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The synthesis of four-membered azacycles is of importance because of the chemical and biological 
relevance of these compounds. Recent progress in copper-catalyzed reactions has been applicable to a 
variety of research fields, such as heterocyclic synthesis. The aim of the current review is to summarize 
the synthesis of strained four-membered ring taking advantage of copper catalysis. 

1. Introduction 10 

 A key point for chemical synthesis is efficiency, converting 
readily available starting materials into target molecules in 
relatively few operations and requiring minimal quantities of raw 
material and producing minimal waste. Therefore, the 
development of reactions that achieve both selectivity and atom 15 

economy must be a prime goal of synthetic chemistry. The ability 
of transition metal salts to catalyze organic reactions constitutes 
one of the most powerful strategies to address these fundamental 
issues, having a significant impact both on academic research and 
in industrial settings. Metal catalysis is widely employed in a 20 

variety of fields from the total synthesis of natural products to the 
preparation of new biomaterials or the preparation of large 
samples for clinical trials as well as for manufacturing.1 During 
the past few years the field has matured and at the same time 
expanded into areas, which were rather unexplored before. Thus, 25 

a resplendent age of metal catalysis has bloomed in the last years. 
Although in the early 1900s Ullmann and Goldberg 
independently reported the first copper-promoted coupling 
reaction,2 an arylation of nucleophiles, probably because of the 
harsh reaction conditions coupled to the normal use of 30 

stoichiometric amounts of copper salts, copper catalysis was not 
viewed as a viable alternative to the main classes of established 
metal catalysts until recently. Interestingly, a change in fortune 
for copper catalysis has come about as a result of the use of 
additives that allowed the incorporation of catalytic amounts of 35 

copper under mild conditions. The copper- and palladium-
catalyzed reactions have been linked because both transition 
metals have been used for the construction of similar types of 
carbon–carbon and carbon–heteroatom bonds.3 However, in 
several instances copper salts are complementary to palladium 40 

catalyst For example, in the arylation process of indoles, 
palladium shows a high selectivity for arylation at C-2 position4 
and copper catalyzed exclusively at C-3 position.5 The site 
selectivity exhibited by both catalysts was orthogonal and this 
kind of selectivity is one of the most difficult challenges in the 45 

field of carbon–hydrogen functionalization. Thus, the 

development of direct metal-catalyzed transformations that 
operate under ambient and selective reaction parameters is an 
attractive goal for the advancement of the chemical synthesis 
using copper-based salts.6

 On the other hand, chemical research of strained four-
membered azacycles, where a nitrogen atom is part of the ring, 
has become a highly dynamic area of international priority and 
importance in many fields of Science, including Organic 
Chemistry, Inorganic Chemistry, Medicinal Chemistry, and 55 

Material Science.

 50 

7 In addition to being key scaffolds in natural 
products as well as in compounds of biological and industrial 
interest, the use of four-membered azacycles as starting materials 
to prepare many different substances justifies a long lasting effort 
to work out new synthetic protocols.8

2. Synthesis of β-lactams 

 The aim of this review is to 60 

provide a survey of the types of copper-assisted reactions used to 
prepare four-membered azacycles, concentrating on the advances 
that have been made in the last decade. 

 2-Azetidinone (β-lactam), a four membered cyclic amide 65 

(Figure 1) has been recognized as the fundamental 
pharmacophore group for a large number of bioactive 
compounds.  
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Figure 1. Structure of 2-azetidinone (β-lactam). 70 

 The most important aspect of the synthesis of β-lactam 
derivatives has been the construction of the four-membered ring. 
β-Lactam antibiotics such as penicillins and cephalosporins have 
occupied a central role in the fight against pathogenic bacteria 
and the subsequent rise in quality of life for the world population 75 

as a whole.9 In addition, there are many important nonantibiotic 
uses of 2-azetidinones in fields ranging from enzyme inhibition, 
some of the more notable advances concern the development of 
mechanism-based serine protease inhibitors of elastase, 
cytomegalovirus protease, thrombin, prostate specific antigen, 80 
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and cell metastasis and as inhibitors of acyl-CoA cholesterol acyl 
transferase to gene activation.10 It has also been reported that β-
lactams act to modulate the expression of glutamate 
neurotransmitter transporters via gene activation.11 These 
biological activities, combined with the use of these products as 5 

starting materials to prepare α- and β-amino acids, alkaloids, 
heterocycles, taxoids, and other types of compounds of biological 
and medicinal interest,12

2.1. Kinugasa reaction 

 provide the motivation to explore new 
methodologies for the synthesis of substances based on the β-
lactam core. 10 

2.1.1 General aspects of the Kinugasa reaction 
 Among the different synthetic routes for the construction of the 
β-lactams, the Kinugasa reaction is a direct and simple method 
that should be taken in consideration. The reaction offers several 15 

advantages, which include mild reaction conditions and the 
availability of a large repertoire of alkynes and nitrones. Crafting 
of these functionalities on two arms of the same molecule to 
facilitate an intramolecular reaction is comparatively easier than 
the widely used Staudinger reaction, which requires the use of an 20 

acyl halide, a more reactive functionality. In 1972, Kinugasa and 
Hashimoto13 first reported the reaction of copper (I) 
phenylacetylide with nitrones providing a facile way to 
synthesize β-lactams (Scheme 1). The reaction was carried out in 
dry pyridine at room temperature under nitrogen atmosphere for 25 

0.5-1 h and the cis-products were obtained exclusively in good 
yields (51-60%). This process was the first Kinugasa-type 
synthesis of cis-β-lactams in stereoselective manner. 
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Scheme 1. Synthesis of β-lactam ring through Kinugasa reaction. 30 

 In 1976 Ding and Irwin14 studied different nitrones and copper 
acetylides and discovered that a mixture of cis- and trans-β-
lactams was always obtained in different ratios. The cis-β-lactam 
3 was the major diastereomer in most cases and it was converted 
in the trans-isomer 4 under basic conditions through an 35 

epimerization process. This isomerisation process also depends 
on the type of substituent at C3 position (Scheme 2).  
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Scheme 2. Synthesis of β-lactam ring by Ding and Irwin. 

These authors proposed the first mechanism for the Kinugasa 40 

reaction which is still accepted today (Scheme 3).  
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Scheme 3. Possible reaction pathway for the Kinugasa reaction as 
proposed by Ding and Irwin. 

 According to the mechanism proposed by Ding and Irwin, 45 

Chmielewski15 explained that the Kinugasa reaction involves a 
cycloaddition-rearrangement cascade process catalyzed by copper 
(I) ions and proceeds in the presence of an organic base. The 
initially formed copper-alkyne π-complex undergoes 
deprotonation. Next, the activated triple bond takes part in a 1,3-50 

dipolar cycloaddition with a nitrone  to provide five membered 
isoxazoline A. The rearrangement of isoxazoline copper complex 
A into copper enolate B and subsequent protonation leads to the 
formation of the β-lactam ring. The protonation of intermediate 
enolate B in the second step occurs from the less-shielded side of 55 

the β-lactam ring (Scheme 4). 
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Scheme 4. Proposed mechanism of the Kinugasa reaction by 
Chmielewski. 

 Miura et al.16 developed the first catalytic version of this 
reaction and found that the coupling reactions between a terminal 5 

alkyne and C,N-diarylnitrones could be accomplished with a 
catalytic amount of copper (CuI) and potassium carbonate 
(Scheme 5). The yields of the resulting products 3a, 4a, 8-10 
were dependent on the type of phosphanes or nitrogen-containing 
compounds used as ligands. In the absence of ligands or with 10 

ligands containing phosphane, such as triphenylphosphane, 
tributylphosphane, 1,2-bis(diphenylphosphanyl)ethane (dppe), 
1,3-bis(diphenylphosphanyl)propane (dppp), or 2,2′ -bipyridine, 
the trans-β-lactam 4a was isolated as the only product but in poor 
yield. When the reaction was achieved in the presence of pyridine 15 

or 1,10-phenanthroline as ligands, the yields of the β-lactams 
were improved (55–71%), and a mixture of cis-3a and trans-4a 
isomers in a 2:1 ratio for pyridine and in a 1:1.2 ratio for 1,10-
phenanthroline was obtained respectively. 
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Scheme 5. Asymmetric intermolecular Kinugasa reaction developed by 
Miura. 

 In 2009, Pezacki and col.17 reported studies of simultaneous 
micelle and copper-catalyzed multicomponent Kinugasa reaction 25 

in water (Scheme 6). The multicomponent process proceeds by a 
two-step reaction sequence involving the micelle-promoted 
nitrone formation from substituted benzaldehydes 11 and N-
phenylhydroxyl amine 12 followed by the in situ 1,3-dipolar 
cycloaddition and rearrangement reaction with Cu (I) 30 

phenylacetylide. This reaction provided cis and trans β-lactams 
13 with high yields (46-82%) and the side amide 14 (11-36%). 
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Scheme 6. Micelle-promoted multicomponent Kinugasa reaction. 35 

 The β-lactam nucleobase chimeric molecules have been 
prepared from the corresponding propargyl nucleobases via 
Kinugasa reaction mimicking the click chemistry conditions.18 
The reaction was carried out with CuSO4⋅5H2O, which was 
pretreated with sodium ascorbate in a mixture of DMF/H2O, Et3N 40 

at 0 ºC. The presence of L-ascorbate is essential because the 
reaction did not work in its absence. The click conditions worked 
really well and the β-lactams could be obtained in up to 71% 
yield (Scheme 7). 
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Scheme 7. β-lactam nucleobase chimeric molecules prepared 
under click conditions. 
2.1.2 Intermolecular asymmetric Kinugasa reaction 
2.1.2.1 Asymmetric Kinugasa reaction using chiral catalysts 5 

In another report, Miura et al.19 described the first examples of 
the asymmetric intermolecular Kinugasa reaction with chiral bis-
oxazoline-type ligands (Figure 2). When compound 16a was used 
as ligand, the reaction of alkyne 6a with nitrone 2a provided β-
lactams 3a and 4a in 45% yield (dr 35:65) and ee = 40% for each 10 

isomer. The ee improved (68%) when the amount of CuI was 
increased (1 mmol). Compounds 16b and 17 generated similar 
products with ees of 67% and 45%, respectively. The slow 
addition of phenylacetylene 6a to a mixture of nitrone 2a, CuI 
(0.1 mmol), and 16a (0.2 mmol) afforded a 57% ee. Under the 15 

same reaction conditions and catalysts 16b or 17, copper(I) 
phenylacetylide precipitated preventing further reaction. 
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Figure 2. Bis-oxazoline-type ligands for asymmetric intramolecular 
Kinugasa reaction. 20 

 The first versatile system for the copper-catalyzed asymmetric 
coupling of alkynes with nitrones using a chiral-ligand strategy 
was developed by Lo and Fu.20 This group examined the utility of 
the Kinugasa reaction using a new C2-symmetric planar-chiral 
bis(azaferrocene) ligand and the sterically hindered base N,N-25 

dicyclohexylmethylamine under Miura`s conditions (Scheme 8). 
However, the reaction between phenylacetylene 6a and N-α-
diphenyl-substituted nitrones 2 in the presence of 19a and 
catalytic amounts of copper(I) chloride revealed a moderate 
stereoselection. But, a methyl-substituted ligand 19b afforded the 30 

β-lactams 18 with excellent cis diastereoselectivity (95:5) and 
good ees (from 77 to 89%), irrespective of the nature of the 
aromatic ring. The best results were obtained when 4-anisyl 
substituent (standard N-protecting group for β-lactams) was used. 
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Scheme 8. Catalytic asymmetric synthesis of β-lactams by a chiral 
bis(azaferrocene) ligand. 

 Until now, Kinugasa reaction was performed strictly under 
nitrogen atmosphere in order to mitigate the Glaser oxidative 40 

coupling. Tang and col.21 developed a superior catalyst, which is 
cheap, easy to access, air-stable and water-tolerant. They 
designed a pseudo C3-symmetric trisoxazoline (TOX) 20 by 
sidearm approach and found that TOX 20/Cu(II) complex could 
catalyze Kinugasa reaction very well. Moreover, they 45 

demonstrated in their study that the amines strongly influenced in 
the Kinugasa reaction for selectivity and yield. Although primary 
amines, secondary amines and tertiary amines promote this 
reaction; the best results have been obtained when a bulkier 
amine (dicyclohexylamine) was used as base. When the reaction 50 

was carried out between a variety of structurally different 
nitrones and alkynes in the presence of a catalytic amount of 
20/Cu(ClO4)2⋅6H2O and Cy2NH in acetonitrile at 0 ºC, the desired 
cis-β-lactams 3 were achieved in good and moderate yields and 
enantioselectivities. Later on,22 these authors synthesized a 55 

variety of trisoxazolines based on the frameworks of 
bisoxazolines in order to improve the asymmetric induction 
(Scheme 9) and they conclude that the best results were obtained 
with iPr-trisoxazoline 20/Cu(ClO4)2⋅6H2O. This method provided 
a facile access to β-lactams in moderate yield and in moderate to 60 

good diastereo- and enantioselectivity. Besides, a copper (II) salt 
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was an efficient catalyst for the first time in the Kinugasa 
reaction. In the following years, much effort has been dedicated 
to improve the stereoselectivity. For this reason, they also 
studied23 the influence of the sidearm group and a series of chiral 
oxazoline moieties was introduced into the IndaBOX scaffold in 5 

order to obtain a novel TOX/copper catalyst. 
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Scheme 9. Ligands studied by Tang research group. 

 The tert-butyl substituted TOX 21c/CuOTf⋅Tol showed the 
fast reaction and higher cis-enantioselectivity. Compared with 10 

trisoxazoline/Cu(II) complex 20, the reaction with the TOX/Cu(I) 
catalytic system 21c gave the best results in diastereo- and 
enantioselectivity (Scheme 10). 
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 15 

Scheme 10. Synthesis of β-lactams by a pseudo C3-symmetric 
trisoxazoline (TOX) 21c. 

 Otani and co-workers24 performed the Kinugasa reaction using 
a commercially and cheaply available C2-symmetric IndaBox 
ligand 22. This group of research studied different catalysts, 20 

bases, nitrones and alkyne substituents. The best results were 
obtained using Cu(OTf)2 and di-sec-butyl-amine (s-Bu2NH) at 5 
ºC. The Kinugasa reaction with different substituents in the 
alkyne component 6 and nitrone 2a was explored. The electron-
donating p-tolyl and p-MeOC6H4 groups showed a high 25 

enantioselectivity and the cis-isomer was the major product. In 
contrast, the much more electron-withdrawing substituent p-
NO2C6H4 preferred the trans-isomer (Scheme 11). 

N
PhO

N
Ph

H

O

+
R1 Ph

– +

6a R1 = Ph
6b R1 = p-MeC6H4
6c R1 = p-(MeO)C6H4
6d R1 = p-(NO2)C6H4

PhR1
20 mol% Cu(OTf)2
22 mol% TOX -22

s-Bu2NH, iPrOAc, 5 ºC

3a (47%, ee = 90%, dr = 85:15)
3q (38%, ee = 93%, dr = 63:37)
3r (40%, ee = 94%, dr = 83:17)
3s (51%, ee = 86%, dr = 18:82)

N

O

N

O

TOX-22

2a

 
Scheme 11. Kinugasa reaction using a C2-symmetric IndaBox ligand 22. 30 

 Recently, Feng and col.25 described a new chiral 
diamine−Cu(OTf)2 complex for the catalytic asymmetric 
Kinugasa reaction. Furthermore, the reaction was performed on 
pure water without the need of any organic co-solvents. In 
contrast to most enantioselective Kinugasa reactions, this mild 35 

and operationally simple method provides a one-step route to 
optically active trans-β-lactams 23 in good yields, 
enantioselectivities and diastereoselectivities. This procedure 
tolerates a relatively wide range of substrates (electron-deficient 
or electron-rich nitrones and electron-deficient or electron-rich 40 

phenylacetylenes). The trans isomer 23 is the result of 
isomerization at the C3 position under the basic reaction 
conditions used (Scheme 12). Due to these excellent results, the 
synthetic potential of this catalytic system was evaluated for 
gram-scale reactions, and the corresponding trans β-lactams 23 45 

were obtained without any loss in reactivity and 
enantioselectivity. 
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Scheme 12. Asymmetric Kinugasa reaction on water. 
 Basak developed a novel Kinugasa reaction using nitrones 2a 50 

and 2h and propargyl alcohol 25 in the presence of CuI and L-
proline in DMF at room temperature (Scheme 13).26 The reaction 
afforded two products, the cis-β-lactams 3 along with the 3-
exomethylene β-lactams 26. When DMSO was uses as solvent, 
the exomethylene adduct 26 became the major product. The 55 

presence of the amphoteric L-proline molecule is important for 
this one-step reaction sequence. The authors suggest the 
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possibility that methylene β-lactams 26a and 26b are derived 
from cis-β-lactams 3t and 3u by simple β-elimination. This 
process must have occurred during the formation of the β-lactam 
ring and not after. 
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Scheme 13. Kinugasa reactions in presence of L-proline. 

2.1.2.2 Asymmetric Kinugasa reaction using chiral alkynes 

 Azetidinyl γ-lactam-based peptides were synthesized by a 
Kinugasa reaction of pyroglutamate 27 with diphenyl nitrone 10 

2a.27 This reaction produced three diastereomers: one trans 
isomer 4k and a pair of cis isomers 3v and 18e. It appears that 
only one of the cis isomers 18e, epimerized to the trans 
compound and the other cis isomer 3v is configurationally more 
stable and is resistant to epimerization. These kinds of products 15 

were excellent starting materials for the preparation of peptides 
4l, 3w and 18f (Scheme 14). The synthesis of the peptides was 
carried out both with pure trans isomer and with the mixture of 
two cis isomers. Interestingly, the γ-lactam peptides showed a 
preference for the β-turn conformation. 20 
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Scheme 14. Azetidinyl γ-lactam-based peptides synthesized using a Kinugasa reaction for the construction of the four-membered ring. 

 In 2008, Hsung`s research group28 described a highly 
stereoselective synthesis of chiral α-amino-β-lactams through an 
ynamide-Kinugasa reaction. The reaction was carried out in the 25 

presence of CuCl in MeCN [0.2 M] at room temperature. The 
reaction produced β-lactam cis-18g as the major isomer and the 
minor isomer was assigned as trans-4m (Scheme 15). An 
application of this reaction conditions was the preparation of 
chiral α-amino-β-lactams 18j and 4p in good yields. In this 30 

process, the high stereoselective observed requires both the initial 
cycloaddition and subsequent protonation (Scheme 16). 
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Scheme 15. Highly stereoselective ynamide Kinugasa reaction. 
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Scheme 16. Synthesis of chiral α-amino-β-lactams. 

 A novel approach for the synthesis of cholesterol absorption 
inhibitor ezetimibe 23h was developed by the group of 
Chmielewski.29

 15 

 The key step in the synthesis is a Kinugasa 5 

cycloaddition/rearrangement cascade between terminal acetylene 
30 derived from acetonide of L-gliceraldehyde, nitrone 2s and 
N,N,N′,N′-tetramethylguanidine (TMG). The desired product 3x 
was obtained along with two other isomers 23f and 18k. It should 

be noted that 3x and the trans isomer 23f have the same 10 

configuration at C4 of the azetidin-2-one ring. Thus, 3x and 23f 
can be used for the next steps without separation. It was the first 
example of an application of the Kinugasa reaction in a target-
oriented synthesis (Scheme 17). 
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Scheme 17. Synthesis of cholesterol absorption inhibitor ezetimibe 23h. 

  
Based on these results, the same group30 studied the reaction of a 20 

series of protected and unprotected chiral propargyl alcohols 30-
33 and diaryl nitrones 2 to afford azetidin-2-one derivatives 3, 4, 
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18 and 23 with a well-defined stereochemistry. The Kinugasa 
reactions involving C,N-diaryl imine oxides offered a lower level 
of stereoselectivity, reflected by the detection of four possible 
isomeric β-lactam products although cis adduct 3 was the major 
product. This type of product was obtained in moderate to good 5 

diastereoselectivity which could be further modulated by 
changing the electronic properties of the nitrone 2. The use of 
unprotected chiral propargylic alcohols 32a and 33a-b gave β-
lactam derivatives 3, 4, 18 and 23 in good overall yields. 
Moreover, a mixture of four possible isomers 10 

chromatographically inseparable was obtained (Scheme 18). 
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Scheme 18. Kinugasa reaction of chiral acetylenes and diaryl 
nitrones. 
2.1.2.3 Asymmetric Kinugasa reaction using chiral nitrones 15 

 Carbapenems are β-lactam antibiotics endowed with a broader 
spectrum, activity and resistance to β-lactamases than other β-
lactams. The term “carbapenem” is defined as the 4:5 fused ring 
lactam of penicillins with a double bond between C-2 and C-3 but 
with the substitution of carbon for sulfur at C-1. On the other 20 

hand, carbapenam is a β-lactam compound that is a saturated 
carbapenem (Figure 3). These compounds exist primarily as 
biosynthetic intermediates on the way to the carbapenem 
antibiotics.  

N
O

H H
R1

R2

1
2

3
456

7

cis-carbapenam  25 

Figure 3. Structure of cis-carbapenam. 

 A stereoselective synthesis of carpenams via Kinugasa reaction 

between terminal copper acetylides and nonracemic cyclic 
nitrones derived from malic and tartaric acid was reported by 
Chmielewski.31 The reaction of nitrone 34 with phenylacetylene 30 

6a gave two bicyclic products 35a and 36a in a ratio of 85:15 and 
56% yield. The use of other acetylenes 6e-g provided products 
with high diastereoselectivity but rather a poor yield. In all cases, 
the anti approach to the t-BuO was observed and the 5,6-cis-
penams 35 were obtained as a major component (Scheme 19). 35 
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6a R1 = Ph
6e R1 = CH2OTBDPS
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Scheme 19. Diastereoselective synthesis of Carbapenams via Kinugasa 
reaction. 

 The stereochemical outcome of the Kinugasa reaction is 40 

controlled by the initial cycloaddition step leading to the 
isoxazoline intermediate. The cycloaddition step determines the 
configuration at the bridgehead carbon atom. Two possible 
approaches of acetylides to the nitrone are shown in figure 4. The 
approach of acetylide to the si side of the nitrones (syn to t-BuO) 45 

is disfavoured due to the steric interactions. The lack of steric 
hindrance for the nitrones re side makes approach of the acetylide 
more favourable. The cis substitution of β-lactam ring is observed 
either exclusively, or it significantly dominates since the 
protonation of the copper enolate proceeds from the less shielded 50 

convex-side of the carbapenam skeleton. The subsequent 
generation of the stereogenic center at C-6 depends on the 
configuration at previously created bridgehead carbon atom C-5 
and proceeds through a protonation of the intermediate enolate 
(resulting by rearrangement of the isoxazoline) from its convex or 55 

concave side. 
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cis product
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trans product

 
Figure 4. Stereochemical course of the Kinugasa reaction as proposed by 
Chmielewski. 60 

 In 2009, the same group32 described a Kinugasa reaction 
involving nonracemic cyclic nitrones 34, 37-39 and chiral, 
optically pure acetylenes 40-43. The reactions displayed high 
diastereoselectivity affording the cis dominant product 35e, 44 
and 45. The yields of desired products vary from poor, for 65 
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aliphatic acetylenes, to moderate and good for aryl acetylenes. 
The configuration of the nitrone controlled the 1,3-dipolar 
cycloaddition step when acetylene and nitrone are chiral. By the 
other side, the geometry of the acetylene component can 
influence direction of asymmetric induction only if the nitrone is 5 

not chiral. In all cases, the major products exhibit the relative cis 
orientation of protons in the four-membered β-lactam ring 
(Scheme 20). 
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Scheme 20. Kinugasa reaction between chiral acetylenes and chiral 
nitrones. 

 In another reports, Chmielewski15,33 described that acetylenes 15 

derived from D-glyceraldehyde acetonide 42 and propargyl 
adehyde 46 displayed a remarkable reactivity in the Kinugasa 
reaction (Scheme 21). This is due to the formation of the highly 
reactive rigid dinuclear copper(I) complex (Figure 5) in which 
copper ion is coordinated to one or both oxygen atoms in the 20 

acetylene molecule and to both triple bonds. The rigid structure 
of the dioxolane stabilizes the conformation of the acetylide and 
enables an optimal interaction of oxygen atoms with the copper 
ion. It should be noted that two nucleophilic centers are necessary 
for the effective coordination of the copper ion, and thus to 25 

activate the triple bond for the cycloaddition reaction with 
nitrones. The high active acetylenes afforded the best results in 
the presence of catalytic amounts of the copper salt. However, 
less-reactive acetylenes require a long reaction time which 

promotes side process. In these studies, the effectiveness of 30 

acetylene in the Kinugasa reaction can be improved by the 
addition of 1,10-phenantroline. 
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Scheme 21. Carbapenams via cycloaddition reaction. 35 
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1,10-phenantroline, Et3N, MeCN).  

Figure 5. Plausible coordination of copper(I) complexes formed from 
acetylenes 42 and 46. 

 The synthesis of a variety of chiral β-lactams by the Kinugasa 
reactions between cyclic nitrones 47-50 and sugar-derived 40 

acetylenes 51-55 were achieved by Kaliappan.34

 Subsequently, Chmielewski

 This author 
suggests that the addition of a sugar unit to both templates has a 
significant effect in improving the bioavailability of these β-
lactams. The reaction was carried out with 3 equiv. of CuI, 
dicyclohexylamine in dry MeCN at 0 ºC and under these reaction 45 

conditions, the cis β-lactams 56-60 were obtained in good to 
excellent yields as sole products (Scheme 22). However in some 
cases, the authors observed the Glaser coupling product (dimer of 
alkynes) as a minor side product. 

33 described an application of 50 

Kinugasa reaction from sugar-derived cyclic nitrones 47, 48, 61-
64 and simple non chiral and chiral acetylenes 65-70 (Scheme 
23). The reaction proceeded in moderate to good yields and 
displayed high levels of diastereoselectivity affording mostly one 
predominant cis-product 71a or 71b. Interesting double addition 55 

was observed in the case of diyne 70 derived from D–tartaric acid 
(Scheme 24). The bis-substituted product 72 was formed with 
high stereoselectivity via reaction of two of the same matched 
pair. 
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Scheme 22. Kinugasa reaction between cyclic nitrones and sugar-derived 
acetylenes. 

–

+

N
O

R1

71a (50-54%)

N
O

OR

+
100 mol% CuI

Et3N, MeCN
0 ºC - rt

R1

–

+N

O

OBnBnO

BnO

47

+N

O

OBnBnO

BnO

48

– –

+N

O

OBnBnO

BnO

61

–

+N

O

BnO
63

–

+N

O

OBnBnO

BnO

BnO

62

–

+N

O
O

O

64

BnO

65

66

OR1 OR1

68a R1 = H
68b R1 = TBDPS

69a R1 = H
69b R1 = TBDPS

70

O

O

67

O

47, 48 and 61-64 65-70

N
O

R1

71b (34-80%)

H H H H

or

OR OR

 5 

Scheme 23. Kinugasa reaction involving sugar-derived cyclic nitrones 
and different acetylenes. 
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Scheme 24. Chmielewski´s synthesis of bis-substituted product 72 via 10 

Kinugasa reaction. 

 Kinugasa reaction between terminal acetylenes 6a or 42 and 
six-membered ring nitrone 73 proceeded in a low to moderate 
yield and high diastereoselectivity affording dominant cis β-
lactam products 74a-b (Scheme 25).35 In this reaction, the 15 

configuration of the nitrones controlled the 1,3-dipolar 
cycloaddition (first step). The protonation of the intermediate 
enolate in the second step depends on a) the configuration of the 
bridgehead carbon atom formed in the first step, b) epimerization 
process in the presence of a base, and c) the configuration of the 20 

stereogenic center in the acetylenic partner. 
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Scheme 25. Asymmetric Kinugasa reaction involving six-membered 
cyclic nitrones. 5 

2.1.3 Intramolecular Kinugasa reaction 
 β-Lactam-fused enediynes has gained importance because of 
the ability of the β-lactam-ring to act as a molecular clock in 
stabilizing the otherwise unstable enedyne moiety.36 The 
formation of enediyne involves important steps like the 10 

construction of the acyclic enediyne framework by Sonogashira 
coupling, O-propargylation, functional group modification to 
generate the nitrones and an intramolecular Kinugasa reaction. 
The precursor 75 was synthesized in 10 steps, but when this 
nitrone was subjected to the Kinugasa reactions conditions, two 15 

different β-lactams were isolated. The trans fused system 76 and 
the dehydration product 77 (Scheme 26). 
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CuI, Et3N, MeCN

76:77 (65%, dr = 4:1)  
Scheme 26. Synthesis of enediynes by an intramolecular Kinugasa 
reaction. 20 

 As shown in Scheme 8, the research group of Fu established 
that a Cu/phosphaferrocene–oxazoline catalyst promotes an 
intermolecular Kinugasa reaction for preparing monocyclic β-
lactams with excellent diastereoselectivity and good ees. Based 
on these results, Fu37 have demonstrated that an intramolecular 25 

Kinugasa reaction can be used to prepare fused tricyclic 
compounds containing a 6,4 or a 7,4 ring systems 80 (Scheme 
27). The reaction was carried out in the presence of a planar-

chiral Cu/phosphaferrocene–oxazoline catalyst 79 and produced 
two new rings efficiently with very good levels of 30 

enantioselectivity. 

 
Scheme 27. Intramolecular Kinugasa reactions in the presence of planar-
chiral phosphaferrocene–oxazoline ligands. 

 The copper enolate intermediate B postulated in the 35 

mechanism of the Kinugasa reaction (Scheme 4) could be 
intercepted when an electrophile is added to the reaction mixture. 
For this reason, allyl iodide 81 was used as electrophile in the 
presence of a mixture of a silyl enol ether and KOAc as the base 
(Scheme 28). The heterocyclic substrate 78d was efficiently 40 

converted into the desired enantioenriched β-lactam 82 (90% ee 
and 70% yield) Thus, two carbon–carbon bonds, a carbon–
nitrogen bond, two new rings (including a β-lactam), a carbonyl 
group, and adjacent tertiary and quaternary stereocenters could be 
generated in a single cyclization–alkylation sequence. 45 
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Scheme 28. Synthesis of enantio-enriched tricyclic β-lactam using an 
intramolecular Kinugasa reaction.  

 Jørgensen and col.38 have developed a Michael 
addition/cycloaddition based one-pot protocol for the highly 50 

enantio- and diastereoselective syntheses of β-lactams 87a-e 
(Scheme 29). The reaction was achieved in the presence of 
malononitrile derivatives 83, aliphatic α,β-unsaturated aldehydes 
84a-e, and catalyst 85 in order to obtain a Michael adduct. The 
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subsequent addition of N-phenylhydroxylamine and CuI afforded 
the corresponding β-lactams 87 in good yields. In the formation 
of (E)-87d and (Z)-87e, no competing side reaction with the 
alkene moiety was observed, even though these compounds are 
ideally positioned to form a six-membered ring in general favored 5 

over the alkyne to act as acceptor in 1,3-dipolar cycloadditions. 
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Scheme 29. Enantio- and diastereoselective syntheses of β-lactams from a Michael addition/cycloaddition and Kinugasa reaction sequence. 

 The proposed reaction course to explain formation of 
compounds 87 (Scheme 30) starts when the Michael adduct 86 
condenses with N-phenylhydroxylamine to form nitrone 88. This 15 

copper acetylide nitrone 88 undergoes intramolecular 1,3-dipolar 
cycloaddition to form the vinyl cuprate 89. This collapses to 
ketene 90, which, after aniline addition/tautomerization, affords 
β-lactams 87. 
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Scheme 30. Mechanistic outline for the formation of β-lactams 87. 

2.2 Synthesis of β-lactams from Ullman-type coupling 

 4-Alkylidene-2-azetidinones 93 (medium-sized lactams) have 
been synthesized by the Cu(I)−catalyzed intramolecular C−N 25 

coupling of amides with vinyl bromides.39 Reaction of primary 
amides 91 followed by subsequent hydrolysis with aqueous 
hydrochloric acid led to the efficient synthesis of 8- or 9- 
membered lactams 93 (Scheme 31). Presumably amides 91 
underwent 4-exo cyclization followed by intramolecular N-30 

arylation to give the unstable tricyclic intermediates 92. The 
hydrolytic cleavage of the enamide C-N bond afforded the ring 
expansion products 93.  

I
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i) 10 mol% CuI, 20 mol% DMG HCl, K2CO3, MeCN, ∆, 12 h.

HCl

.

n

 35 

Scheme 31. Medium-sized lactams 93 via tandem C−N bond formation. 

2.3 Synthesis of β-lactams via an oxidative process 

 Zhang and col.40 have established, for the first time, the 
catalytic conditions for the synthesis of β-keto-β-lactams 95 
bearing a double spirocyclic structure by an oxidative coupling 40 

process (Scheme 32). Treatment of the amides 94 with catalytic 
amount of copper sulfate pentahydrate and DMAP in absolute 
ethanol led to the formation of lactams 95a-f. The synthesis of 
highly functional and rigid double spirocyclic β-lactams by 
formation of two consecutive quaternary carbon centers 45 

concurrently has been achieved in high yield (80-93%). 
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Scheme 32. Copper-catalyzed synthesis of spirocyclic β-lactams. 

3. Synthesis of azetidine derivatives 

 Azetidines are an important class of aza-heterocyclic 
compounds with remarkable biological activities, which makes 5 

them an interesting synthetic topic.41 This kind of structure is the 
smallest nitrogen-containing saturated heterocycle possessing 
reasonable chemical stability. Moreover, the azetidine ring finds a 
wide application as a pharmacological tool in many drugs or 
bioactive compounds, usually in medicinal chemistry. 10 

NH
azetidine  

Figure 6. Structure of azetidine. 

3.1 Synthesis of alkylidene azetidines 

 N-Tosyl-3-halo-3-butenylamines 96 have been transformed 
into 2-alkylideneazetidines 97 using an efficient Ullman-type 15 

coupling with a mixture of CuI as catalyst and N,N-
dimethylethylendiamine (DMDEA) as ligand.42 The cyclization 
afforded the azetidines in good yields and demonstrated the high 
efficiency of the four-membered ring closure. The subsequent 
transformation of compounds 97 into the corresponding β-20 

lactams 98a-f was realized through a conventional O3 oxidation 
procedure (Scheme 33). 
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Scheme 33. Synthesis of β-lactams 98 via alkylideneazetidines 97. 

 In 2003, Akiyama and col.43 have studied the catalytic 25 

enantioselective [2+2] cycloaddition reaction of α-imino esters 
99 and 1-methoxyallenes 100 catalyzed by a Cu(I) complex 
(Scheme 34). Treatment of 99 and 100 with 10 mol% (R)-Tol-
BINAP catalyst, THF, molecular sieves (4 Å) at −78 ºC gave the 
cycloadducts 101 with high enantioselectivity. Acid treatment of 30 

compounds 101 furnished α,β-unsaturated-β-amino-acylsilanes 
102. The use of an allenylsilane moiety and the silyl group is 
essential in order to achieve the cycloaddition reaction. 
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1 N HCl

a: reaction was run at 0 ºC.

Scheme 34. Preparation of α-β-unsaturated-β-amino-acylsilanes. 35 

3.2 Synthesis of azetidin-3-ones 

 The combination of N-tosyldiazoketone with Cu(acac)2 
catalyst provided the cis-substituted azetidine 104. The key step 
was based on a copper carbenoid N−H insertion44 of α,α´-
dialkyl-α-diazoketone 103 to furnish cis-2,4-dialkyl-azetidin-3-40 

one 104 as a single diastereoisomer.45 The same methodology 
was applied in the synthesis of cis conformationally constrained 
glutamate analogue 107 containing an azetidine framework.46 
The preparation of chiral azetidin-3-one 106 involves the reaction 
of the diazoketone 105 with Cu(acac)2 in refluxing benzene for 45 

promoting the N−H insertion reaction in 55% yield (Scheme 35). 
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Scheme 35. Cu-catalyzed synthesis of azetidin-3-ones 104 and 106. 

3.3 Synthesis of N-sulfonylazetidin-2-imines 

 It has been shown that sulfonyl azetidinimine products can be 
viewed as β-lactam analogues, due to their potential applications 5 

as therapeutic agents. The stereoselective conversion of alkynes 
to N-sulfonylazetidin-2-imines 110 by the initial reaction of 
copper(I) acetylides with sulfonyl azides 108, followed, in situ, 
by formal [2+2] cycloaddition was reported by Fokin and col.47 
This group of research examined the MCR (multicomponent 10 

reaction) of different acetylenes 6a, 6h, sulfonyl azides 108a and 
108b in the presence of N-benzylideneanilines 109a and 109b as 
nucleophiles. This reaction revealed, that both alkyl and aryl 
alkynes gave the expected azetidinimine 110a-c with high trans 
selectivity. The reaction appears to be amenable to the use of a 15 

wide range of sulfonyl azides 108, alkynes 6 and imines 109 
(Scheme 36). This three-component coupling proceed through the 
initial reaction of in situ generated copper(I) acetylides with 
sulfonyl azides 108 to give transient (1-sulfonyltriazolyl)copper 
intermediates which, upon extrusion of molecular nitrogen, 20 

generate N-sulfonylketenimines 110a-c. 
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Scheme 36. Stereoselective synthesis of N-sulfonylazetidin-2-imines 110. 

 Recently, the ketenimine intermediate 11148 generated in the 25 

copper catalyzed azide-alkyne cycloaddition has been trapped by 
tetramethylguanidine 112 as nucleophile in order to achieve the 
corresponding derivative 113 in 80% yield (Scheme 37).  
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Scheme 37. Synthesis of functionalized 1,4-dihidroazete 30 

derivative. 
 Synthesis of a collection of 2-(sulfonylimino)-4-
(alkylimino)azetidine derivatives 115 via a copper-catalyzed 
multicomponent reaction of readily available terminal alkynes 6, 
sulfonyl azide 108a, and carbodiimide without the assistance of a 35 

base has been accomplished (Scheme 38).49 The desired 2-
(sulfonylimino)-4-(alkylimino)azetidines 115 were isolated in 71-
94% yield. In the presence of DCC or DIC and CuI, alkyne 5 
reacts with sulfonyl azide 108 through two possible pathways to 
form the ketenimine species 117 according to Chang50

47
 and 40 

Fokin’s proposal,  in which DCC or DIC could act as a weak 
base. Protonation of 117 gives rise to the highly reactive 
ketenimine 118 and regenerates the copper catalyst. Then, 118 
reacts with carbodiimide 114 through a [2 +2] cycloaddition to 
afford the desired product 115 (Scheme 39). 45 
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Scheme 38. Synthesis of 2-(sulfonylimino)-4-(alkylimino)azetidine 
derivatives 115. 
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Scheme 39. Proposed mechanism for the formation of N-sulfonylazetidin-
2-imines as proposed by Xu. 

 The groups of Fokin and Xu have reported copper(I)iodide 
catalyzed MCRs. However, these processes either proceeded in 
organic solvents in the presence of ligands or bases. In addition to 55 

the above-mentioned synthesis of azetidines, there is a different 
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three-component reaction that has been achieved using 10 mol% 
of copper(I)oxide (Cu2O) and solvent-free conditions.51 When the 
reactions were carried out at room temperature, the N-
sulfonylazetidin-2-imines 115 were prepared in good yields and 
the reaction system confirms that the addition of a base as 5 

promoter is not required (Scheme 40). 
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Scheme 40. MCR catalyzed by copper(I)oxide (Cu2O). 

 Very recently, Wang and co-workers have reported52 a Cu-
catalyzed four-component reaction of imidoyl chlorides 119, 10 

sulfonyl azides 108, and terminal alkynes 6, which afforded 
polyfunctionalized azetidin-2-imines 120 in good to excellent 
yield with high diastereoselectivity. This methodology supported 
different aryl alkynes, aryl or alkyl sulfonyl azides and different 
imidoyl chlorides derived from N-benzyl amides. In the Scheme 15 

41 is shown only the optimized preparation of azetidin-2-imine 
120a from mixed alkynes. The product showed two aryl groups 
in the azetidin-2-imine rings in cis configuration, because of the 
cis-adducts were the thermodynamically favored products in this 
MCR. The synthesized azetidin-2-imines 120b-e were converted 20 

into dihydroazeto[1,2-α]benzo[e]azepin-2(4H)-imines 122b-e via 
an electrophilic cyclization using H2SO4 in DCE (Scheme 41). 
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Scheme 41. Preparation of azetidin-2-imines 120 and 122. 
 The possible mechanism is shown in Scheme 42. In the 25 

presence of a base, the copper-catalyzed Csp−Csp2 coupling 
reaction between terminal alkyne 6a and imidoyl chloride 119 
forms the ynimine intermediate 123. Meanwhile, the copper-

catalyzed alkyne−azide cycloaddition occurs to form the 
ketenimine intermediate 111. Subsequently, a [2+2] cycloaddition 30 

between 123 and 111 takes place to furnish azetidin-2-imine 120. 
The remarkable diastereoselectivity for the formation of cis-120b 
can be attributed due to the thermodynamic stability of the cis-
product. 
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Scheme 42. Plausible mechanism for the formation of azetidin-2-imines 
120. 

 A new-one pot procedure for obtaining ferrocenyl 
azetidinimines from ferrocenylimines was developed (Scheme 40 

43).53 Reaction of compounds 124a-e with p-toluenesulfonyl 
azide 108a, alkyne 6a and catalytic (10 mol%) amount of CuI in 
acetonitrile gave the corresponding nitrogen heterocyclic 
substituted rigid ferrocenyl azetidinimines 125a-e in good yield. 
Electron releasing and withdrawing groups at 3- and 4- positions 45 

of the benzene ring of ferrocenyl imines 124 were proved 
Electron rich ferrocenyl imines, and ferrocenyl imines having 
halogen substituents afforded the desired products 125. However, 
anilines substituted by strong electron withdrawing groups were 
unreactive. 50 
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Scheme 43. Stereoselective synthesis of ferrocenyl azetidinimines. 

3.4 Synthesis of four-membered cyclic nitrones 

 The group of Terada has described the utility of (E)-O-
propargyl arylaldoximes for the preparation of four-membered 55 

cyclic nitrones.54 In a preliminary communication55 and 
subsequently in a full paper later,56 Terada and co-workers 
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reported the copper-catalyzed skeletal rearrangement of O-
propargyl aryloximes 126 in the presence of Cu(I) in order to 
afford the corresponding products 127 and 128. The optimal 
reaction conditions of the highly regioselective reactions involve 
the use of [CuCl(cod)]2 in MeCN at 70 ºC (Scheme 44). Taking 5 

into account these results, this group studied the transfer of 
chirality during the Cu-catalyzed skeletal rearrangement using 
readily accessible starting materials. For example, the reaction of 
the corresponding Z-isomer (R,Z)-126e provide the enantiomer 
127e without loss of chirality (Scheme 45). 10 
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Scheme 44. Copper-catalyzed reactions of O-propargyl aryloximes. 
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Scheme 45. Chirality transfer for copper-catalyzed reaction of 126e. 15 

 
 A possible pathway for the achievement of the four-membered 
cyclic nitrones 127 is outlined in Scheme 46. First, the copper 
catalyst coordinates with the alkyne moiety of (E)-126 to allow 
the nucleophilic attack by the oxime nitrogen atom onto the 20 

electrophilically-activated triple bond. The resulting five-
membered cyclic intermediate 129 undergoes cleavage of the 
carbon–oxygen bond and elimination of the copper catalyst to 
afford N-allenylnitrone intermediate 131a, which then rotates to 
conformer 131b that undergoes cyclization to afford product 127. 25 

In the case of (Z)-126, the [2,3] rearrangement proceeds in a 
concerted manner to form N-allenylnitrone intermediate (Z)-131c, 
without the aid of the copper catalyst. Should the cyclization of 
the chiral allene intermediate (E)-131b proceed via a conrotatory 
4π-electrocyclization, the sp3-carbon would adopt an S-30 

configuration. However, the resulting R-configuration suggests 
that the aldonitrone moiety undergoes an E/Z isomerization to 
favor the more stable (Z)-131c prior to the thermal cyclization. 
The high level of chirality transfer proceeds directly via (Z)-N-
allenylnitrone intermediate (Z)-131c. At the present stage, it is 35 

unclear whether the loss of ee takes place during the copper-
catalyzed [2,3] rearrangement step from (E)-126 to 131. 
 

 

 40 

Scheme 46. Mechanistic outline for the formation of four-membered cyclic nitrones 127. 
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Conclusions 
During the last years, significant progress has been made in the 
exploration of copper-promoted-reactions. For this reason, this 
review has summarized a Cu-assisted synthesis of strained four-
membered nitrogen heterocycles. The most important aspect of 5 

copper chemistry lies in its efficiency, since the reaction can be 
performed at ambient temperature. It should be noted, that the 
majority of reactions described here, proceeds under relatively 
mild conditions and tolerates a wide variety of functional groups. 
The presently available report on Cu-promoted-reactions covered 10 

the synthesis of β-lactams by Kinugasa reaction, from Ullman-
type coupling, via an oxidative process and synthesis of 
azetidines derivatives. Considering the sustained interest in the 
application of available copper salts for the synthesis of four-
membered azacycles, much broader applications will be expected 15 

in the future. 

Abreviations 
Ar:  aryl 
Bn:  benzyl 
Cu(aca)2  copper(II) acetylacetonate 20 

CAN:  ceric ammonium nitrate 
Cbz:  benzyloxycarbonyl 
Cy:  ciclohexyl 
DBU:  1,8-diazabicyclo[5.4.0]undec-7-ene 
DCC:  N,N′-Dicyclohexylcarbodiimide 25 

DCE:  1,2-Dichloroethane 
DIC:  N,N′-Diisopropylcarbodiimide 
DMAP:  4-dimethylaminopyridine 
DMDEA: N,N-dimethylethylendiamine 
DMF:  dimethylformamide 30 

DMG:  N,N-Dimethylglycine 
DMSO:  dimethyl sulfoxide 
dppe:  (diphos) 1,2-Bis(diphenylphosphino)ethane 
dppp:  1,3-Bis(diphenylphosphino)propane 
dr:  diastereomeric ratio 35 

ee:  enantiomeric excess 
EDC:  1-[3-dimethyl aminopropyl]-3-ethylcarbodiimide 
Epa:  4-ethoxycarbonylanilinomethyl 
equiv:  equivalents 
ETA:  ethanolamine 40 

Hmp:  4-hydroxi-1-methylpiperidin-4-ylmethyl 
HOBT:  1-hydroxybenzotriazole 
IBD:  iodobenzene diacetate 
MCR  multicomponent reaction 
Ms:  mesyl 45 

MS:  molecular sieves 
PMP:  p-methoxyphenyl 
Py:  pyridine 
r:   ratio 

rt:   room temperature 50 

SDS:    sodium dodecyl sulphate 
TBDPS:  tert-butyldiphenylsilyl 
TBS:   tert-butyldimethylsilyl 
THF:  tetrahydrofuran 
TMG: N,N,N′,N′-tetramethylguanidine 55 

Tol: tolyl 
TOX: trisoxazoline 
Ts: tosyl  
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