1

3

6

Leaf litter traits of invasive species slow down decomposition

2 compared to Spanish natives: a broad phylogenetic comparison

- 4 Oscar Godoy*^{1,2}, Pilar Castro-Díez², Richard S.P. Van Logtestijn³, Johannes H.C.
- 5 Cornelissen³ & Fernando Valladares^{1,4,5}
- 7 ¹ Instituto de Recursos Naturales, Centro de Ciencias Medioambientales, CSIC. Serrano
- 8 115 dpdo E-28006 Madrid, Spain.
- 9 ² Departamento de Ecología. Facultad de Ciencias. Universidad de Alcalá, E-28871,
- 10 Alcalá de Henares, Madrid, Spain.
- 11 ³ Department of Systems Ecology, Faculty of Earth and Life Sciences, Institute of
- 12 Ecological Science, VU University, De Boelelaan 1085, 1081 HV Amsterdam, The
- 13 Netherlands.
- ⁴ Departamento de Biología y Geología. Área de Biodiversidad & Conservación,
- Universidad Rey Juan Carlos, ESCET, Tulipán s/n E-28933, Móstoles, Madrid, Spain.
- 16 ⁵ Laboratorio Internacional de Cambio Global (LINCGlobal), UC-CSIC, Departamento
- 17 de Ecología, Facultad de Ciencias Biológicas, PUC, Alameda 340, PC 6513677,
- 18 Santiago, Chile.
- *Correspondence author: ogodoy@ccma.csic.es, Tlfn+34917452500 Ext 1291,
- 22 Fax +34915640800

23

19

Abstract

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

Leaf traits related to the performance of invasive alien species can influence nutrient cycling through litter decomposition. However, there is no consensus yet about whether there are consistent differences in functional leaf traits between invasive and native species that also manifest themselves through their afterlife effects on litter decomposition. When addressing this question it is important to avoid confounding effects of other plant traits related to early phylogenetic divergences and to understand the mechanism underlying the observed results to predict which invasive species will exert larger effects on nutrient cycling. We compared initial leaf litter traits, and their effect on decomposability as tested in standardised incubations, in 19 invasive-native pairs of co-familial species from Spain. They included twelve woody and seven herbaceous alien species representative of the Spanish invasive flora. The predictive power of leaf litter decomposition rates followed the order: growth form > family > status (invasive vs. native)>leaf type. Within species pairs litter decomposition tended to be slower and more dependent on nitrogen and phosphorus in invaders than in natives. This difference was likely driven by the higher lignin content of invader leaves. Although our study has the limitation of not representing the natural conditions from each invaded community, it suggests a potential slowing down of the nutrient cycle at ecosystem scale upon invasion.

20

22

21

- 23 **Keywords:** Nitrogen, phosphorus, lignin, calcium, phylogenetically independent
- 24 contrast, nutrient cycling changes.

1 **Introduction**

2 Litter decomposition is a key process in nutrient cycling (Swift et al. 1979; Hobbie 3 1992; Sayer 2006). Rates of litter decomposition can greatly influence nutrient 4 availability and thereby other ecosystem processes (Vitousek and Howarth 1991). At 5 community level, decomposition rates are controlled by species or functional type 6 composition (Hättenschwiler and Vitousek 2000; Garnier et al. 2004; Quested et al. 7 2005). Therefore, the introduction or invasion of alien species into new ecosystems can 8 cause profound changes in community structure and function (Mack et al. 2000; Kolar 9 and Lodge 2001), including changes in litter decomposition and nutrient cycling 10 (Allison and Vitousek 2004; Ashton et al. 2005). To determine the direction of these 11 changes, several studies have compared litter decomposition between invasive alien 12 species and natives. However, results greatly differ between studies, taxa and regions 13 (Ehrenfeld 2003) and no generalization (a frequent objective in the study of biological 14 invasion) has arisen so far. Faster litter decomposition from invasive alien species 15 compared to native litter has been reported when invaders were nitrogen-fixers and 16 native species were not (Liao et al. 2008), when nutrient concentration in the exotic 17 litter was higher than the native one (Allison and Vitousek 2004) and when specific leaf 18 area (SLA) of invaders was higher than that of native species (Castro-Díez et al. 2009; 19 Kueffer et al. 2008). By contrast, slower leaf litter decomposition of invasive alien 20 species has been found when this litter had higher polyphenolic content (Knight et al. 21 2007), higher lignin content or higher C/N ratio than native litter (Drenovsky and Batten 22 2007). 23 Differences between studies may be partly due to over-representation of 24 particular regions (e.g. Hawaii islands, Allison and Vitousek 2004) or functional types 25 (e.g. at least 1/3 of the articles involve nitrogen fixers, Levine et al. 2003), and they

have generally included only a few species pairs, not accounting for phylogenetic and life history differences. Comparing large numbers of invasive and native species by means of phylogenetic independent contrasts (PIC's) is necessary to unveil general trends avoiding confounding effects of phylogeny.

As important as avoiding confounding effects, is to understand the mechanisms underlying the direction of the change upon invasion. This will potentially help to predict which invasive alien species are likely to exert larger effects on nutrient cycling and which communities are likely to suffer larger impacts (Levine et al. 2003). Invasive species possessing leaf litter traits similar to natives will be functionally redundant in the nutrient cycling mechanisms and no changes may be expected. By contrast, invasive species with leaf litter traits largely different from those of natives, may impact the nutrient cycling. Thus, the direction and magnitude of the change will depend on the trait difference between both groups (Dukes and Mooney 2004; Strauss et al. 2006). Under mediterranean soil conditions, where the availability of nitrogen and phosphorus is low (Gallardo and Parama, 2007), we may predict that leaf litter from invasive alien species with traits that retard decomposition will inhibit and slow down nutrient cycling, while those promoting decomposition will have no effect (because of microrganism immobilisation in cases of low nutrient soil concentration) or will slightly speed up nutrient cycling (Knorr et al. 2005).

Taking this less used approach into account, we have the additional opportunity to link ecosystem impacts to functional strategies of invasive species, since many leaf litter traits are directly related to plant performance strategies such us competitive ability (e.g. variation in nitrogen content), defence against herbivore (e.g. variation in polyphenolic compounds) or resource use efficiency (e.g. variation in lignin content). Thus, while many studies have tried to link species traits with invasiveness, the

importance of studying these traits is more related to differences in ecosystem impacts
 than on invasiveness.

The objective of the present study was to compare leaf litter decomposability between invasive alien and native species from Mediterranean ecosystems in Spain by means of an experimental design using phylogenetically independent contrasts (Armstrong and Westoby 1993). We addressed the following questions: i) Do leaf litter properties of invasive alien species differ consistently from those of native ones? ii) Does leaf litter of invasive alien species decompose faster than that of native species? iii) Do initial leaf litter traits influence the decomposition process in the same way in invasive and native species? To address these questions, a set of 19 invasive-native cofamilial pairs were selected and subjected to an experimental standardised screening for leaf litter decomposability together with physical-chemical analyses.

Methods

15 Species selection

Our species set comprised introduced species that are clearly invasive (Pyšek et al. 2004), local dominants in some native ecosystems (Valéry et al. 2008) and with potential impact in the invaded ecosystems (Richardson et al. 2000). Species compiled by The Atlas of the Invasive Alien Species in Spain (Sanz Elorza et al. 2004) matched our criteria of invasive species definition. Thus, it was used to select the invasive alien species and the localities where the senesced leaf material was collected, ranging from central to eastern Spain (Table 1). The final selection of invasive species was done on the basis of leaf litter availability and aimed to represent of a broad diversity of growth forms (annual and biannual herbs, lianas, shrubs and trees), invaded habitats (woodlands, shrublands, grasslands, and riparian areas), and different life histories.

1 Nomenclature followed the Iberian Flora (Castroviejo 1986-2008). Each of the selected

species was paired with one closely related native species based on two criteria: (1)

within each pair, the native species had to belong to the same family as the invasive

species and (2) the two species had to belong to the same growth form (i.e., herbaceous

vs. woody species).

The selection of phylogenetically independent invasive-native pairs for methodological reasons may induce biases in the ecological meaning of our results. To minimize this problem, we conducted a screening to select native species with a common occurrence throughout Spain and especially in the eastern part, which hosts the highest diversity and abundance of invasive alien species (Gasso et al. 2009). Native species with small distribution range, rare or endangered were excluded. Additionally, we discarded those native species occurring in habitats different from those where alien species invade or with occurrence in successional community stages different from natives. The extended Herbarium database at Complutense University of Madrid (MACB, founded 1968) was used to select, within pairs, native species recorded in the same localities or next to where the alien species pair invade. This procedure has permitted to do not lose the potential ecological meaning of our results in the whole range of the invasive species, except for the case of *Ailanthus altissima* vs. *Cneorum tricoccon* (Table 1), which only has ecological sense in the Balearic Islands and north of Cataluña.

22 Collection of leaf litter

Recently senesced, undecomposed and herbivore-damage free leaf litter of invasive

alien species and their native relatives were collected following the criteria of

Cornelissen (1996). Leaf litter from deciduous woody species was collected throughout

the autumn of 2005, while leaf litter of evergreen woody and herbaceous species was collected in the spring of 2006, according to their natural leaf senescence period. Ten mature individuals for each species of the same population at full sun-exposure (in the case of trees) were preferentially chosen for senesced leaf collection. Large variation in the proportion of petioles to lamina was found between species (6.7±5.3%), but petioles from all species were discarded to asses the decomposition ability of leaf litter, since the variability within pairs was low (1.2±0.4%). Approximately 40 g of senesced leaves per species were obtained after pooling the leaves from all individuals. They were transported to the laboratory, air-dried at 20-25°C and stored in open paper bags until further analysis.

Litter decomposition experiment set up

For each species, four subsamples of 1.0±0.1g air-dried senesced leaves were used to calculate their initial water content by weighing them again after three days in the oven at 60°C. Sixteen samples of air-dried leaves were extracted from each species pool, weighed (1.0±0.1g) and corrected for water content. Then each of these samples was sealed into a 1 mm-mesh nylon bag to allow free movement of macro- and meso-decomposers into the bags (Cornelissen 1996). Large leaf size variation between species lead to variation in bag size in order to spread out whole leaves in one single layer, since surface access to soil decomposers is a determinant of decomposition rate (Cornelissen 1996). Litter bags were buried randomly in a purpose-built litter decomposition bed (7m x 3.5m) at Alcalá University Botanical Garden (Madrid province, Central Spain). This bed consisted of a thoroughly mixed 5 cm litter layer collected from a nearby mature *Quercus* spp. forest. We selected this material trying to create an incubation matrix of natural non-invaded forest communities representative of Spain with close-to-natural

microbial and soil fauna activity. Additionally, we covered the bed with a single layer of senesced *Platanus hispanica* leaves. The decomposition bed was displayed below a shade frame covered by a neutral shade mesh, which removed 30 % of the solar radiation, to avoid rapid water loss, especially in summer. On 23 December 2005, the litter bags of the autumn-deciduous invasive-native pairs (pair number 1, 4, 8 and 18 in Table 1) were placed in the litter decomposition bed at 2 cm depth in the matrix, while the rest of the fifteen pairs (where at least one of the species pair shed its leaves in spring) were placed there on 22 June 2006. Two harvests of eight litterbags per species were collected, the first after 147 and 143 days of incubation (for the December and June pairs respectively), and the final after 289 and 231 days. First harvest date was chosen by expert criteria to select a steady-state of mean litter decomposition around 50% of mass loss considering all species, while final harvest date was chosen when the species with faster litter decomposition (Colutea arborescens, Anagyris foetida) were close to a full decomposition. Eight additional litterbags of Acer campestre, Lonicera japonica and Ulmus pumila were placed in each of the two periods of our experiment to assess the effect of starting date on the decomposition rate. At each harvest, the material remaining in each litterbag was carefully brushed clean, dried at 60°C during 3 days, and weighted to calculate the percentage of litter mass loss. For contamination by dust particles see below. At the beginning of the experiment, three 2.5 x 2.5 cm anion and two 2.5 x 2.5

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

cation exchange resin membranes (types I-100 and I-200, Electropure excellion-inc., Laguna Hills, California) fixed to a plastic label were introduced into the soil at three equidistant points of the litter bed at 4 cm depth, and left for 15 days to evaluate inorganic nitrogen and phosphorus availability (Abrams and Jarrell 1992; Subler et al. 1995). Resin membranes had been previously conditioned in the lab by immersing them

in demineralised water at 82-90°C for 48 hours. Ions were extracted from the resins using 20-25 ml KCl and ammonia, nitrate and phosphate contents were assessed following Sims et al. (1995). Finally, local air temperature, available photon flux density (PPFD) and soil moisture within the first 15 cm soil depth were registered every 15 minutes during the litter decomposition experiment with a data logger (HOBO model H08-006-04, Onset, Pocasset, MA) and measured by external sensors (Li-Cor, Lincoln, ThetaProbe sensors (Delta-T Devices, Cambridge, U.K)). The litter decomposition bed was occasionally watered during dry periods, when soil moisture

dropped below 60% gravimetric water content (GWC).

Measurements

The initial area of the senesced leaves was measured in eight subsamples of eight leaves each per species (Delta-T leaf area meter device, Cambridge), then oven-dried at 60°C during 3 days and weighed to calculate their specific leaf area (SLA=leaf area/leaf dry mass). The remaining leaf litter, after removing samples for litter decomposition and SLA assessment, was ground in a single pool per species, using a Cullati mill (1mm particle size). Chemical analyses to determine litter leaf traits were conducted at the laboratory of the Dept. of Systems Ecology, VU University, Amsterdam, The Netherlands. Total initial concentrations of organic carbon, nitrogen, phosphorus, calcium, potassium, magnesium and pH were calculated from a set of four ground subsamples per species, while initial lignin and cellulose contents were assessed in one ground sample per species. Carbon and nitrogen were also measured in four ground samples of the final harvest. Finally, in four subsamples per species, ash content was measured (mass loss on ignition, 575°C) to correct litter sample dry mass for possible sand or clay contamination. Since some plants can contain significant amounts of silica

and other minerals in their tissues (Epstein 1994), we only corrected for ash fractions greater than 2-3% for species where we observed or suspected contamination by dust.

Total carbon and nitrogen were determined by dry combustion with a NA1500 series II elemental analyzer (Carlo Erba, Rodana, Italy). After digestion (of ground leaf material) in a 1:4 mixture of 37% (v/v) HCl and 65% (v/v) HNO₃ (Sneller et al. 1999) phosphorus was measured colorimetrically, calcium and magnesium were measured with AAS and potassium with AES (both: Perkin Elmer 1100, Waltham, MA USA). pH was measured using a narrow (5 mm diameter) SenTix Mic electrode connected to an Inolab Level 2 pH meter (both: WTW, Weilheim, Germany). Initial litter lignin and cellulose concentration was determined following Poorter and Villar (1997): in short, after several extraction steps to ensure that only cellulose and lignin made up the composition of the residue of the sample, the C and N concentrations of this residue were used to calculate the lignin concentration, based upon the difference in carbon content between cellulose and lignin.

Statistics

We applied Statistica 6.1 (StatSoft, Inc) and R package (library "stats") for all analyses below. Percentage of litter mass loss at the first and final harvests (with initial mass as the reference for both harvests) was arcsine-square-root(x/100)-transformed to approach normal distributions and homogeneity of variance (Quested et al. 2003). Given that some families were over-represented in our dataset (e.g. Fabaceae) (Table 1) and that the 19 species pairs were not randomly selected, a Mantel test was conducted to test whether differences in litter decomposition within pairs were influenced by pair selection. The phylogenetic distance from one species to another between all the species pairs was calculated through the first common ancestor to both species using the plant

phylogenetic supertree described by Soltis et al. (2000) and modifications by Bremer et al. (2003).

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

Pairwise Student-t tests compared initial physical-chemical leaf litter traits and percentage of litter mass loss across all pairs of invasive alien species and native cofamilial counterpart, at the first and final harvests respectively. The effect of the date of incubation start (autumn or spring) on the percentage of litter mass loss was assessed for the three control species (*Acer campestre, Lonicera japonica* and *Ulmus pumila*) by a two-way ANOVA using time and species as main independent factors.

In order to assess the relative importance of different predictors for the litter mass loss, a four-way ANOVA was conducted taking as the main independent variables Growth form (GF), Family (F) nested in GF -because none of the families comprised both woody and herbaceous species- Leaf Type (LT- deciduous or evergreen) and Plant Status (invasive (I) or native (N)). Additionally, multiple regression models were conducted to evaluate which senesced leaf traits better predicted the percentage of litter mass loss in each species group (invasive alien and native species) at each harvest. Pearson correlations were conducted to check for co-linearity between predictors. Predictors not or poorly correlated were chosen (r<0.10), while among those highly correlated (r>0.70) only one predictor with high ecological meaningful was selected (Fowler and Cohen, 1992). Therefore, initial lignin concentration was discarded because it was highly correlated with the initial carbon concentration in both species sets (invasive species r>0.80 and native species r>0.75). Different models were fitted selecting different sets of predictive variables by the approach based on information theory (Akaike information criteria, AIC) (Burnham and Anderson, 2002). AIC was calculated for each model and used to choose the best-fitted. A value of difference in AIC (\triangle AIC) higher than 10 represents a poor fitted model compared to the best model,

- whereas a value of less than 2 indicates that both models are equivalent (Burnham and
- 2 Anderson, 2002).

3

4

Results

- 5 Litter bed characteristics
- 6 The most abundant form of available mineral nitrogen in the litter decomposition bed
- 7 was NO_3^--N (1.82 µg m⁻²day⁻¹), two times more than NH_4^+-N (0.86 µg m⁻²day⁻¹). The
- 8 availability of PO₄⁻-P was 0.72 µg m⁻²day⁻¹, and thus the N/P ratio of the available pool
- 9 was N/P= 1.9. Mean (±standard error) air temperature, soil GWC and daily PPFD
- during the first incubation period for deciduous autumn pairs (see Methods) were
- 11 $10.21(\pm 7.06)$ °C, $68.74(\pm 3.46)$ % and 24 mol m⁻² day⁻¹ respectively, whereas for the
- final incubation period with the rest of the pairs these means were $16.84(\pm 9.77)$ °C,
- 13 65.12(\pm 5.73) % and 32 mol m⁻² day⁻¹ respectively.

- 15 Leaf litter traits, decomposition rates and decomposition predictors
- 16 SLA did not differ between invasive alien and native species (Table 2). Initial calcium
- and lignin concentration were significantly higher in invasive species. Total carbon
- 18 concentration was marginally higher in invasive species. Cumulative mass loss at the
- 19 final harvest was significantly higher in invasive species of a pair than in their co-
- 20 familial native species, whereas a similar trend was not significant at the first harvest
- 21 (Table 2). Mean values of all measured traits for each species are shown in the
- 22 Electronic supplementary material (Table S1). Mantel test R (% Mass loss Phylogeny
- =1.34, p=0.529), showed that differences in % litter mass loss between invasive and
- 24 native species were not influenced by phylogenetic structure of invasive-native pair
- 25 selection. In addition, two-way ANOVA showed that the effects of the date of

1 incubation start (as determined by starting date) were comparable because significant

differences were only found for species ($F_{2,90}$ =41.68, p<0.001), but not for time period

 $(F_{1,90}=0.09, p=0.769)$ or the time period by species interaction $(F_{2,90}=1.66, p=0.206)$

Four-way ANOVA showed that growth form was the most important categorical factor explaining the variation of final litter mass loss across the whole data set, mass loss being faster in herbaceous than in woody species. Family was the second best predictor, followed by plant status (invasive-native), native species decomposes faster than invasive species, and finally leaf type, deciduous decomposing faster than evergreen species. No significant effect was found in the interaction between plant status and the other categorical factors (Fig. 1).

Leaf litter decomposition processes

Total initial concentrations of C, N, P, cations (sum of Ca + K + Mg), pH, cellulose and SLA were the independent predictors selected to assess the relative importance of leaf litter traits in litter decomposition of both harvests and for the invasive and native species groups separately (Table 3). Initial lignin was excluded due to its high correlation with initial C concentration (see above, Methods). Multiple-regression models revealed that the predictors were different between invasive and native species and between harvests (Table 3). Nitrogen was related positively to litter decomposition in all cases and its relative importance increased at the final harvest for invasive species. Phosphorus was the most important positive predictor of % litter mass loss, but only for invasive species at the final harvest. Carbon and thus lignin were negatively related to litter mass loss in native species across the whole incubation period, while only in the first harvest in invasive species (Table 3). pH was a positive predictor of native litter decomposition rate at the final harvest and of invasive species only at the first harvest.

- 1 A positive relation between decomposition rate and SLA only emerged at final harvest
- 2 for both groups of species. Finally, cellulose was slightly negatively related to
- 3 decomposition rate in native species at both harvests (Table 3).
- The goodness-of-fit of the models (r^2) was higher for native than for invasive
- 5 species. Regression models generally predicted litter decomposition rate better at the
- 6 final than at the first harvest for invasive species (Table 3).

7

8

Discussion

- 9 Leaf litter characteristics and mass loss rates
- 10 Leaf litter of alien species invading Mediterranean ecosystems in Spain tended to
- decompose slightly more slowly than that of the co-familial native species. This can be
- due to large initial lignin content, which was significantly higher in invasive alien
- species across invasive-native species pairs. This well-studied relationship (Swift et al.
- 14 1979, Cadisch and Giller 1997) was recently confirmed within multiple sites worldwide
- 15 (Cornwell et al. 2008). Invasive alien species combine higher lignin with higher calcium
- 16 initial content (Table 2). Calcium plays an important role in lignin synthesis and a
- deficit of this macroelement in soils limits lignification of plant tissues (Lautner et al.
- 18 2007). Indeed, the soils of the locations where leaf litter was collected (Table 1) are
- 19 characterised by high availability of calcium (Rubio and Escudero 2005), apparently not
- 20 limiting tissue lignification of invasive alien species. Although plant species trade off
- 21 plant growth for tissue lignification (Villar et al. 2006), the elevated carbon assimilation
- 22 capacity for growth commonly described in invasive species (Pysek and Richardson
- 23 2007) and the higher levels of litter lignin found in our study, may reflect a carbon
- 24 availability enough to maximise both strategies. This overall carbon strategy apparently
- 25 improves the growth rate and protection of leaf tissues which leads to a higher nutrient

use efficiency, another strategy also reported in invasive alien species (Pysek and Richardson 2007).

Our results do not match those from previous studies comparing leaf litter properties of invasive and native species, as they showed that, in general, invasive alien species tended to exhibit higher specific leaf area and higher nutrient concentrations (see Ehrenfeld (2003) for a detailed description). However, these differences seem to be biased by the selection of species and regions (mostly N₂ fixing invasive species in oligotrophic soils) (Levine et al. 2003; Yelenik et al. 2007).

Predictors of litter decomposition rate

Nitrogen content in litter was related to litter decomposition in all species groups and in both harvests (Table 3). This agrees with the well known fact that high nitrogen content in litter and in soil promotes decomposition (Ehrenfeld 2003, Cornwell et al. 2008). However, its relative importance was higher in invasive alien species in the final harvest (Table 3), which may be attributed to their higher lignin content. Lignin, which forms complex associations to litter proteins, inhibits the action of decomposing organisms and delays the decomposition processes during the first months (Gallardo and Merino 1993). Thus, nitrogen, unlike lignin, becomes an important predictor later on, when soil organism activity overcome the lignin barrier complex and starts to release nitrogen from litter proteins (Gallardo and Merino 1992). In addition, phosphorus content in leaf litter exhibited a great positive influence on the decomposition of invasive alien litter, but not on native litter (Table 3). Both results are in concordance with Bubb et al. (1998) and Xuluc-Tolosa et al. (2003), who demonstrated that litter of high lignin content needs high nitrogen content in leaves and soil for its decomposition, and that this process becomes phosphorus dependent. Consequently it may become important as

a limiting factor for the decomposition of the lignin-rich litter of invasive alien species when lignin degradation by micro-organism takes off. Perhaps the lower lignin content of the litter of the native species makes them less dependent on phosphorus and on

Overall, leaf traits predicted litter decomposition rate better for native than for exotic species, especially at the first harvest. This suggests that other unquantified litter traits of exotic species might initially exert a tighter control on the decomposition process than the measured traits. For instance, high levels of relatively mobile polyphenolic compounds have been commonly reported in invasive species (Ehrenfeld 2003; Knight et al. 2007). These carbon-based defences may be useful under the full-sun habitat conditions of the early community succession stages, where aliens mainly invade because they provide protection from UV light, and defence against generalist herbivores, but not against the specialist ones (See references in Marko et al. 2008). Such ecological strategy of invasive species remains in the senesced leaves, influencing the initial processes of litter decomposition (Hättenschwiler and Vitousek 2000).

Consequences of invasions for nutrient cycling

nitrogen (Table 3) (Knorr et al. 2005).

Lignin is an immobile carbon-based substance that influences nutrient cycles at ecosystem scale slowing down litter decomposition (Swift et al. 1979, Cornwell et al. 2008). Contrary to most other studies on litter decomposition rates by aliens versus natives, our results have demonstrated that invasive alien species produce less decomposable leaf litter compared to co-familial native Mediterranean plants, probably due to their higher lignin content. Our results therefore suggest that the soil nutrient turnover, and thereby nutrient availability, will not be enhanced upon invasion in Spanish Mediterranean ecosystems; actually it might even be slightly inhibited.

However, our experiment has the limitation of not representing natural soil and litter layer conditions in the habitats where invasive species are becoming abundant. In addition, our decomposition bed litter matrix was composed of species (Quercus ssp.) that generate low decomposition rates (Gallardo and Merino 1993) possibly selecting organism adapted to decompose lignin-rich litter but reducing the soil fauna and microbial diversity (Gallardo and Merino 1992). Thus, changes in decomposer community, soil conditions, or both caused by invasion processes may feed back or moderate the decomposition patterns reported here. For instance, although litter from invasive Acacia species is hard to decompose (see "Electronic supplementary material", Table S1; Yelenik et al. 2007) their nitrogen-fixing strategy highly augments nitrogen soil availability and microbial soil activity, accelerating litter decomposition upon invasion (Yelenik et al. 2007). High soil nitrogen and phosphorus availability by natural or human-mediated actions may lead to the same results (Knorr et al. 2005). However, Spanish Mediterranean soils are in general characterised by their low nitrogen and phosphorus content (Gallardo and Parama 2007) and their low microbial activity and biomass (Gallardo and Merino 1992). Accordingly, a progressive increment of invasive plant species characterised by their lignin-rich litter and without a significant increment in nitrogen and phosphorus soil availability, would cause a slow down of nutrient cycling by reducing the litter quality and the abundance and diversity of decomposer communities (Gallardo and Merino 1992; Chigineva et al. 2009). In this sense, Cotrufo et al. (1998) demonstrated that litter of impoverished quality due to an increment in lignin content and lignin:N ratio was avoided by soil fauna in a food choice experiment. Our results also suggest that under the scenario of a progressive displacement of native species by invasive ones, altering the spectra of growth forms in an ecosystem, invokes the highest relative impact on the litter decomposition rate (the relative impact

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

1 depending on whether the native community is completely displaced or invasive and 2 native species coexist) (Fig. 1). Consequently, changes in community structure from 3 herbaceous to less decomposable invasive woody species, which have been reported for 4 different Mediterranean-type ecosystems worldwide (Di Tomaso 1998, Bousquet-5 Melou et al. 2005) could augment this negative feedback on litter decomposition. Our 6 data also highlights the importance of Family and, to a lesser extent, Leaf type on the 7 litter decomposition rate (Fig. 1). The impoverishment of taxonomic diversity in native 8 woody communities due to the introduction of forestry evergreen exotic trees, 9 belonging to a few selected taxonomic groups (e.g. Pinus -Pinaceae- and Eucalyptus -10 Myrtaceae-) (see "Electronic supplementary material", Table S1 for mean mass loss 11 values), could also augment this negative feedback. There may be worse consequences 12 for nutrient cycling of the invasive plant species establishment when both effects occur 13 at the same time, as it has been reported in the Cape Region of South Africa (Manders 14 and Richardson 1992). 15

In summary, invasive species have the potential to slow down nutrient cycling in Spanish Mediterranean ecosystems through slower litter decomposition. The high lignin content that drives this change is a reflection of the features displayed by alien species to become invasive. The degree of the impact will be the highest when invasive species had higher lignin content than natives, which involves a few genera of woody evergreen alien species.

21

22

16

17

18

19

20

Acknowledgements

Thanks are due to Margarita Costa-Tenorio, Antonio Gallardo, Rob Broekman and Manuel Godoy for field help, supplying ion exchange resin membranes and lab assistance, respectively. Financial support was provided by the Spanish Ministry for

1	Education and Science grants RASINV GL2004-04884-C02 02/BOS (as part of the
2	coordinate project RINVE) and CGL2007-61873/BOS.
3	
4	References
5	Abrams MM, Jarrell WM (1992) Bioavailability index for phosphorous using ion-
6	exchange resin impregnated membranes. Soil Science Society of America
7	Journal 56:1532-1537
8	Allison SD, Vitousek PM (2004) Rapid nutrient cycling in leaf litter from invasive
9	plants in Hawaii. Oecologia 141:612-619
10	Armstrong DP, Westoby M (1993) Seedlings from large seeds tolerate defoliation
11	better-A test using phylogenetically independent contrast. Ecology 74:1092-
12	1100
13	Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT (2005) Invasive species
14	accelerate decomposition and litter nitrogen loss in a mixed deciduous forest.
15	Ecological Applications 15:1263-1272
16	Bousquet-Melou A, Louis S, Robles C, Greff S, Dupouyet S, Fernandez C (2005)
17	Allelopathic potential of Medicago arborea, a Mediterranean invasive shrub.
18	Chemoecology 15:193-198
19	Bremer B et al. (2003) An update of the Angiosperm Phylogeny Group classification
20	for the orders and families of flowering plants: APG II. Botanical Journal of the
21	Linnean Society 141:399-436
22	Bubb KA, Xu ZH, Simpson JA, Saffigna PG (1998) Some nutrient dynamics associated
23	with litterfall and litter decomposition in hoop pine plantations of southeast

Queensland, Australia. Forest Ecology and Management 110:343-352

1	Burnham KP, Anderson DR (2002) Model selection and multimodel inference
2	Springer, New York
3	Castro-Díez P, González-Muñoz N, Alonso A, Gallardo A, Poorter L (2009) Effects of
4	exotic invasive trees on nitrogen cycling: a case study in Central Spain
5	Biological Invasions 11:1973-1986
6	Castroviejo S (1986-2008) Flora Ibérica. Plantas vasculares de la Península Ibérica e
7	Islas Baleares. (todos los vols). Real Jardín Botánico-CSIC, Madrid
8	Chigineva NI, Aleksandrova AV, Tiunov AV (2009) The addition of labile carbon
9	alters litter fungal communities and decreases litter decomposition rates
10	Applied Soil Ecology 42:264-270
11	Cornelissen JHC (1996) An experimental comparison of leaf decomposition rates in a
12	wide range of temperate plant species and types. Journal of Ecology 84:573-582
13	Cornwell WK et al. (2008) Plant species traits are the predominant control on litter
14	decomposition rates within biomes worldwide. Ecology Letters 11:1065-1071
15	Cotrufo MF, Briones MJI, Ineson P (1998) Elevated CO2 affects field decomposition
16	rate and palatability of tree leaf litter: Importance of changes in substrate quality.
17	Soil Biology and Biochemistry 30:1565-1571
18	Di Tomaso JM (1998) Impact, biology, and ecology of saltcedar (Tamarix spp.) in the
19	southwestern United States. Weed Technology 12:326-336
20	Drenovsky RE, Batten KM (2007) Invasion by Aegilops triuncialis (barb goatgrass)
21	slows carbon and nutrient cycling in a serpentine grassland. Biological Invasions
22	9:107-116
23	Dukes JS, Mooney HA (2004) Disruption of ecosystem processes in western North
24	America by invasive species. Revista Chilena de Historia Natural 77:411-437

- Ehrenfeld JG (2003) Effects of exotic plant invasions on soil nutrient cycling processes.
 Ecosystems 6:503-523
- 3 Epstein E (1994) The anomaly of silicon in plant biology. Proceedings of the National
- 4 Academy of Sciences of the United States of America 91:11-17
- 5 Fowler J, Cohen L (1992) Practical statistics for field biology, Wiley and Sons, London.
- 6 Gallardo A, Merino J (1992) Nitrogen immobilization in leaf litter at two mediterranean
- 7 ecosystems of SW Spain. Biogeochemistry 15:213-228
- 8 Gallardo A, Merino J (1993) Leaf decomposition in two mediterranean ecosystems of
- 9 southwest Spain, influence of substrate quality. Ecology 74:152-161
- Gallardo A, Parama R (2007) Spatial variability of soil elements in two plant
- communities of NW Spain. Geoderma 139:199-208
- Garnier E et al. (2004) Plant functional markers capture ecosystem properties during
- secondary succession. Ecology 85:2630-2637
- Gasso N et al. (2009) Exploring species attributes and site characteristics to assess plant
- invasions in Spain. Diversity and Distributions 15:50-58
- 16 Groves RH, Di Castri F (1991) Biogeography of Mediterranean invasions Cambridge
- 17 University Press, Cambridge
- Hättenschwiler S, Vitousek PM (2000) The role of polyphenols in terrestrial ecosystem
- nutrient cycling. Trends in Ecology & Evolution 15:238-243
- 20 Hobbie SE (1992) Effects of plant-species on nutrient cycling Trends in Ecology &
- 21 Evolution 7:336-339
- 22 Knight KS, Kurylo JS, Endress AG, Stewart JR, Reich PB (2007) Ecology and
- ecosystem impacts of common buckthorn (Rhamnus cathartica): a review.
- 24 Biological Invasions 9:925-937

1 Knorr M, Frey SD, Curtis PS (2005) Nitrogen additions and litter decomposition: A 2 meta-analysis. Ecology 86:3252-3257 3 Kolar CS, Lodge DM (2001) Progress in invasion biology: predicting invaders. Trends 4 in Ecology & Evolution 16:199-204 5 Kueffer C, Klingler G, Zirfass K, Schumacher E, Edwards PJ, Gusewell S (2008) 6 Invasive trees show only weak potential to impact nutrient dynamics in 7 phosphorus-poor tropical forests in the Seychelles. Functional Ecology 22:359-8 366 9 Lautner S, Ehlting B, Windeisen E, Rennenberg H, Matyssek R, Fromm J (2007) 10 Calcium nutrition has a significant influence on wood formation in poplar. New 11 Phytologist 173:743-752 12 Levine JM, Vila M, D'Antonio CM, Dukes JS, Grigulis K, Lavorel S (2003) 13 Mechanisms underlying the impacts of exotic plant invasions. Proceedings of 14 the Royal Society of London Series B-Biological Sciences 270:775-781 15 Liao CZ et al. (2008) Altered ecosystem carbon and nitrogen cycles by plant invasion: a 16 meta-analysis. New Phytologist 177:706-714 17 Mack RN, Simberloff D, Lonsdale WM, Evans H, Clout M, Bazzaz FA (2000) Biotic 18 invasions: Causes, epidemiology, global consequences, and control. Ecological 19 **Applications 10:689-710** 20 Manders PT, Richardson DM (1992) Colonization of Cape fynbos communities by 21 forest species. Forest Ecology and Management 48:277-293 22 Marko PD, Gross EM, Newman RM, Gleason FK (2008) Chemical profile of the North American native Myriophyllum sibiricum compared to the invasive M. 23 24 spicatum. Aquatic Botany 88:57-65

1 Poorter H, Villar R (1997) The fate of acquired carbon in plants: chemical composition 2 and construction costs. In: Plant resource allocation (eds Bazzaz FA, Grace J), 3 pp. 39–72. Academic Press, San Diego. 4 Pyšek P, Richardson DM, Rejmánek M, Webster GL, Williamson M, Kirschner J 5 (2004) Alien plants in checklist and floras: towards better communication 6 between taxonomist and ecologist. Taxon 53:131-143 7 Pyšek P, Richardson DM (2007) Traits associated with invasiveness in alien plants: 8 Where do we stand? In: Caldwell MM (ed) Biological Invasions, vol 193. 9 Springer, Berlin Heidelberg, pp 97-125 10 Quested HM, Callaghan TV, Cornelissen JHC, Press MC (2005) The impact of 11 hemiparasitic plant litter on decomposition: direct, seasonal and litter mixing 12 effects. Journal of Ecology 93:87-98 13 Quested HM et al. (2003) Decomposition of sub-arctic plants with differing nitrogen 14 economies: A functional role for hemiparasites. Ecology 84:3209-3221 15 R Development Core Team (2009). R: A language and environment for statistical 16 computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-17 900051-07-0, URL http://www.R-project.org. 18 Richardson DM, Pyšek P, Rejmanek M, Barbour MG, Panetta FD, West CJ (2000) 19 Naturalization and invasion of alien plants: concepts and definitions. Diversity 20 and Distributions 6:93-107 21 Rubio A, Escudero A (2005) Effect of climate and physiography on occurrence and 22 intensity of decarbonation in Mediterranean forest soils of Spain. Geoderma 23 125:309-319 24 Sanz Elorza M, Dana Sanchez D, Sobrino Vesperinas E (2004) Atlas de las Plantas 25 Alóctonas Invasoras en España. Ministerio de Medio Ambiente, Madrid

1	Sayer EJ (2006) Using experimental manipulation to assess the roles of leaf litter in the
2	functioning of forest ecosystems. Biological Reviews 81:1-31
3	Sims GK, Ellsworth TR, Mulvaney RL (1995) Microscale determination of inorganic
4	nitrogen in water and soil extracts. Communications in Soil Science and Plant
5	Analysis 26:303-316
6	Sneller FEC et al. (1999) Toxicity of arsenate in Silene vulgaris, accumulation and
7	degradation of arsenate-induced phytochelatins. New Phytologist 144:223-232
8	Soltis DE et al. (2000) Angiosperm phylogeny inferred from 18S rDNA, rbcL, and atpB
9	sequences. Botanical Journal of the Linnean Society 133:381-461
10	Strauss SY, Webb CO, Salamin N (2006) Exotic taxa less related to native species are
11	more invasive. Proceedings of the National Academy of Sciences of the United
12	States of America 103:5841-5845
13	Subler S, Blair JM, Edwards CA (1995) Using anion-exchange membranes to measure
14	soil nitrate availability and net nitrification. Soil Biology & Biochemistry
15	27:911-917
16	Swift MJ, Heal OW, Anderson JM (1979) Decomposition in terrestrial ecosystems. In:
17	Studies in ecology, vol 5. Blackwell Scientific Publications, Oxford
18	Valéry L, Fritz H, Lefeuvre JC, Simberloff D (2008) In search of a real definition of the
19	biological invasion phenomenon itself. Biological Invasions 10:1345-1351
20	Villar R, Robleto JR, De Jong Y, Poorter H (2006) Differences in construction costs and
21	chemical composition between deciduous and evergreen woody species are
22	small as compared to differences among families. Plant Cell and Environment
23	29:1629-1643
24	Vitousek PM, Howarth RW (1991) Nitrogen limitation on land and in the sea - How can
25	it occur? Biogeochemistry 13:87-115

1	Xuluc-Tolosa FJ, Vester HFM, Ramirez-Marcial N, Castellanos-Albores J, Lawrence D
2	(2003) Leaf litter decomposition of tree species in three successional phases of
3	tropical dry secondary forest in Campeche, Mexico. Forest Ecology and
4	Management 174:401-412
5	Yelenik SG, Stock WD, Richardson DM (2007) Functional group identity does not
6	predict invader impacts: differential effects of nitrogen-fixing exotic plants on
7	ecosystem function. Biological Invasions 9:117-125

1 Figure Legend

- 2 Figure 1 Four-way analysis of variance assigning the relative importance of family,
- 3 growth form (woody/herbaceous), leaf type (evergreen deciduous) and status
- 4 (invasive/native) on percentage mass of leaf litter, based on the 19 invasive-native co-
- 5 familial pairs (see Table 1). Mass loss % was arcsine (square-root(x/100)) transformed
- 6 prior to analysis. Family, as a predictor, was nested in Growth Form because there was
- 7 no family with both woody and herbaceous species. Explained/Residual variance
- 8 corresponds with the F values of the ANOVA.

Table 1 Invasive-native phylogenetic pairs, invaded-type ecological community and locations selected. W: Woody species, H herbaceous species, E: Evergreen, D: Deciduous.

Family	Invasive species	Native species	Ecological community	W/H	E/D	Spatial location, Spanish Province
Aceraceae	Acer negundo	Acer campestre	Woodland	W	D	40° 30´ N, 3° 20´ W, Madrid
Anacardiaceae	Schinus molle	Pistacia terebinthus	Shrubland	W	E/D	39° 10´ N, 0° 16´ W, Valencia/ 40° 34´ N, 3° 09´ W, Guadalajara
Asteraceae	Achillea filipendula	Achillea millefolium	Grassland	Н	D	40° 30´ N, 3° 20´ W, Madrid
Caprifoliaceae	Lonicera japonica	Lonicera etrusca	Shrubland & Riparian areas	Н	D	40° 30´ N, 3° 20´ W, Madrid
Amaranthaceae	Atriplex semibaccata	Atriplex halimus	Shrubland	Н	Ε	38° 14´ N 0° 32´ W, Alicante/ 40° 30´ N, 3° 20´ W, Madrid
Convolvulaceae	Ipomoea indica	Calystegia sepium	Riparian areas	Н	D	38° 24´ N 0° 26´ W, Alicante
Elaeagnaceae/ Rhamnaceae	Elaeagnus angustifolia	Rhamnus alaternus	Shrubland	W	D/E	40° 30´ N, 3° 20´ W, Madrid
Fabaceae	Gleditsia triacanthos	Colutea arborescens	Shrubland	W	D	40° 34´ N, 3° 09´ W, Guadalajara
Fabaceae	Sophora japonica	Ceratonia siliqua	Woodland	W	Ε	40° 30´ N, 3° 20´ W, Madrid/ 38° 33´ N 0° 31´ W, Alicante
Fabaceae	Robinia pseudoacacia	Coronilla glauca	Shrubland	W	D/E	40° 30´ N, 3° 20´ W, Madrid
Fabaceae	Acacia saligna	Anagyris foetida	Shrubland	W	E/D	38° 31´ N 0° 10´ W, Alicante/ 39° 09´ N 0° 21´ W, Valencia
Myrtaceae	Eucalyptus globulus	Myrtus communis	Shrubland	W	Ε	40° 30´ N, 3° 20´ W, Madrid
Onagraceae	Oenothera biennis	Epilobium hirsutum	Grasslands & Riparian areas	Н	D	39° 06´ N 0° 23´ W, Valencia/ 40° 30´ N, 3° 20´ W, Madrid
Pinaceae	Pinus radiata	Pinus pinaster	Woodland	W	Ε	40° 30´ N, 3° 20´ W, Madrid
Simaroubaceae/ Cneoraceae	Ailanthus altissima	Cneorum tricoccom	Shrubland	W	D/E	40° 30′ N, 3° 20′ W, Madrid
Solanaceae Solanaceae	Nicotiana alauca	l voium intricatum	Shruhland &	Н	F	38° 05′ N 0° 40′ W Alicante

Table 2 Leaf litter trait comparison using a pairwise-T test based on the 19 invasive-native co-familial pairs. Mean values \pm SE are shown. An asterisk on p-values means that differences were found between pairs. Each pair was considered as a replicate.

Leaf litter traits	Invasive	Native	t-value	Р
% Litter Mass First Harvest	0.36±0.01	0.42±0.01	-1.84	0.11
% Litter Mass Final Harvest	0.52 ± 0.02	0.60 ± 0.02	-2.02	0.049*
Initial Nitrogen (mg/g)	1.36±0.01	1.38±0.01	-0.13	0.90
Initial Carbon (mg/g)	51.87±1.98	50.98±2.10	1.79	0.091
Initial C:N	50.25±2.67	47.19±2.36	0.47	0.65
Final Nitrogen (mg/g)	1.95 ± 0.39	2.04 ± 0.63	-0.52	0.62
Final Carbon (mg/g)	52.68± 1.68	52.00±1.15	0.95	0.21
Final C:N	35.36 ± 3.04	32.77±3.12	0.63	0.55
Initial Phosphorus (mg/g)	0.13 ± 0.08	0.16 ± 0.07	-1.03	0.31
Initial Calcium (mg/g)	4.10±0.03	3.21 ± 0.02	2.17	0.041*
Initial Potassium (mg/g)	1.37±0.01	1.34±0.01	0.08	0.95
Initial Magnesium (mg/g)	0.72 ± 0.05	0.72 ± 0.04	-0.01	0.99
Total Initial Cations (mg/g)	5.86 ± 0.05	5.27 ± 0.05	1.48	0.16
pH	5.89±1.13	5.55±0.61	1.55	0.25
İnitial Lignin (mg/g)	139.39±2.92	95.19±1.53	2.61	0.029*
Initial Cellulose (mg/g)	166.10±1.92	170.39±2.04	-0.32	0.68
SLA (m2/kg)	9.87 ± 3.54	9.32±2.92	-0.65	0.52

Table 3 Multiple-regression models for invasive and native species at first and final harvest. Dependent variable was the decomposition rate within harvest and independent predictors were selected among initial leaf traits. Empty cells indicate that the leaf trait was not included in the model. Models are ranked in each case by AIC from best to worst-fitting model, and only the models with Δ AIC<2 are presented. For each variable entering the model the standardized regression coefficient is shown to evaluate its relative importance. An asterisk indicate that the variable is significant in the fitted model at p<0.05.

Group	С	N	Р	Cations	рН	SLA	Cellulose	AIC	Δ ΑΙС	r^2
Invasive	-0.08*	0.07*						-62.028	0.0	0.21
first harvest	-0.08*	0.06*			0.12*			-61.434	0.6	0.22
	-0.09*				0.13*			-60.652	1.4	0.18
	-0.08*	0.07*					-0.01	-60.405	1.6	0.19
	-0.08*	0.06*		0.01				-60.211	1.8	0.20
	-0.09*	0.07*				0.04		-60.208	1.8	0.17
Native	-0.23*	0.12*		0.02*	0.04	0.05	-0.06*	-118.058	0.0	0.73
first harvest	-0.22*	0.11*		0.02*	0.05		-0.06*	-117.004	1.1	0.74
Invasive	-0.06	0.33*	0.65*	0.03*		0.09		-56.183	0	0.52
final harvest	-0.06	0.33*	0.66*	0.04*	-0.02	0.11*		-56.031	0.2	0.52
	-0.06	0.32*	0.66*	0.03*		0.01	0.03	-55.165	1	0.52
	-0.06	0.33*	0.67*	0.04*	-0.02	0.11*	0.03	-54.655	1.5	0.51
	-0.07	0.35*		0.04*	-0.02	0.11*		-54.574	1.6	0.47
Native	-0.23*	0.11*		0.02*	0.18*	0.14*	-0.10*	-75.564	0.0	0.69
final harvest	-0.23*	0.12*	-0.12	0.02*	0.19*	0.15*	-0.11*	-73.856	1.7	0.70

Predictor variable codes are: C: Carbon (%), N: Nitrogen (%), P: Phosphorus (%), Cations: (Magnesium (%) + Calcium (%) + Potassium (%)) in litter before incubation. SLA: Specific Leaf Area. Initial lignin concentration is included in Carbon.

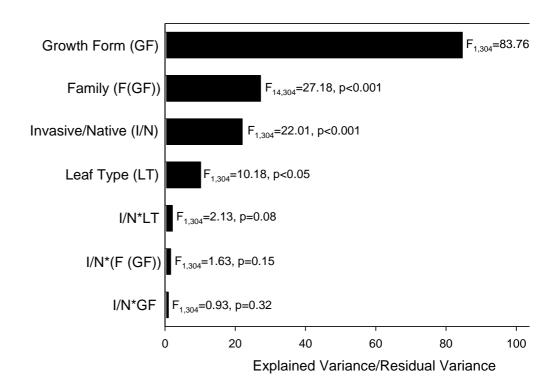


Figure 1