 invaded region depends of the severity of summer drought. In California and Spain, 11 where summer drought is intense, most of the species on our lists invade disturbed 12 areas. In the Cape region, however, where summer drought is relatively mild, invasive 13 species seem less limited by drought and can invade natural areas (Fig. 2).

14 Climatic and habitat environmental conditions can also influence the growth 15 form of invaders and thus the length of flowering phenology of invasive species 16 (Castro-Diez et al., 2003). For example, disturbed areas have the advantage of 17 minimizing abiotic unfavourable conditions, but limit the type of growth form that can 18 invade. Annuals and short-lived plants are better adapted to rapid changes and 19 disturbance conditions of this type of habitat (Grime, 1974). These types of invaders 20 which can complete their life cycles in a few months showed a short flowering period 21 associated to their short-lived cycle. Mainly herbaceous invaders of tropical origin in 22 Spain (e.g. Datura stramonium, Xanthium strumarium) illustrate this situation. They 23 show significantly shorter flowering periods than natives (Table 1). On the other hand, 24 tropical invaders in Cape region are mainly woody species that invade natural areas and 25 flowering longer than natives (Table 1, Table 2 and Fig. 2).

1 Previous studies have shown that successful invaders generally display early 2 flowering or long blooming periods (Goodwin et al., 1999; Pyšek et al., 2003). Also, in 3 alien-native comparisons, many authors have found that invasive alien species flower 4 early than natives (Cadotte and Lovett-Doust, 2001; Lake and Leishman, 2004). Those 5 results suggest that invasive species capitalize on an early blooming strategy to increase 6 their reproductive success since the chance to acquire improved fitness via effective 7 pollination visits is also increased (Goodwin et al., 1999; Pyšek et al., 2003). This idea 8 is supported by other authors who have found late, short flowering for pollination 9 reduced opportunities for fruit and seed development of alien species (Roche et al., 10 1997). However, our results show that early flowering is not the only reproductive 11 strategy for successful invaders. They can also flower at the same time or later than 12 native species and be successful. Therefore, the possible different flowering phenology 13 is mainly a consequence of different nature, historical and human factors that drives the 14 reproductive relationship between groups. If this argument is correct, the same alien 15 plant flowering phenological pattern should be found in regions with homogenous 16 environmental conditions and the same history of introductions. This seems to apply for 17 regions within the Mediterranean Basin. Dominance of summer flowering among 18 invasive species in Spain (Table 3) is in agreement with previous results found for Italy 19 (Celesti-Grapow et al., 2003) and Mediterranean Islands (Lloret et al., 2005).

Most invasion ecology studies relate traits of alien species to their capacity to invade, with the overall aim of unravelling aspects of the invasion process and aiming to predict future invasions. However, not all the observed plants traits identified as being associated with invasiveness in aliens really confer invasiveness, since other causes often underlie the observed pattern. This seems to be the case with flowering phenology. Although several studies have founded a positive relationship between

1 flowering phenology of aliens and their invasiveness potential (Goodwin et al., 1999; 2 Cadotte and Lovett-Doust, 2001; Pyšek et al., 2003; Lake and Leishman, 2004), 3 flowering phenology of invasive species and the possible differences relative to natives 4 is only a consequence of different history of human-orchestrated introductions. The 5 results of this study proved that under the same climatic conditions in three widely-6 separated regions, invasive alien species do not display a common flowering phenology 7 pattern. Instead, they flower early, later or at the same time than native species 8 depending on the climatic regime in the region where they evolved.

9

10 SUPPLEMENTARY INFORMATION

Checklist of the 227 plant species (alien-native comparisons) in the three
mediterranean-type regions, California, Spain and the Cape region of South Africa.
Flowering phenology of each species is recorded in months.

14

15 ACKNOWLEDGEMENTS

16 Thanks are due to Margarita Costa-Tenorio for help with the identification of 17 appropriate native-invasive species pairs in Spain and to Anna Traveset, Montserrat 18 Vilà and Petr Pyšek for helpful discussions. Financial support was provided by the 19 Spanish Ministry for Education and Science (grants RASINV, GL2004-04884-C02 20 02/BOS as part of the coordinate project RINVE, and CGL2007-61873/BOS). DMR 21 acknowledges support from the DST-NRF Centre of Excellence for Invasion Biology 22 and the Hans Sigrist Foundation.

23

24 LITERATURE CITED

1 Ackerly DD. 2000. Taxon sampling, correlated evolution, and independent contrasts. 2 Evolution 54: 1480-1492. 3 Arft AM, Walker MD, Gurevitch J, Alatalo JM, Bret-Harte MS, Dale M, Diemer 4 M, Gugerli F, Henry GHR, Jones MH, Hollister RD, Jonsdottir IS, Laine K, 5 Levesque E, Marion GM, Molau U, Molgaard P, Nordenhall U, Raszhivin 6 V, Robinson CH, Starr G, Stenstrom A, Stenstrom M, Totland O, Turner 7 PL, Walker LJ, Webber PJ, Welker JM, Wookey PA. 1999. Responses of 8 tundra plants to experimental warming: Meta-analysis of the international tundra 9 experiment. Ecological Monographs 69: 491-511. 10 Ausin I, Alonso-Blanco C, Martinez-Zapater JM. 2005. Environmental regulation of 11 flowering. International Journal of Developmental Biology 49: 689-705. 12 Bancroft HH. 1890. The Works of Hubert Howe Bancroft, History of California to 13 1890. Vol.14 14 Bolòs O, Vigo J. 1984-2001. Flora dels Països Catalans Barcelona: Barcino. 15 Borchert R, Mever SA, Felger RS, Porter-Bolland L. 2004. Environmental control of 16 flowering periodicity in Costa Rican and Mexican tropical dry forests. Global 17 Ecology and Biogeography 13: 409-425. 18 Bossard CC, Randall JM, Hoshovsky MC. 2000. Invasive Plants of California's 19 Wildlands. Berkeley, CA: University of California Press. 20 Bremer B, Bremer K, Chase MW, Reveal JL, Soltis DE, Soltis PS, Stevens PF, Anderberg AA, Fay MF, Goldblatt P, Judd WS, Kallersjo M, Karehed J, 21 22 Kron KA, Lundberg J, Nickrent DL, Olmstead RG, Oxelman B, Pires JC, Rodman JE, Rudall PJ, Savolainen V, Sytsma KJ, van der Bank M, 23 24 Wurdack K, Xiang JQY, Zmarzty S, Grp AP. 2003. An update of the 25 Angiosperm Phylogeny Group classification for the orders and families of 26 flowering plants: APG II. Botanical Journal of the Linnean Society 141: 399-27 436. 28 Cadotte MW, Murray BR, Lovett-Doust J. 2006. Ecological patterns and biological 29 invasions: Using regional species inventories in macroecology. Biological 30 Invasions 8: 809-821. 31 Cadotte MW, Lovett-Doust J. 2001. Ecological and taxonomic differences between 32 native and introduced plants of southwestern Ontario. Ecoscience 8: 230-238. 33 Castro-Diez P, Montserrat-Martí G, Cornelissen JHC. 2003. Trade-offs between 34 phenology, relative growth rate, life form and seed mass among 22 35 Mediterranean woody species. *Plant Ecology* **166**: 117-129. 36 Castro-Díez P, Montserrat-Martí G. 1998. Phenological pattern of fifteen 37 Mediterranean phanerohytes from *Quercus ilex* communities of NE-Spain. *Plant* 38 Ecology. 139: 103-112. Castroviejo S. 1986-2005. Flora Ibérica. Plantas Vasculares de la Península Ibérica e 39 40 Islas Baleares. (todos los vols). Madrid: Real Jardín Botánico-CSIC. 41 Celesti-Grapow L, Di Marzio P, Blasi C. 2003. Temporal niche separation of the alien 42 flora of Rome. In: Child LE, Brock JH, Brundu G, Prack P, Pyšek P, Wade PM, 43 Williamson M eds. Plant Invasions: Ecological Threats and Management 44 Solutions. Leiden: Backhuys. Cowling RM, Ojeda F, Lamont BB, Rundel PW, Lechmere-Oertel R. 2005. Rainfall 45 reliability, a neglected factor in explaining convergence and divergence of plant 46 47 traits in fire-prone mediterranean-climate ecosystems. Global Ecology and 48 Biogeography 14: 509-519.

1	Cowling RM, Rundel PW, Lamont BB, Arroyo MK, Arianoutsou M. 1996. Plant
2	diversity in Mediterranean-climate regions. Trends in Ecology & Evolution 11:
3	362-366.
4	Fox GA. 1990a. Components of Flowering Time-Variation in a Desert Annual.
5	<i>Evolution</i> 44 : 1404-1423.
6	Fox GA. 1990b. Drought and the Evolution of Flowering Time in Desert Annuals.
7	American Journal of Botany 77: 1508-1518.
8	Goldblatt P, Manning J. 2000. Cape Plants: A conspectus of the Cape flora of South
9	Africa: Strelitzia 9.
10	Goodwin BJ, McAllister AJ, Fahrig L. 1999. Predicting invasiveness of plant species
11	based on biological information. Conservation Biology 13: 422-426.
12	Grime JP. 1974. Vegetation classification by reference to strategies. Nature 250: 26-
13	31.
14	Groves RH, Di Castri F. 1991. Biogeography of Mediterranean invasions Cambridge:
15	Cambridge University Press.
16	Henderson L. 2001. Alien Weeds and Invasive Plants: A complete guide to declared
17	weeds and invaders in South Africa. Cape Town: Agriculture Research Council.
18	Herrera CM. 1992. Individual Flowering Time and Maternal Fecundity in a Summer-
19	Flowering Mediterranean Shrub - Making the Right Prediction for the Wrong
20	Reason. Acta Oecologica-International Journal of Ecology 13: 13-24.
21	Hickman JC. 1993. The Jepson Manual of Higher Plants of California: University of
22	California Press.
23	Hollister RD, Webber PJ, Bay C. 2005. Plant response to temperature in Northern
24	Alaska: Implications for predicting vegetation change. <i>Ecology</i> 86 : 1562-1570.
25	Imaizumi T, Kay SA. 2006. Photoperiodic control of flowering: not only by
26	coincidence. Trends in Plant Science 11: 550-558.
27	Jensen ME, Burman RD, Allen RG. 1990. Evapotranspiration and irrigation water
28	requirements. ASCE Manual and reports on Engineering Practice 70.
29	Amsterdam: Elsevier.
30	Jimenez A, Pauchard A, Cavieres LA, Marticorena A, Bustamante RO. 2008. Do
31	climatically similar regions contain similar alien floras? A comparison between
32	the mediterranean areas of central Chile and California. Journal of
33	Biogeography 35: $614-624$.
34	Johnson SD. 1993. Climatic and Phylogenetic Determinants of Flowering Seasonality
35	in the Cape Flora. Journal of Ecology 81: 567-572.
36	Kovach WL. 1994. Oriana for Windows, ver 2.01. In UK: Kovach Computing Services.
37 38	Edited by Wales P. Lake JC, Leishman MR. 2004. Invasion success of exotic in natural ecosystems: the
38 39	role of disturbance, plant attributes and freedom from herbivores. <i>Biological</i>
40	Conservation 117: 215-226.
40	
42	Ladwood I Hoones M Marchatti M 2007 Invasion Feelogy Plackwell publishing
	Lockwood J, Hoopes M, Marchetti M. 2007. Invasion Ecology: Blackwell publishing.
	Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of
43	Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach.
43 44	Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach. <i>Ecology Letters</i> 10: 539-550.
43 44 45	 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach. <i>Ecology Letters</i> 10: 539-550. Lloret F, Medail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P,
43 44 45 46	 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach. <i>Ecology Letters</i> 10: 539-550. Lloret F, Medail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE. 2005. Species attributes and invasion success by alien plants on
43 44 45 46 47	 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach. <i>Ecology Letters</i> 10: 539-550. Lloret F, Medail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE. 2005. Species attributes and invasion success by alien plants on Mediterranean islands. <i>Journal of Ecology</i> 93: 512-520.
43 44 45 46	 Lopezaraiza-Mikel ME, Hayes RB, Whalley MR, Memmott J. 2007. The impact of an alien plant on a native plant-pollinator network: an experimental approach. <i>Ecology Letters</i> 10: 539-550. Lloret F, Medail F, Brundu G, Camarda I, Moragues E, Rita J, Lambdon P, Hulme PE. 2005. Species attributes and invasion success by alien plants on

1	Mitrakos KA. 1980. A theory for Mediterranean plant life. Acta Oecologica 1: 245-
2	252.
3	Murfet IC. 1977. Environmental Interaction and The Genetics of Flowering. Annual
4	<i>Review of Plant Physiology</i> 28: 253-278.
5	Orshan G. 1989. Plant pheno-morphological studies in Mediterranean type
6	ecosystems. Kluwer Acad. Pub. Dordrecht.
7	Parmesan C. 2006. Ecological and evolutionary responses to recent climate change.
8	Annual Review of Ecology Evolution and Systematics 37 : 637-669.
9	Pérez-Latorre AV, Cabezudo B. 2002. Use of monocharacteristic growth forms and
10	phenological phases to describe and differentiate plant communities in
11	Mediterranean-type ecosystems. <i>Plant Ecology</i> 161 : 231-249.
12	Post E, Stenseth NC. 1999. Climatic variability, plant phenology, and northern
13	ungulates. <i>Ecology</i> 80 : 1322-1339.
14	Putterill J, Laurie R, Macknight R. 2004. It's time to flower: the genetic control of
15	flowering time. <i>Bioessays</i> 26 : 363-373.
16	Pyšek P, Richardson DM. 2007. Traits Associated with Invasiveness in Alien Plants:
17	Where do we stand? In: Caldwell MM ed. Biological Invasions: Springer Berlin
18	Heidelberg.
19	Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J.
20	2004. Alien plants in checklist and floras: towards better communication
21	between taxonomist and ecologist Taxon 53: 131-143.
22	Pyšek P, Sadlo J, Mandak B, Jarosik V. 2003. Czech alien flora and the historical
23	pattern of its formation: what came first to Central Europe? Oecologia 135: 122-
24	130.
25	Rathcke B, Lacey EP. 1985. Phenological Patterns of Terrestrial Plants. Annual
26	Review of Ecology and Systematics 16: 179-214.
27	Rejmánek M, Randall JM. 1994. Invasive Plants in California: Summary and
28	comparison with other areas in North America. <i>Madrono</i> 41 : 161-177.
29	Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000.
30	Naturalization and invasion of alien plants: concepts and definitions. <i>Diversity</i>
31	and Distributions 6: 93-107.
32	Richardson DM, Cowling RM. 1992. Why is mountain fynbos invasible and which
33	species invade? In: Van Wilgen BW, Richardson DM, Kruger FJ, van
34	Hensbergen HJ eds, Fire in South African mountain fynbos, pp. 161-181.
35	Springer-Verlag, Berlin.
36	Richardson DM, Macdonald IAW, Holmes PM, Cowling RM. 1992. Plant and
37	animal invasions. In: Cowling RM ed, The ecology of fynbos: Nutrients, fire and
38	diversity, pp. 271-308. Oxford University Press, Cape Town.
39	Roche CT, Thill DC, Shafii B. 1997. Prediction of flowering in common crupina
40	(Crupina vulgaris). Weed Science 45: 519-528.
41	Sanz-Elorza M, Dana-Sanchez D, Sobrino-Vesperinas E. 2004. Atlas de las Plantas
42	Alóctonas Invasoras en España. Madrid: Ministerio de Medio Ambiente.
43	Sargent RD, Ackerly DD. 2008. Plant-pollinator interactions and the assembly of plant
44	communities. <i>Trends in Ecology & Evolution</i> 23 : 123-130.
45	Sax DF. 2002. Native and naturalized plant diversity are positively correlated in scrub
46	communities of California and Chile. <i>Diversity and Distributions</i> 8: 193-210.
47	Soltis DE, Soltis PS, Chase MW, Mort ME, Albach DC, Zanis M, Savolainen V,
48	Hahn WH, Hoot SB, Fay MF, Axtell M, Swensen SM, Prince LM, Kress
49	WJ, Nixon KC, Farris JS. 2000. Angiosperm phylogeny inferred from 18S

1	rDNA, rbcL, and atpB sequences. <i>Botanical Journal of the Linnean Society</i> 133 :
2	381-461.
3	Thies W, Kalko EKV. 2004. Phenology of neotropical pepper plants (Piperaceae) and
4	their association with their main dispersers, two short-tailed fruit bats, Carollia
5	perspicillata and C. castanea (Phyllostomidae). Oikos 104: 362-376.
6	Traveset A, Richardson DM. 2006. Biological invasions as disruptors of plant
7	reproductive mutualisms. Trends in Ecology & Evolution 21: 208-216.
8	Valdés B, Talavera S, Fernández-Galiano E. 1987. Flora vascular de Andalucía
9	Occidental (3 volúmenes) Barcelona: Ketres.
10	Wilson JRU, Richardson DM, Rouget M, Procheş S, Amis MA, Henderson L,
11	Thuiller W. 2007. Residence time and potential range: crucial considerations in
12	modelling plant invasions. Diversity and Distributions 13: 11-22.

Table captions

TABLE 1 List of characters for which data were scored and used in ecological pair

construction and invasive-native comparisons.

Character	Character state
Climatic origin	Tropical, Temperate, Mediterranean type- ecosystems (MTE)
Habitat type	Disturbed areas, Coastal areas, Lakes & Rivers Shrub &Woodland
Growth form	Woody, Herbaceous, Climber
Start, end & length of flowering of invasive and native species in the three MTEs	January to December (months) *
Pollination type	Animal, Wind

* Flowering times for the Cape region were transformed to the Northern Hemisphere calendar

TABLE 2 Results of a General Lineal Model (GLM) of the differences in the start, end and length of flowering phenology (dependent variables) between invasive and native species pairs, for region (California, Spain and the Cape region of South Africa), growth form, habitat invaded and pollination type as categorical predictors (see Table 1). Three and higher order interactions are not showed for clarity and because they were not significant. To perform this analysis, flowering times for the Cape region were transformed to the Northern Hemisphere calendar (i.e. January - July)

Variable	S	tart of flo	owering	En	d of floweri	ing	Len	gth of flowe	ering
	DF	F	р	DF	F	р	DF	F	р
Region (R)	2	5.233	< 0.01	2	2.974	0.053	2	8.949	<0.001
Growth Form (GF)	2	1.998	0.138	2	0.144	0.866	2	1.422	0.244
Pollination Type (PT)	1	0.002	0.963	1	0.411	0.522	1	2.129	0.146
Habitat Type (HT)	3	0.93	0.427	3	0.359	0.783	3	0.166	0.919
R*GF	4	1.147	0.335	4	2.822	<0.05	4	0.701	0.592
R*PT	2	3.506	<0.05	2	2.99	0.052	2	0.187	0.83
GF*PT	2	0.647	0.525	2	0.299	0.742	2	0.85	0.429
R*HT	6	1.722	0.117	6	1.449	0.198	6	1.305	0.256
GF*HT	6	1.157	0.331	6	0.596	0.733	6	0.332	0.92
PT*HT	3	1.355	0.258	3	0.41	0.746	3	0.833	0.477

TABLE 3 Mean values of flowering phenology parameters between invasive and native plant species according to climatic origin and pollination-type in the three mediterranean-climate regions. Circular mean values were transformed to days of the year for easier interpretation. Watson-Williams F value and t-test value are also represented (p>0.05 ns, * p<0.05, ** p<0.01, *** p<0.001).

Paran Calife		All species (n=78)	Tropical (n=3)	Temperate (n=45)	Mediterranean (n=30)	Animal pollinated (n=60)	Wind pollinated (n=18)
Start of	Invasive	29 April	17 May	19 May	25 March	11 April	19 May
flowering	Native	5 May	17 February	19 May	26 April	10 May	3 May
F-val	ue, p	0.63 ns	0.64 ns	1.22E-04 ns	4.83*	2.44 ns	0.88 ns
End of	Invasive	21 July	16 October	13 August	6 June	24 July	23 July
flowering	Native	22 July	11 August	6 August	13 July	8 August	6 July
F-val	ue, p	9.10E-4 ns	1.31 ns	0.13 ns	4.62*	0.73 ns	1.04 ns
Flowering	Invasive	4.1	6.7	3.9	3.9	4.2	3.6
length	Native	3.9	6.0	3.6	3.6	3.9	3.2
t-valu	ue, p	0.67 ns	0.36 ns	1.20 ns	0.67 ns	0.98 ns	1.27 ns
Param Spa	neters	All species (n=90)	Tropical (n=43)	Temperate (n=36)	Mediterranean (n=11)	Animal pollinated (n=67)	Wind pollinated (n=23)
Start of	Invasive	4 June	14 June	2 June	20 May	30 May	30 May
flowering	Native	18 April	9 April	16 April	2 May	19 April	9 April
F-val	ue, p	21.85***	27.82***	11.48***	0.42 ns	11.09***	11.63***
End of	Invasive	28 September	2 October	8 October	5 September	27 September	28 September
flowering	Native	4 September	3 September	2 September	7 September	18 August	24 September
F-val	ue, p	3.72*	3.88*	4.42*	0.01 ns	4.02*	0.04 ns
Flowering	Invasive	4.8	4.7	4.8	5.5	4.8	4.6

length	Native	5.3	5.9	5.2	4.9	4.9	5.7
t-val	ue, p	-1.47 ns	-2.53**	-0.93 ns	0.54 ns	-0.44 ns	-2.27*
Paran Cape 1	neters region	All species (n=73)	Tropical (n=28)	Temperate (n=33)	Mediterranean (n=12)	Animal pollinated (n=53)	Wind pollinated (n=20)
Start of	Invasive	15 September	29 October	27 August	8 September	11 September	26 Septembe
flowering	Native	5 November	3 November	14 November	22 September	12 November	22 October
F-val	ue, p	22.20***	0.05 ns	37.52***	1.56 ns	21.21***	2.53 ns
End of	Invasive	25 January	4 April	10 December	9 February	25 January	22 January
flowering	Native	13 January	26 January	5 February	8 March	15 January	5 January
F-val	ue, p	0.51 ns	3.97*	1.26 ns	0.61 ns	0.33 ns	0.25 ns
Flowering	Invasive	5.2	6.1	4.5	5.2	5.1	5.4
length	Native	4.3	4.4	4.0	5.1	4.1	4.8
t-val	ue, p	2.59**	2.96**	1.16 ns	0.86 ns	2.51*	0.86 ns

Figures captions

FIG. 1 Climatic characteristic of the three mediterranean-type ecosystems studied: a) California, b) Spain and c) the Cape region of South Africa. The three regions represent a gradient of summer-drought severity. California has the driest and the Cape region has the mildest summers. Climatic charts of two different localities in each region illustrate this gradient. Columns represent the precipitation; solid lines the temperature, and dashed line the water deficit in each month. Charts of the southern hemisphere localities (Cape region) have been modified to show drought between June and July for clearer comparison with northern-hemisphere localities.

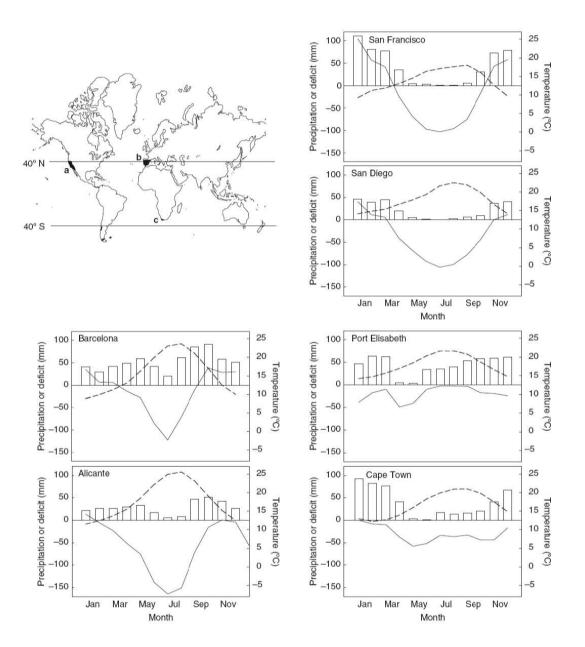


FIG. 2 Proportions of invasive species according to their climatic origin, growth invaded ecosystem in the three mediterranean-climate regions.

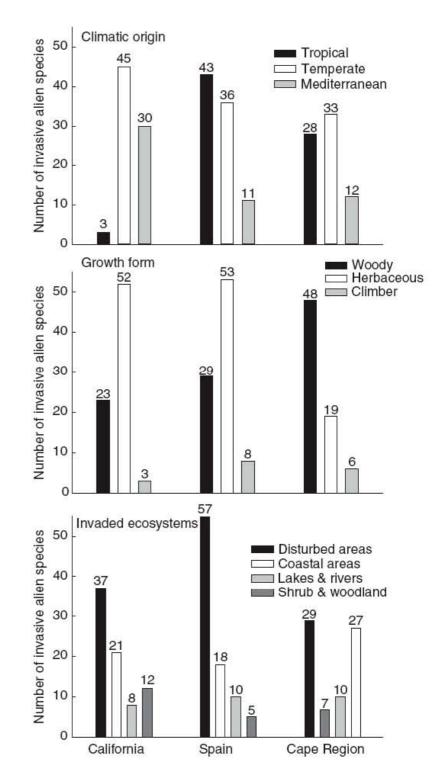
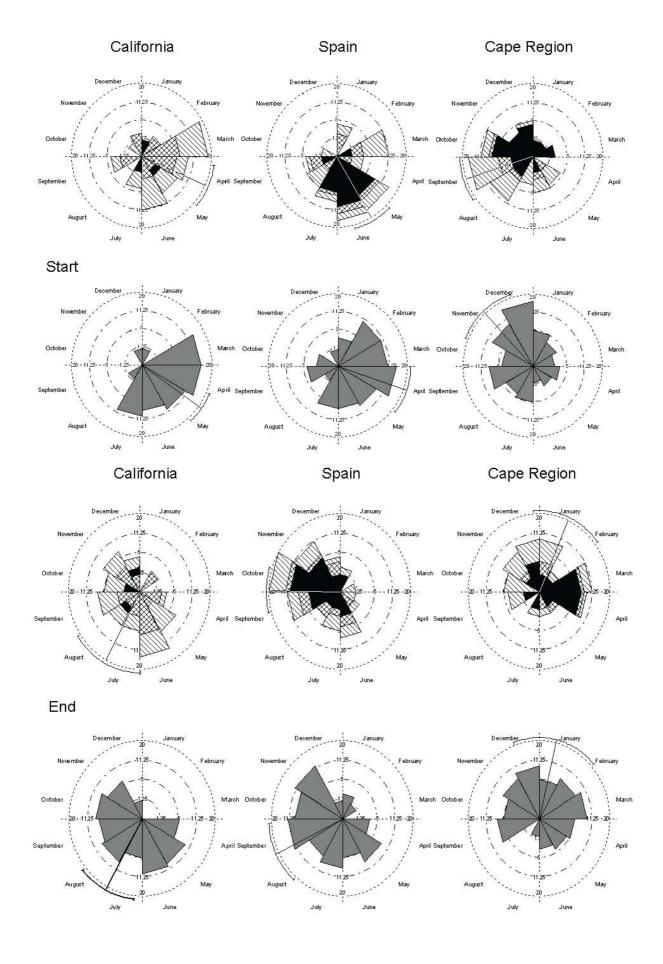



FIG. 3 Circular histograms for the start and the end of flowering in animal-pollinated invasive species and corresponding native species (see text). Triangles represent the number of species that flower in that month. Solid black areas indicate alien species of tropical; diagonal hatching indicates species with temperate origin, and cross-hatching shows species with Mediterranean origin. Native species are shown in grey. Mean and standard deviations are also shown.

SUPPLEMENTARY INFORMATION

Checklist of the 227 plant species (alien-native comparisons) in the three mediterranean-type regions, California, Spain and the Cape region of South Africa. Flowering phenology of each species is recorded in months.

Invasive	Start of	End of	Native	Start of	End of
Family/Species	flowering	flowering	Family/Species	flowering	flowering
		Calif	ornia		
Aizoaceae					
Aptenia cordifolia	Feb	Nov	Nyctaginaceae/ Abronia latifolia	May	Nov
Carpobrotus edulis	Sep	Nov	Brassicaceae / <i>Cakile edentula</i>	Jun	Sep
Conicosia pugioniformis	Mar	Jun	Asteraceae / Agoseris apargioides	Jul	Sep
Mesembryanthemum cristallinum	Apr	Sep	Convolvulaceae / Calystegia soldanella	Apr	Jun
Anacardiaceae			Anacardiaceae		
Schinus molle	Sep	Nov	Toxicodendron diversilobum	Mar	May
Apiaceae			Apiaceae		
Conium maculatum	Apr	Jun	Daucus pusillus	Mar	Apr
Foeniculum vulgare	May	Nov	Angelica tomentosa	Jun	Jul
Apocynaceae			Apocynaceae		
Vinca major	Mar	Jun	Cycladenia humilis	May	Jun
Araliaceae			Araliaceae		
Hedera helix	Sep	Nov	Aralia californica	Jul	Jul
Asteraceae			Asteraceae		
Ageratina adenophora	Mar	Jun	Ambrosia psilostachya	Jul	Oct
Artotheca calendula	Mar	Jun	Helianthus annuus	Jul	Oct
Cardus pycnocephalus	Sep	Dec	Cirsium scariosum	Jun	Sep
Centaurea calcitrapa	Apr	Jun	Cirsium cymosum	Apr	Aug
Centaurea melitensis	Apr	Jun	Cirsium quercetorum	Apr	Aug
Centaurea solstitialis	Apr	Dec	Madia sativa	May	Oct
Cirsium arvense	Jun	Aug	Cirsium douglasii	Jun	Aug
Cirsium vulgare	Jun	Nov	Stephanomeria virgata	Jul	Oct
Cynara cardunculus	Apr	Jun	Cirsium brevistylum	Apr	Sep
Delairea odorata	Dec	Feb	Cirsium occidentale	Apr	Aug
Erechtites glomerata	Jul	Sep	Conyza canadensis	Jul	Nov
Erechtites minima	Jul	Sep	Xanthium strumarium	Aug	Oct
Helichrysum petiolare	Jul	Aug	Baccharis pilularis	Jul	Sep
Leucanthemum vulgare	May	Aug	Erigeron divergens	Jul	Nov
Senecio jacobaea	Jun	Sep	Tanacetum camphoratum	Jun	Sep

Brassicaceae

Brassicaceae

Cardaria chalepensis	Mar	Jun	Cardamine californica	Mar	Apr
Cardaria draba	Mar	Jun	Erysimum capitatum	Mar	Apr
Lepidium latifolium	May	Jul	Lepidium virginicum	Mar	Nov
Brassica tournefortii	Dec	Feb	Lepidium densiflorum	Apr	May
Chenopodiaceae			Chenopodiaceae		
Atriplex semibaccata	Apr	Dec	Atriplex leucophylla	Jun	Dec
Bassia hyssopifolia	Jun	Oct	Kochia californica	Jul	Nov
Halogeton glomeratus	Jun	Oct	Atriplex patula	Jun	Nov
Theogeton glomeratus	Juli	Oct	Αιτιρίεχ ραίαια	Juli	INOV
Eleagnaceae			Eleagnaceae		
Elaeagnus angustifolia	May	Jun	Shepherdia argentea	May	May
Euphorbiaceae			Euphorbiaceae		
Euphorbia esula	Apr	Jul	Euphorbia crenulata	Mar	Aug
Ricinus communis	Jan	Dec	Bernardia myricifolia	Dec	Aug
Fabaceae			Fabaceae		
Alhagi pseudalhagi	Jun	Aug	Caesalpinia virgata	Mar	May
<i>Cytisus scoparius</i>	Mar	Jun	Lotus procumbens		Jun
	Mar		Senna armata	Apr Mar	Jul
<i>Cytisus striatus</i>		May			
Genista monspessulana	Mar	Jul	Lupinus albifrons	Mar	Jun
Retama monosperma	Feb	Apr	Amorpha fruticosa	May	Jul
Robinia pseudoacacia	May	Jun	Prosopis glandulosa	May	Oct
Spartium junceum	Mar	Apr	Lotus procumbens	Apr	Jun
Ulex europaea	Mar	May	Lupinus arboreus	Apr	Jun
Haloragaceae			Haloragaceae		
	Mar	Jun	Myriophyllum	Jun	Sep
Myriophyllum aquaticum	Iviai	Juli	hippurioides	Juli	Sep
Myriophyllum spicatum	Mar	Jun	Myriophyllum sibiricum	Jun	Sep
Hydrocharitaceae					
-			Ranunculaceae/	Apr	May
Egeria densa			Ranunculus aquatilis	Apr	Iviay
			Hydrocharitaceae/	Lun	4.110
Hydrilla verticillata			Elodea canadensis	Jun	Aug
Lamiaceae			Lamiaceae		
Menta pelugium	Jun	Nov	Mentha arvensis	Jul	Oct
nenia peragiani	bull	1101		bui	000
Lythraceae			Lythraceae		
Lythrum salicaria	Jun	Sep	Lythrum californicum	May	Aug
Moraceae			Ulmaceae		
Ficus carica	Mar	Oct	Celtis reticulata	Jan	Apr
Myoporaceae			Rutaceae		
Myoporum laetum	Mar	May	Ptelea crenulata	Apr	May
	Iviai	Widy	1 lelea crenalala	лрі	Ividy
Myrtaceae			Hippocastanaceae		
Eucalyptus globulus	Nov	Apr	Aesculus californica	May	Aug
Poaceae			Poaceae		
Ammophila arenaria			Leymus mollis	Apr	May
Arundo donax	Jun	Sep	Phragmites australis	Jun	Aug
Bromus madritensis	Feb	May	Bromus vulgaris	Apr	Jun
Bromus tectorum	Apr	Jun	Bromus carinatus	Mar	May
	-		Achnatherum		-
Cortaderia jubata	Jul	Sep	coronatum	Apr	Jun

Cortaderia selloana	Aug	Sep	Sporobolus airoides	Jun	Nov
Ehrharta calycina	Dec	Apr	Panicum acuminatum	Mar	Jun
Ehrharta erecta	Dec	Apr	Eragrostis pectinacea	Mar	Jun
Ehrharta longiflora	Dec	Apr	Eragrostis mexicana	Mar	Jun
Pennisetum setaceum	Jul	Oct	Hordeum jubatum	Apr	May
Phalaris aquatica	May	Jun	Phalaris lemmonii	Apr	May
Schismus arabicus	Mar	May	Vulpia octoflora	Apr	Jun
Schismus barbatus	Mar	May	Phalaris californica	-	
Spartina alterniflora	Jul	Sep	Spartina foliosa	Jun	Sep
Spartina anglica	Jul	Sep	Deschampsia cespitosa	Jul	Sep
Spartina densiflora	Jul	Sep	Distichlis spicata	Jun	Jun
Spartina patens	Jul	Oct	Paspalum distichum	Jul	Sep
Taeniatherum caput-	M	M	-	A	т
medusae	May	May	Elymus elymoides	Apr	Jun
Pontederiaceae			Nymphaeaceae		
Eichhornia crassipes	Jul	Oct	Nuphar lutea	Apr	Oct
Rosaceae			Rosaceae		
Cotoneaster ssp	Jun	Sep	Heteromeles arbutifolia	Jun	Jul
Crataegus monogyna	Mar	Jun	Crataegus douglasii	May	Jun
Rubus discolor	May	Jul	Rubus ursinus	Mar	Jun
Sama halania asa	2				
Scrophulariaceae			Orobanchaceae/		
	Apr	Jul		Mar	Jun
Bellardia trixago	-		Castilleja affinis		
	Lun	C	Scrophulariaceae/	Man	I
Disidalis	Jun	Sep	Penstemon	Mar	Jun
Digitalis purpurea			heterophyllus		
Verbascum thapsus	Jun	Oct	Asteraceae / Achillea millefolium	May	Sep
, ei suseum mapsus			iienniea minejonum		
Simbaroubaceae			Aceraceae		
Ailanthus altissima	May	Aug	Acer macrophyllum	Apr	May
Tamaricaceae			Salicaceae		
Tamaricaceae	Mar	Mari		Mar	4
		May May	Salix exigua Salin la guigata		Apr
Tamarix gallica	Mar Mar	May May	Salix laevigata	Apr Apr	May
Tamarix parviflora	Mar	May	Salix lucida	Apr	May
Tamarix ramosissima	Mar	May	Salix lutea	Mar	May
		S	pain		
Aceraceae			Oleaceae		
Acer negundo	Mar	Apr	Fraxinus angustifolia	Dec	Jan
A 20100000			Lamiaaaaa		
Agavaceae	Jul	Con	Lamiaceae Rosmarinus officinalis	San	Mar
Agave americana	Jul	Sep	Rosmarinus officinalis	Sep	May
Aizoaceae			Apiaceae		
<i>Carpobrotus</i>	I	I	Cuithman	Maa	т 1
acinaciformis	Jan	Jun	Crithmum maritimum	May	Jul
Anacardiaceae			Anacardiaceae		
Schinus molle	May	Jun	Pistacia lentiscus	Mar	May
Apocynaceae			Caryophyllaceae		
Vinca diformis	Jan	Dec	Silene latifolia	Apr	Jul
J - ····				Г	

Asclepiadaceae

Gomphocarpus			Apocynaceae/		
fruticosus	Jun	Aug	Nerium oleander	May	Sep
<i>ji ull</i> 005 <i>u</i> 5	buii	Tiug	Smilacaceae/	iiiay	сер
Araujia sericifera	May	Sep	Smilax aspera	Sep	Nov
5 5	5	1	Lamiaceae/	1	
Asclepias curassavica	May	Oct	Ballota hirsuta	May	Jul
-	-			-	
Asteraceae					
			Scrophulariaceae/		
4 1 . 11 61. 1 1.	Ŧ	0.4	Verbascum		T 1
Achillea filipendulina	Jun	Oct	pulverulentum	May	Jul
Ambuogia antomiaifolia	Lun	New	Brassicaceae/	Feb	Oat
Ambrosia artemisifolia	Jun	Nov	Cakile maritima Polygonaceae/	reu	Oct
Arctotheca calendula	Mar	Jun	Polygonum aviculare	Apr	Oct
Arcioinecu culendulu	Iviai	Juli	Asteraceae/	Арг	001
Artemisia verliotorum	Jul	Nov	Artemisia vulgaris	Jul	Nov
			Chenopodiaceae/		
			Halimione		
Baccharis halimifolia	Aug	Oct	portulacoides	Aug	Nov
-	-		Polygonaceae/	-	
Bidens aurea	Sep	Jan	Polygonum hydropiper	Jul	Oct
			Polygonaceae/		
	_		Polygonum	_	
Bidens frondosa	Sep	Nov	lapathifolium	Jun	Nov
	T 1		Brassicaceae/		NT
Bidens pilosa	Jul	Oct	Rorippa palustris	Apr	Nov
Bidens subalternus	4.11.0	Nov	Ranunculaceae / Ranunculus sceleratus	Mar	Oct
Bidens subditernus	Aug	INOV	Fabaceae/	Ivial	Oct
Conyza bonariensis	Mar	Sep	Melilotus officinalis	May	Nov
Cony2a bonariensis	Iviai	Sep	Asteraceae/	Iviay	1101
Conyza canadiensis	Jul	Nov	Crepis vesicaria	Feb	Jun
			Polygonaceae/		
Conyza sumatrensis	Jul	Nov	Rumex pulcher	Apr	Jul
			Asteraceae/	-	
Cotula coronopifolia	Mar	Aug	Aster tripolium	Oct	Nov
			Asteraceae/		
Helianthus tuberosus	Aug	Oct	Calendula arvensis	Jan	Dec
~		0	Asteraceae/		
Senecio inaequidens	May	Oct	Centaurea aspera	Mar	Nov
Saugaia mikaniaidaa	San	Daa	Rosaceae/	Inn	4.110
Senecio mikanioides	Sep	Dec	Rubus ulmifolius Asteraceae/	Jun	Aug
Xanthium spinosum	Jul	Oct	Sonchus oleraceus	Jan	Dec
Auninium spinosum	Jui	001	Asteraceae/	Jan	Dee
Xanthium strumarium	Jul	Sep	Sonchus asper	Feb	Sep
		~ • P			~ • P
Boraginaceae					
Heliotropium			Asteraceae/		
crassavicum	Jun	Oct	Pulicaria dysenterica	Jul	Oct
Brassicaceae			Brassicaceae		
Isatis tinctoria	Apr	Jul	Sisymbrium austriacum	Apr	Aug
ารแกร แทบเบาณ	Ahi	Jul	sisymorium austriacam	ripi	лиg
Buddlejaceae			Cornaceae		
Buddleja davidii	Jun	Nov	Cornus sanguinea	May	Jul
			0	J	

Cactaceae

			Rhamnaceae/		
Opuntia dilleni	Jun	Jul	<i>Rhamnus lycioides</i> Cistaceae /	Mar	May
Opuntia ficus-indica	May	Jun	Cistus albidus	Feb	Jun
Caprifoliaceae			Ranunculaceae/		
Lonicera japonica	May	Sep	Clematis vitalba	Jun	Aug
Chenopodiaceae			. . /		
Achyranthes sicula	Mar	Jun	Lamiaceae/ Marrubium vulgare Chenopodiaceae/	Mar	Jul
Amaranthus blitoides	Apr	Dec	Chenopodiaceae/ Chenopodiaceae/	Jan	Dec
Amaranthus hybridus	May	Dec	Chenopodium vulvaria Malvaceae/	Apr	Oct
Amaranthus muricatus	Apr	Dec	Malva parviflora Chenopodiaceae/ Chenopodium	Mar	Aug
Amaranthus powelli	Jun	Nov	opulifolium Chenopodiaceae/	Mar	Nov
Amaranthus retroflexus	May	Dec	Chenopodium album Chenopodiaceae/ Chenopodium	May	Nov
Amaranthus viridis	Apr	Dec	chenopodioides Chenopodiaceae/	Jul	Oct
Atriplex semibaccata	Sep	Oct	Atriplex postrata	Jul	Sep
Commelinaceae					
Tradescantia fluminensis	Mar	Sep	Lamiaceae Glechoma hederacea	Feb	Jun
Convolvulaceae			Complementary (
Ipomoea acuminata	Jun	Nov	Convolvulaceae / Calystegia sepium Rubiaceae /	May	Sep
Ipomoea purpurea	Jun	Nov	Galium aparine Ranunculaceae/	Mar	Jul
Ipomoea sagittata	Jun	Aug	Clematis flammula	Apr	Aug
Cyperaceae Cyperus alternifolius	Jun	Sep	Cyperaceae Scirpus lacustris	May	Jul
Elaeagnaceae Elaeagnus angustifolia	May	Jul	Tamaricaceae Tamarix canariensis	Apr	Nov
Euphorbiaceae			Fabaaaa/		
Chamaesyce polygonifolia	Jul	Nov	Fabaceae/ Medicago littoralis Solanaceae/	Feb	Nov
Ricinus communis	May	Dec	Lycium europaeum	Sep	Oct
Fabaceae					
Acacia dealbata	Jan	Mar	Betulaceae/ Betula alba Rosaceae/	Apr	May
Acacia longifolia	Mar	Jun	Pyrus cordata	Apr	Jun
Acacia melanoxylon	Mar	Jun	Rosaceae / Malus communis	Apr	Jun

			Fabaceae/		
Acacia saligna	Mar	May	Ceratonia siliqua Salicaceae/	Sep	Jan
Gledistsia triacanthos	Mar	Jun	Populus alba Ulmaceae/	Feb	Apr
Robinia pseudoacacia	Mar	Jul	Celtis australis Ulmaceae/	Apr	May
Sophora japonica	Jun	Aug	Ulmus glabra	Feb	Apr
Hydrocharitaceae			Potamogetonaceae		
Elodea canadensis	May	Aug	Potamogeton densus	Jul	Jul
Iridaceae			Primulaceae		
Tritonia x crocosmiflora	May	Aug	Lysimachia nemorum	Apr	Aug
Malvaceae			Malvaceae		
Abutilon theophrasti	Aug	Sep	Malva neglecta	Mar	Sep
Myrtaceae Eucalyptus			Lauraceae/		
camaldulensis	Jan	Dec	Laurus nobilis	Feb	Apr
			Tiliaceae/		1
Eucalyptus globulus	Oct	Jan	Tilia platyphyllos	Jun	Sep
Nyctaginaceae			Malvaceae		
Mirabilis jalapa	Jun	Sep	Malva sylvestris	Jan	Oct
Onagraceae			Apiaceae		
Oenothera biennis	Jun	Sep	Foeniculum vulgare	Jun	Nov
Oenothera glazioviana	Jun	Sep	Daucus carota	Mar	Sep
Oxalidaceae			Asteraceae		
Oxalis pes-caprae	Sep	May	Cirsium arvense	Jun	Jul
Papaveraceae			Papaveraceae		
Eschscholzia californica	May	Oct	Papaver rhoeas	Feb	Sep
Passifloraceae			Cannabaceae		
Passiflora caerulea	Jun	Oct	Humulus lupulus	Jun	Sep
Poaceae			Poaceae/		
Bromus wildenowi	May	Aug	Dactylis glomerata Poaceae/	Mar	Jul
Cenchrus incertus	Jun	Sep	<i>Lagurus ovatus</i> Poaceae /	Mar	Jul
Chloris gayana	Mar	Aug	<i>Hyparrhenia hirta</i> Cyperaceae /	Jan	Dec
Echinochloa hispidula	Jul	Oct	Cyperus difformis Cyperaceae/	Jun	Nov
Echinochloa oryzicola	Jul	Oct	Scirpus mucronatus Cyperaceae/	Jul	Sep
Echinochloa oryzoides	Jul	Oct	Eleocharis palustris Poaceae/	May	Aug
Eleusine indica	Jul	Oct	Poa annua Cyperaceae/	Jan	Jun
Paspalum dilatatum	Jul	Oct	Scirpus holoschoenus Poaceae/	May	Nov
Paspalum paspalodes	Jul	Sep	Polypogon viridis	Apr	Jun
Paspalum vaginatum	Jul	Sep	Cyperaceae/	Feb	Jun

			Carex divisa		
			Poaceae/		
Sorghum halepense	May	Oct	Piptatherum miliaceum Poaceae /	Apr	Nov
Spartina patens Stenotaphrum	Jun	Sep	Spartina maritima Poaceae /	May	Jul
secundatum	Jul	Sep	Cynodon dactylon	Jan	Dec
Polygonaceae			Caprifoliaceae/		
Fallopia baldschuanica	May	Oct	Lonicera peryclimenum Asteraceae/	May	Aug
Reynoutria japonica	Aug	Sep	Eupatorium cannabinum	Jul	Sep
Pontederiaceae			Nymphaeaceae		
Eichhornia crassipes	Mar	Jul	Nymphaea alba	Mar	Oct
Simaroubaceae			Ulmaceae		
Ailanthus altissima	May	Jul	Ulmus minor	Feb	Apr
Solanaceae					
			Boraginaceae/		
Datan in ania	Маал	C	Heliotropium	Man	New
Datura innoxia	May	Sep	europaeum Solanaceae/	Mar	Nov
Datura stramonium	May	Nov	Hyoscyamus albus Celastraceae/	Jan	May
Nicotiana glauca	Apr	Oct	Maytenus senegalensis Solanaceae/	Jul	Sep
Solanum bonariense	Apr	Jul	Solanum dulcamara	Jul	Sep
Tropaeolaceae			Urticaceae		
Tropaeolum majus	May	Sep	Urtica dioica	Apr	Sep
Verbenaceae			Verbenaceae		
Lippia filiformis	Jun	Sep	Verbena officinalis	Jun	Oct
Zygophyllaceae			Chenopodiaceae		
Zygophyllum fabago	Jun	Aug	Atriplex rosea	Jul	Sep
		Cape	region		
Agavaceae			Asphodelaceae		
Agave americana	Dec	Mar	Aloe ferox	May	Nov
Agave sisalana	Dec	Mar	Aloe lineata	Feb	Mar
Apocynaceae			Apocynaceae	-	
Araujia sericifera	Nov	Apr	Cynachum obtusifolium	Jan	Dec
Nerium oleander	Sep	Mar	Carissa haematocarpa	Jan	Apr
Araceae			Potamogetonaceae		
Pintia stratoites	Feb	May	Potamogeton pectinatus	Oct	Jan
Asteraceae			Asteraceae		
Ageratina adenophora	Aug	Dec	Arctotheca calendula	Jul	Nov
Cirsium vulgare	Sep	Apr	Foveolina tenella	Jun	Sep
Xanthium spinosum	Oct	Apr	Senecio arenarius	Jul	Sep
Xanthium strumarium	Oct	Apr	Senecio elegans	Sep	Nov

Boraginaceae			Boraginaceae		
Echium plantagineum	Sep	Mar	Cynoglossum hispidum	Oct	Nov
D .			• •		
Brassicaceae Rorippa nasturtium-			Asteraceae		
aquaticum	Sep	Mar	Cadiscus aquaticus	Aug	Sep
			- · · · · · · · · · · · · · · · · · · ·		F
Cactaceae			Asphodelaceae		
Pereskia aculeata	Mar	Jul	Aloe lineata	Feb	Mar
Cereus jamacaru	Nov	Jan	Aloe plicatilis	Aug	Oct
Opuntia ficus-indica	Oct	Dec	Aloe africana Aloe arborescens	Jul May	Sep
Opuntia monocantha	Oct	Apr	Aloe arborescens	May	Jun
Cannaceae			Iridaceae		
Canna indica	Sep	Apr	Chasmanthe aethiopica	Apr	Jun
Character 19			Characteristic and		
Cheponodiaceae	Daa	Mar	Cheponodiaceae	Daa	1
Achyrantes aspera Salsola kali	Dec		Pupalia lappacea Sericocoma avolans	Dec	Apr
Atriplex nummularia	Sep Sep	Nov Jan	Manochlamys albicans	Jan Sep	Apr Jan
Airipiex nummularia	Sep	Jall	manochiumys aibicans	Sep	Jall
Clusiaceae			Clusiaceae		
Hypericum perforatum	Oct	Jan	Hypericum lalandii	Nov	Mar
Convolvulaceae	Dee	Esh	Convolvulaceae	Dee	Mari
Convolvulus arvensis	Dec	Feb	Convolvulus ulosepalus	Dec	May
Ipomoea purpurea	Oct	Dec	Convolvulus capensis	Sep	Oct
Euphorbiaceae			Euphorbiaceae		
Ricinus communis	Jan	Dec	Jatropha capensis	Nov	Jan
Februar			Fahaaaa		
Fabaceae	Oct	Nov	Fabaceae	Sam	Nov
Alhagi maurorum	Oct		Asphalatus rostrata	Sep	Mar
Spartium junceum	Aug	Nov	Lebeckia cytisoides Polygalaceae/	Jul	Iviai
Prosopis glandulosa	Jun	Nov	Muraltia heisteria	Oct	Dec
Robinia pseudoacacia	Sep	Dec	Psoralea floccosa	Sep	Sep
Acacia cyclops	Oct	May	Acacia caffra	Dec	Mar
Acacia saligna	Aug	Oct	Acacia karroo	Nov	Dec
I amiaaaaa			Lamianaa		
Lamiaceae Plectranthus comosus	Mar	Sep	Lamiaceae Plectranthus fruticosus	Nov	Apr
1 lectruninus comosus	Iviai	Sep	1 lectraninus francosas	INOV	Арі
Malvaceae			Malvaceae		
Lavatera arborea	Sep	Nov	Abutilon sonneratianum	Nov	Jan
Muonovooo			Astoração		
Myoporaceae Myoporum tenuifolium	Jul	Oct	Asteraceae Brachylaena neriifolia	Jan	Mar
Myoporum tenuijottum	Jui	Oct	Brachylaena neriljolla	Jall	Iviai
Myrtaceae					
Eucalyptus			Cunoniaceae/		
camaldulensis	Sep	Jan	Cuconia capensis	Dec	Feb
Leptospermum			Cunoniaceae/		
laveigatum	Jul	Oct	Platylophus trifoliatus	Dec	Feb
			Myrtaceae/		
	~	•	Metrosideros	P	
Metrosideros excelsa	Sep	Jan	angustifolia	Dec	Feb
Onagraceae			Onagraceae		
Oenothera biennis	Sep	Apr	Epilobium capense	Dec	Mar
	~•P	· •P•		2.00	

Orobanchaceae			Orobanchaceae		
Orobanche minor	Aug	Nov	Hyobanche sanguinea	Aug	Oct
or obtailence minor	nug	1101	Hybbunche sunguineu	nug	001
Passifloraceae			Ranunculaceae		
Passiflora caerulea	Aug	Mar	Clematis brachiata	Dec	May
i ussyloi a caci aica	Tug	1. Tur	Clemans of demand		ivitay
Phytolaccaceae			Aquifoliaceae		
Phytolacca dioica	Sep	Dec	Ilex mitis	Sep	Dec
2	1			1	
Pittosporaceae			Pittosporaceae		
			Pittosporum		
Pittosporum undulatum	Aug	Sep	viridiflorum	Nov	Dec
Poaceae	Jan	Mar	Poaceae		
Arundo donax	Feb	Apr	Phargmites australis	Feb	May
Cortaderia selloana	Aug	Jan	Miscanthus capensis	Dec	May
Pennisetum clasdestinum	Nov	Jul	Trachypogon spicatus	Oct	May
			Andropogon		
Pennisetum setaceum	Sep	Dec	appendiculatus	Oct	Apr
Aira cupaniana	Sep	Jan	Ehrharta calycina	Jul	Dec
Bromus diandrus	Jul	Nov	Aristidia congesta	Dec	May
Bromus pectinatus	Nov	May	Aristidia adcensionis	Dec	Sep
Chloris gayana	Jun	Jul	Sporobolus africanus	Oct	Apr
			Chaetobromus		
Chloris truncata	Nov	Jun	dregeanus	Sep	Nov
Digitaria abyssinica	Oct	Dec	Digitaria argyrograpta	Nov	Mar
Hordeum murinum	Oct	Dec	Hordeum capense	Nov	Dec
Lolium perenne	Sep	Jan	Pentachistis aspera	Sep	Dec
Lolium rigidum	Sep	Jan	Stipa capensis	Aug	Nov
Phalaris minor	Jan	Dec	Panicum repens	Oct	Jun
Poa annua	Sep	Apr	Poa bulbosa	Aug	Oct
Polypogon monspeliensis	Sep	Jan	Schismus pleuropogon	Nov	Nov
	-		Stenotaphrum		
Polypogon viridis	Jan	Mar	secundatum	Oct	Jan
Pontederiaceae			Nymphaeaceae		
Eichhornia crassipes	Nov	Apr	Nymphaea nouchali	Dec	Mar
Proteaceae			Proteaceae		
Hakea gibbosa	Jun	Sep	Diastella divaricata	Jan	Dec
Hakea drupacea	May	Jun	Diastella thymelaeoides	Aug	Nov
Hakea sericea	Jun	Oct	Brabejum stellatifolium	Dec	Jan
_					
Rosaceae					
	G	D	Rosaceae/		
Pyracantha angustifolia	Sep	Dec	Rubus rigidus	Oct	Feb
	a		Rosaceae/		
Rubus fruticosus	Sep	Jan	Rubus pinnatus	Nov	Feb
		_	Kiggelariaceae/		
Eriobotria japonica	May	Jun	Kiggelaria africana	Feb	Jul
		-	Icacinaceae/	~	
Cotoneaster franchetii	Aug	Jan	Cassinopsis ilicifolia	Sep	Nov
a u			a !		
Salicaceae		_	Salicaceae	~	_
Salix babilonica	Aug	Oct	Salix mucronata	Sep	Oct
	C		Flacourtiaceae/	N 7	
Populus x canescens	Sep	Dec	Scolopia mundii	Nov	Dec

Solanaceae

			Boragineaceae /		
Datura stramonium	Oct	Mar	Trichodesma africanum	Jul	Oct
			Celastraceae/		
Nicotiana glauca	Aug	Mar	Maytenus oleoides	Apr	Sep
			Solanaceae/		
Solanum mauritianum	May	Jul	Solanum aculeastrum	Mar	Oct
Solanum			Solanaceae/		
pseudocapsicum	Oct	Jan	Solanum giganteum	Dec	Apr
			Celastraceae/		
Nicotiana glauca	Aug	Mar	Maytenus oleoides	Apr	Sep
-	-		-	-	-
Verbenaceae			Plumbaginaceae		
Lantana camara	Sep	Apr	Plumbago auriculata	Dec	May